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Abstract—Chicken diseases are an important problem in the
livestock industry, affecting the health and production perfor-
mance of chicken flocks worldwide. These diseases can seriously
damage the health of chickens, reduce egg production, or increase
mortality, causing great economic losses to farmers. Therefore,
detecting and preventing diseases in chickens is a top concern
in the livestock industry, to ensure the health and sustainable
production of chicken flocks. In recent years, advances in machine
learning techniques have shown promise in solving challenges
related to image diagnosis and classification. Leveraging the
power of machine learning models, we propose the ViT16 model
for disease classification in chickens, demonstrating its potential in
assisting healthcare professionals to diagnose chicken flocks more
effectively. In this study, ViT16 demonstrated its potential and
strengths when compared with 5 models in the CNN architecture
and ViT32 in the ViT architecture in the task of classifying
chicken disease images with an accuracy of 99.25% - 99.75%
- 100% - 98.25% in four experimental scenarios with our
enhanced dataset and fine-tuning. These results were generated
from transfer learning and model tuning on an augmented dataset
consisting of 8067 images classified into four classes: Coccidiosis,
New Castle Disease, Salmonella, and Healthy. Furthermore,
the Integrated Gradients explanation has an important role in
increasing the transparency and understanding of the image
classification model, thereby improving and optimizing model
performance. The performance evaluation of each model is done
through in-depth analysis, including metrics such as precision,
recall, F1 score, accuracy, and confusion matrix.

Keywords—Vision Transformer; ViT16; classification chicken
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I. INTRODUCTION

Chicken diseases are one of the important and worrying
problems in the poultry industry. Chickens are considered
one of the most important types of livestock, providing the
main source of food for humans worldwide [1]. However,
chickens often encounter a variety of infectious and non-
infectious diseases that affect their health and production
performance. The importance of chickens in livestock farming
comes not only from the aspect of providing meat and eggs to
consumers but also from the ability to create stable income
for farmers [2]. Chickens provide an important source of
income for farmers and breeders around the world, especially
in rural and agriculturally developed areas [3]. However, when
chickens get sick, the consequences can reduce productivity
and product quality, causing great economic loss for farmers
[4] [5]. Chicken diseases can spread quickly in chicken flocks,

leading to mass deaths and reducing the economic value
of chicken flocks. Using artificial intelligence and machine
learning methods, technology can be used to diagnose chicken
diseases early as an important method to control and prevent
the spread of infectious diseases in chicken flocks [6] [7]
[8]. Technology helps detect disease symptoms early, thereby
allowing farmers to implement timely control and treatment
measures, helping to minimize losses and increase livestock
performance.

The Food and Agriculture Organization (FAO) projects that
worldwide chicken meat output will be 103.5 million tons
in 2012, accounting for approximately 34.3% of global meat
production. A survey in the [9] study was carried out with
households affected by severe aspergillosis. Data were col-
lected from February 2018 to July 2019 from 183 households.
The average risk of disease and mortality is 39% and 26% in
chickens, 42% and 22% in turkeys, respectively, with young
birds having a higher risk of disease and mortality than young
birds. adult poultry. This loss causes economic losses in the
chicken industry due to increased mortality, reduced meat and
egg production, and poor growth. Viral infections, including
Newcastle disease, infectious bursal disease, and avian in-
fluenza lead to economic costs in poultry farms, including bird
losses, lower productivity, and employment losses [10]. Poultry
farming is impacted by several viral, bacterial, parasitic, and
fungal infections, which result in reduced appetite, weight
loss, lower egg production, and greater mortality, leading to
significant economic losses [11]. The highly pathogenic avian
influenza epidemic in the United States led to fewer jobs,
poorer productivity, and decreased tax collections, hurting
both infected and non-infected farms [12]. The resurgence of
Newcastle disease in village chicken populations in Tanzania
caused major economic losses for small and medium farmers,
affecting their predicted earnings and resulting in considerable
economic burdens [13].

Advancements in machine learning approaches, such trans-
fer learning [14] and fine-tuning [15], are increasingly being
used to improve detection and classification accuracy. Transfer
learning enables models pre-trained on big datasets to be
applied to new tasks with less labeled data, making it ideal
for medical imaging applications where annotated datasets
are rare. Fine-tuning pre-trained models by modifying their
parameters to better match the unique characteristics of the
target task, resulting in improved performance. Huong Hoang
Luong et al. [16] [17] [18] used fine-tuned transfer learning
to categorize human skin, monkeypox, and brain tumors in
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the international medical field. By combining these machine
learning algorithms into picture categorization, doctors may
increase diagnosis accuracy, minimize screening time, and
provide better patient care.

Vision Transformers (ViT) [19] represent a recent ad-
vancement in the realm of computer vision, offering a novel
approach to image recognition tasks [20]. Unlike traditional
Convolutional Neural Networks (CNNs), ViT utilizes a self-
attention mechanism to capture long-range dependencies in
images, enabling effective feature extraction and representa-
tion. This architecture consists of multiple Transformer blocks,
each containing self-attention layers and feed-forward neural
networks. By leveraging self-attention, ViT can effectively pro-
cess images without relying on spatial hierarchies, making it
suitable for tasks such as image classification, object detection,
and segmentation [21]. The ViT16 model, in particular, is a
variant of the Vision Transformer architecture that has demon-
strated impressive performance in various computer vision
tasks. It consists of 16 Transformer blocks, each with self-
attention layers and feed-forward neural networks. Through
extensive training on large-scale datasets, ViT16 has learned
to extract informative features from input images and make
accurate predictions. Moreover, ViT16 has shown robustness
to variations in image content and background noise, making it
suitable for real-world applications in medical image analysis.

In this study, we will use the Integrated Gradients explana-
tion. Integrated gradients were proposed by Sundararajan et al.
[22] to explain the predictions of our machine learning model.
Interpretation is an important part of understanding and en-
hancing model transparency, especially in medical applications
like ours. By explaining, we will have a more detailed look at
how the model makes decisions, helping us better understand
predictions and increasing the model’s reliability in diagnosing
and treating diseases. disability.

In this study, we suggested the ViT16 model of the Vision
Transformer (ViT) to detect and classify diseases in chickens.
In addition, we have deployed five well-known accumulated
neural network (CNN) models (EfficiencyNetB3, ResNet50,
VGG16, MobileNet, and InceptionV3) and ViT32 models of
the ViT architecture to evaluate and compare with the model
we have proposed.

The contributions of the work are:

• This study presents four scenarios to evaluate the clas-
sification efficiency of three common diseases. The
classification of healthy and coccidiosis is carried out
according to the first scenario. In the second scenario,
we classify Healthy and New Castle Disease. The
classification of healthy and salmonella is carried out
in the third scenario. In the final scenario, we classify
all four classes, including healthy, coccididiosis, new
castle disease, and salmonella. The purpose of imple-
menting these four scenarios is to determine whether
the ViT model is effective when classifying each class
individually or multiple classes at the same time.
We propose a Vision Transformer transfer learning
model based on the pre-trained ViT16 architecture for
chicken disease image classification. By fine-tuning
the model, we achieve promising results, surpassing
other CNN architectures with accuracies up to 99.75%

- 99.75% - 100% - 98.25% in four scenarios. This
demonstrates the effectiveness of the ViT16 model for
image classification, even without task-specific fine-
tuning, achieving a transfer learning accuracy of 93%.
Furthermore, fine-tuning the ViT models leads to a
significant improvement in performance, increasing
the accuracy from 93% to 98.25%.

• Demonstrate the effectiveness of the proposed model
(ViT16) by implementing comparisons with five fa-
mous convolutional neural network architectures (Ef-
ficientNetB3, ResNet50, VGG16, MobileNet, Incep-
tionV3) and a ViT32 model of the Vision architecture
Transformer in the same setting.

• Experimental results show that the Integrated Gradi-
ents explanation is useful in helping to better under-
stand how the model makes decisions by explaining
how each pixel or feature affects the final prediction.
Thanks to that, we can identify important areas in the
image that the model pays attention to to make pre-
dictions. Integrated Gradients create transparent and
easy-to-understand explanations, helping to increase
confidence and trust in the model’s predictions. This
is especially important in medical and security appli-
cations, where transparency is extremely important.

• Early diagnosis will allow timely intervention and
treatment measures, thereby minimizing mortality and
loss in the herd. At the same time, preventing the
spread of infectious diseases in chicken flocks will
also play an important role in protecting health and
improving food product quality. In addition, early di-
agnosis will also help optimize resource management
and use in livestock operations, reduce waste, and in-
crease production efficiency. This will have a positive
impact on the food economy, helping to maintain and
develop the livestock industry in a sustainable way.

There are five primary components to our study report.
This section gives some general information about the research
and discusses the approach to addressing the given difficulty.
Section II includes references to related research, and the
approach follows the relevant research section. Section III
discusses each of the methodologies used in this paper. Section
IV will discuss the experiments, including how we execute
them and evaluate the deep learning model’s correctness.
Finally, in Section VI, we synthesize our findings and discuss
the most essential parts of the research.

II. RELATED WORKS

The utilization of thermal-image processing and machine
learning techniques for the detection and classification of avian
diseases in chickens has gained significant attention in recent
research. One notable study by M Sadeghi et al. [23] explored
the application of support vector machines (SVM) and artificial
neural networks (ANN) for disease classification in 14-day-
old Ross 308 broilers infected with Newcastle Disease (ND)
and Avian Influenza (AI), with two additional control groups
included in the study. The paper demonstrated promising
results, achieving high accuracy rates within 24 hours of virus
infection. Specifically, SVM achieved an impressive accuracy
of 97.2% for classifying AI and 100% accuracy for classifying
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ND. These findings highlight the potential of machine learning
algorithms for early disease detection and classification in
poultry farming, contributing to improved disease management
and prevention strategies.

The proposed paper [24] addresses the critical issue of
early detection and classification of poultry diseases using
deep learning techniques and image analysis of chicken fecal
images. The model achieved an impressive accuracy of 97%
utilizing the DenseNet method, showcasing its potential for
practical poultry diagnostic applications. The dataset used
for training and evaluation consists of 6812 images belong-
ing to four different classes: healthy chicken, Coccidiosis,
Salmonella, and Newcastle. Despite the significant progress
in the field, there is a need for further research to explore
the robustness and scalability of the proposed model across
different poultry disease datasets and real-world scenarios.

Hoang Ngoc Tran et al. [25] present a novel approach
utilizing the autoencoder and YOLOv6 model for the clas-
sification and detection of diseases in chicken flocks. The
method achieved remarkable results, with an average accuracy
of 99.15% and over 90% accuracy on the test dataset. The pro-
posed approach demonstrates its versatility by being suitable
for different chicken breeds from various countries and regions.
This innovative method holds promise for improving the
efficiency and accuracy of disease detection and classification
in poultry farming, contributing to better management prac-
tices and disease control strategies. However, further studies
are needed to validate the robustness and scalability of the
proposed method across diverse poultry farming environments
and disease scenarios.

The paper of Eduardo Carvalho Lira et al. [26] introduces
a novel deep learning-based system designed for the early
detection and classification of chicken diseases, including
Salmonella, Coccidiosis, Healthy, and New Castle Disease.
The study explores various convolutional neural network
(CNN) models for categorical classification, with a focus on
identifying the most efficient model based on the ratio of
Maximum Validation Accuracy (MVA) to Least Validation
Loss (LVL). Among the models evaluated, the ChicNetV6
model emerged as the best performer, achieving an efficiency
score of 2.8198 and an impressive accuracy score of 94.49%.
Notably, the total training time for the ChicNetV6 model
was recorded at 1125 seconds, demonstrating its efficiency
and computational feasibility. This research contributes to the
advancement of automated disease detection and classification
systems in poultry farming, with potential implications for
enhancing disease management and prevention strategies in the
industry. Further investigations may be warranted to assess the
scalability and generalizability of the proposed system across
different poultry farming environments and disease scenarios.

Nianpeng He et al. [27] presents a novel solution aimed at
predicting diseases in chickens through the analysis of fecal
images using deep Convolutional Neural Networks (CNN).
Leveraging the XceptionNet deep learning framework, the
proposed model demonstrates superior performance compared
to other models, achieving an impressive accuracy rate of
94%. By leveraging pre-trained models and tailoring them to
address the specific challenges of poultry disease prediction,
the study contributes to the development of effective tools
for early disease detection in poultry farming. The proposed

model holds promise for application in real-world scenarios,
offering a valuable resource for poultry disease detection and
management. Further research may explore the scalability and
applicability of the model across different poultry breeds and
disease types, with potential implications for enhancing disease
surveillance and control in the poultry industry.

Although the article [28] focuses on classifying poultry
eggs using deep learning techniques, it does not go into the
classification of diseases in chickens. The study proposes the
use of Convolutional Neural Networks (CNN) in an unwashed
egg classification system, classifying them into classes such
as intact, cracked, soiled and soiled. The study compares the
performance of three popular CNN architectures, ResNet34,
ResNet50, and VGG19, using two different batch sizes (32 and
64) during training. Among the evaluated models, the VGG19
architecture achieved the highest accuracy of 97.33% when
trained with a batch size of 64. While this study provides valu-
able insights into egg classification using deep learning, but
its focus remains different from chicken disease classification,
providing an additional perspective on the application of deep
learning in poultry farming. Utilizing Convolutional Neural
Networks (CNN) implemented in Keras/TensorFlow, Study of
Moch. Kholil et al. [29] achieved an impressive accuracy rate
of 95.28% in accurately predicting the classification of infec-
tious diseases suffered by chickens. The research highlights the
effectiveness of CNNs in disease classification tasks, particu-
larly in the context of poultry farming. This work contributes
valuable insights into leveraging deep learning techniques for
disease diagnosis and monitoring in poultry, demonstrating the
potential of advanced technology in enhancing animal health
management practices.

Huong Hoang Luong et al. study in machine learning
diagnostics is significant for us. In [30], Huong Hoang Luong
and colleagues proposed a strategy using a model we pro-
pose as Vision Transformer (ViT), which has recently been
improved by applying transfer learning methods. delivered to
create strawberry disease.. The research’s objective is to train
this model to detect certain illnesses while fine-tuning the
outcomes to attain high accuracy. The strawberry photographs
in the collection are organized into seven categories, with
a focus on strawberry leaf, fruit, and flower illnesses. The
ViT model outperformed a comparable strategy for strawberry
illness classification, with 92.7% accuracy on the Strawberry
Disease Detection dataset.

The paper [31] presents a novel system for detecting and
classifying poultry diseases, integrating two core algorithms:
YOLO-V3 for object detection and ResNet50 for image clas-
sification. YOLO-V3 segments regions of interest (ROIs) from
fecal images, while ResNet50 classifies the segmented images
into four health conditions: Healthy, Coccidiosis, Salmonella,
and New Castle Disease. Training is performed on a dataset of
10,500 chicken fecal images from the Zenodo open database,
with oversampling and image augmentation techniques used
to address class imbalance. YOLO-V3 achieves a mean aver-
age precision of 87.48% for detecting ROIs, and ResNet50
achieves a classification accuracy of 98.7%. Experimental
results demonstrate the system’s ability to accurately identify
prevalent poultry diseases, offering potential support to poultry
farmers and veterinarians in farm settings.
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III. METHODOLOGY

A. The Research Implementation Procedure

Overall, in this study, we used a combination of 11 pro-
cesses to produce the results, the main processes are shown in
Fig. 1. Details of the steps are given below:

Fig. 1. Proposed architecture.

1) Data collection: Choosing an appropriate dataset is
critical in the field of machine learning since it has
a direct impact on model performance and general-
izability. A high-quality dataset guarantees that the
model is trained on a wide and representative sample
set, allowing it to discover strong patterns and make
accurate predictions in real-world circumstances. In
the case of chicken illness detection, using the correct
dataset enables researchers to create models that can
accurately diagnose chicken diseases from photos,
allowing for prompt treatment and resolution.

2) Pre-processing Data: Use image preprocessing tech-
niques, for example, adjusting brightness and con-
trast to increase the quality and visibility of images,
making them more suitable for future classification
tasks. Change the input size to 224x224x3 to ensure
synchronization, and use the random function in the
Keras library for further processing.

3) Dividing dataset into three categories train, vali-
dation, and test: To ensure robust model training,
validation, and evaluation, the dataset is divided into
three subsets: training, validation, and test. The train-
ing set, which comprises 80% of the data, is utilized
for model training. Meanwhile, the validation set,
consisting of 10% of the data, is employed to monitor
training progress and fine-tune the model to prevent
overfitting. Finally, the test set, also comprising 10%
of the data, is reserved to assess the final model’s
performance on previously unseen data. Stratified
splitting is employed to maintain a balanced rep-
resentation of classes across all subsets, facilitating
effective model training and evaluation.

4) Data Augmentation: To augment the dataset, enhance
its diversity, establish credibility, and mitigate over-
fitting, a range of data augmentation techniques are
employed. The objective is to multiply the number

of images fourfold, thus expanding the dataset from
the initial 2000 images to a later count of 8000.
This augmentation process encompasses the creation
of new training samples through the application of
diverse transformations and modifications to the ex-
isting images. This methodology effectively expands
the dataset without necessitating the collection of
additional data.

5) Building the model: To carry out the experiment, we
utilized five convolutional neural network (CNN) ar-
chitecture models and two Vision Transformer mod-
els. We keep the model’s fundamental processing lay-
ers while making the required changes to improve its
performance for our unique goal. This personalized
strategy enabled us to obtain outstanding outcomes
when training and testing with Keras’ model library.

6) Applying Transfer learning: Transfer learning enables
the utilization of pre-trained models that have been
trained on similar tasks, such as general image classi-
fication. These models have already acquired funda-
mental features from large datasets, thereby saving
time and effort that would otherwise be required
to train a model from scratch. By leveraging pre-
trained models, the amount of engineering work and
resources needed to deploy the model across health
systems is significantly reduced.

7) Retrain the model with Fine-Tuning: Fine-tuning
involves tweaking the parameters of a pre-trained
model to better align with a specific task. Nonethe-
less, to implement these adjustments and enhance
the model’s performance, re-training is essential. The
model is fine-tuned to optimize performance for the
targeted task. Re-training facilitates further learning
from additional data, enhancing the model’s ability to
generalize and make accurate predictions on unseen
data.

8) Validate and collect metrics to evaluate the model: By
analyzing metrics like accuracy, precision, recall, and
F1-score, it is possible to assess how well our model
performs on data it has not been trained on. This
assessment process helps in evaluating the model’s
effectiveness on the test dataset and offers insights
into its performance under different circumstances.
The conclusions drawn from the evaluation phase
guide modifications to the model’s hyperparameters,
such as the learning rate, number of epochs, batch
size, and neural network structure. These modifica-
tions are suggested based on the evaluation outcomes,
with the goal of improving the model’s performance
and ensuring its ability to generalize to new data.

9) Visual explanation by Integrated Gradients: Inte-
grated Gradients create easy-to-understand explana-
tions for machine learning model predictions by cal-
culating the influence of each input feature on the
final prediction. By providing information about how
each input feature contributes to the final prediction,
Integrated Gradients help increase the transparency
of the machine learning model. This can be useful
in medical, financial and legal applications where
transparency is important.

10) Comparison with other advanced methods: Compar-
ing with other advanced techniques aids in assessing
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model performance and gauging the effectiveness and
novelty of the proposed approach relative to already
explored and recognized methods. This enables the
evaluation of which aspects of your strategy are more
efficacious than others and which ones necessitate
modification.

11) Showing the result: The outcomes and visual repre-
sentations post comparison will be presented through
confusion matrices, line graphs, and tables. These
results illustrate the model’s real-world performance
and its effectiveness in diagnosing chicken disease.

B. Pre-processing Image

Pre-processing plays a crucial role in preparing image data
for machine learning tasks as it enhances the quality, consis-
tency, and informativeness of the images, thereby improving
model performance. In our study, we conducted the following
data pre-processing steps:

1) Resize image: A critical component of image prepro-
cessing is ensuring uniform input size. To accomplish
this, we resized all images to a consistent size of
224 pixels in width and 224 pixels in height, as
determined by (Eq. 1):

IReSize(newwidth, newheight) = IReSize(224, 224)
(1)

2) Add Weighted: We adjusted the brightness of the
photos by -0.15 to improve the visibility of essential
elements, especially in darker locations. This minor
change demonstrated in (Eq. 2) improves feature
visibility while preserving overall contrast.

Badjusted = Boriginal − 0.15 (2)

We used a contrast enhancement factor of 1.8 to
highlight the differences between successive pixel
intensities. This stage reveals tumor borders and
structural features, facilitating precise diagnosis and
categorization. In (Eq. 3), double the original contrast
value by 1.5 to increase contrast. This factor can be
fine-tuned based on the image content and desired
amount of focus on differences in pixel intensities.

Cadjusted = Coriginal ∗ 1.5 (3)

3) Data Augmentation:
We used data augmentation techniques to scale the
generated training dataset by making various changes
on the input samples. First, we extracted 500 images
as a subset for each class because the proportion of
images of the four classes is not equal, this avoids
leading to data imbalance as well as the model’s
learning ability. Common enhancement methods then
include geometric transformations such as rotation,
scaling, and flipping, as well as color and contrast
adjustments. Finally, we obtained the result that the
number of original images increased from 2000 to
8000 images. By expanding the data set, the model is
exposed to more variables and situations, leading to
better generalization and performance in real-world
applications. In summary, data augmentation is a
crucial method that enhances the performance and

generalization capacity of machine learning models,
particularly in scenarios where extensive and varied
datasets are lacking.

C. Transfer Learning and Fine-Tuning of our Proposed Model

Transfer learning refers to a technique in machine learning
and deep learning where a model is initially trained on a
large dataset and then repurposed (transferred) to address a
related or similar problem. Rather than commencing training
from scratch with a small dataset, transfer learning enables
leveraging the insights and knowledge acquired from prior
training on extensive datasets to enhance the model’s per-
formance on a new dataset [32]. Throughout the training
process, existing model parameters are reused. Consequently,
transfer learning utilizes the pre-trained model layers instead
of initiating training anew, thereby enhancing the model’s
accuracy.

After applying transfer learning, fine-tuning the model
can help improve results. Fine-tuning involves adjusting and
updating certain parts of the pre-trained model, such as the
final layers, to better suit the specific problem at hand. To
preserve the ability to extract low-level features acquired
during pre-training, the initial layers of the model are often
frozen during this process. By freezing these layers, the focus
of adaptation shifts to the later layers, which are responsible
for task-specific learning, thereby maximizing the effective-
ness of training. Additionally, fine-tuning requires adjusting
hyperparameters, such as the number of training epochs, batch
size, hidden layer configuration, and learning rate, to optimize
model performance and prevent overfitting.

We used a hyperparameter search to fine-tune the model
in order to get the best results without overfitting. The many
combinations of training epochs, batch sizes, hidden layer
configurations, and learning rates were investigated in this
search. The following hyperparameters were chosen based on
the findings in order to achieve a decent balance between
training efficiency and performance:

• Training epochs: 20

• Number of batches: 16

• Hidden layer set up: [512, 128]

• Rate of learning: defaut.

During fine-tuning the model, we unlock and tune the last 20
layers of the model without adjusting the rest of the model. The
main reason is that the final layers often contain more complex
and specific information about the data of the specific task we
are training the model for. After unlocking and fine-tuning
the last 20 layers, we added a custom layer set consisting of
nine layers of three layer types Dense, BatchNormalization,
Dropout. Our architecture is depicted in Fig. 2 By adjusting
only the final layers, we can preserve the more general and
abstract features learned from big data and only adjust them
to suit our specific task. This helps minimize the risk of
overfitting and increases the generality of the model on new
data sets.
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Fig. 2. Fine-tuning architecture.

D. Visual Explanation by Integrated Gradients

The need to use explanations is to better understand
how the model makes decisions and makes predictions. This
enhances model transparency and reliability, especially in
fields such as healthcare, where a detailed explanation of
the decision-making process can be extremely important for
diagnosis and treat diseases.

Integrated Gradients is a method for explaining machine
learning model predictions, used to understand the model’s
decision-making process based on inputs. This method cal-
culates the importance of each input feature by integrating
over the path from the reference point to the data point under
consideration. When calculating, each feature is gradually
changed from its reference value to its current value, helping to
determine how each feature affects the model’s final prediction.

Integrated Gradients have many advantages over other
interpretation methods. First, it is computationally efficient and
easy to understand, allowing to determine the importance of
each feature accurately. Second, this method does not require
specific information about the structure or characteristics of
the model, making it flexible and applicable to many different
types of machine learning models. Finally, Integrated Gradients
enable both quantitative and qualitative interpretation, provid-
ing a comprehensive view of how the model makes decisions.

The use of Integrated Gradients has been used in various
machine learning models, including deep neural networks, to
enhance transparency and interpretability [33] [34]. The ap-
proach is suitable for both regression and classification models.
When dealing with a non-scalar output, as seen in classification
models or multi-target regression, the gradients are computed
for a specific element of the output. In classification models,
the gradient typically pertains to the output associated with the
true class or the class predicted by the model.

Let’s suppose we have an input instance x1 a baseline
instance x′ and a model M : X → Y that operates on the

feature space X and generates an output y in the output space
Y . Now, let’s define the function F as

• F (x) = M(x) if the model output is a scalar;

• F (x) = Mk(x) if the model output is a vector, with
the index k denoting the k-th element of M(x).

For instance, in case of a K-class classification, Mk(x) is
the probability of class k, which could be the true class
corresponding to x or the highest probability class predicted
by the model. The attributions Ai (x, x

′) for each feature xi

with respect to the corresponding feature x′
i in the baseline are

computed as shown in Eq. 4;

Ai (x, x
′) = (xi − x′

i)

∫ 1

0

∂F (x′ + α (x− x′))

∂xi
dα (4)

In summary, employing Integrated Gradients for visual
explanations provides a promising method to improve the
transparency, accountability, and reliability of machine learn-
ing models, thereby enhancing their utility and credibility in
real-world applications. As illustrated in Fig. 3, analyzing the
contribution of individual feature maps to the final decision
provides valuable insights that experts and clinicians can
leverage in future endeavors.

Fig. 3. The sample applying integrated gradients by keras library.

IV. EXPERIMENTS

A. Dataset and Performance Metrics

An annotated dataset on poultry disease diagnostics for
small and medium-sized poultry farmers includes images of
poultry feces. Images of poultry droppings were taken in
the Arusha and Kilimanjaro regions of Tanzania between
September 2020 and February 2021 using the Open Data Kit
(ODK) mobile app. The data set contains 8067 images, divided
into 4 classes in Fig. 4: Coccidiosis(30.4%), Healthy(29.5%),
New Castle Disease(7.8%), Salmonella(32.3%).

Due to imbalance in the data set, we randomly selected
500 images for each class to use for training. It is important
to provide a variety of representations while reducing the risk
of overfitting and improving the generalizability of the model.
After image preprocessing and data enhancement, we obtained
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Fig. 4. Data set characteristics before processing.

a new dataset with 8000 images as shown in Fig. 5 from 2000
original images.

Fig. 5. Dataset characteristics after processing.

Evaluating the performance of a machine learning model is
an important part of the research and implementation process.
In the field of machine learning, there are many metrics used
to evaluate the performance of a model, including Accuracy,
Precision, Recall and F1-score.

Eq. 5 represents the ratio between the number of correct
predictions and the total number of samples. Eq. 6 represents
the accuracy of detecting Positive points. The higher this
number, the more accurate the model receives Positive scores.
Eq. 7 represents the ability to detect all positive, the higher this
rate shows the lower the possibility of missing Positive points.
Eq. 8 is a compromise number for Recall and Precision, used
when it is necessary to consider both values, giving us a basis
for choosing a model.

Accuracy =
TP + TN

TP + TN + FP + FN
(5)

Precision =
TP

TP + FP
(6)

Recall =
TP

TP + FN
(7)

F1 = 2 ∗ Precision ∗Recall

Precision+Recall
(8)

These metrics offer a holistic perspective on the effectiveness
of a machine learning model, enabling users to precisely
assess its capability to make predictions and identify significant
instances.

B. Scenario 1: Classification of 2 Classes (Coccidiosis and
Healthy)

TABLE I. THE RESULTS OF CLASSIFYING IMAGES INTO 2 CLASSES
COCCIDIOSIS AND HEALTHY IN TRANSFER LEARNING

Transfer learning Without Augmentation
Model ACC Precision Recall F1

EfficientNetB3 69,00% 69,00% 69,00% 68,99%
ResNet50 92,00% 92,06% 92,00% 91,99%
VGG16 95,00% 95,16% 95,00% 94,99%
MobileNet 100,00% 100,00% 100,00% 100,00%
InceptionV3 98,00% 98,07% 98,00% 97,99%
ViT32 98,00% 98,00% 98,00% 98,00%
ViT16
(Our Proposed) 98,00% 98,00% 98,00% 98,00%

Transfer learning With Augmentation
Model ACC Precision Recall F1

EfficientNetB3 71,50% 71,67% 71,50% 71,44%
ResNet50 94,75% 95%% 94,75% 94,74%
VGG16 96,75% 96,75% 96,75% 96,75%
MobileNet 100,00% 100,00% 100,00% 100,00%
InceptionV3 98,50% 98,50% 98,50% 98,50%
ViT32 99,50% 99,50% 99,50% 99,50%
ViT16
(Our Proposed) 99,25% 99,25% 99,25% 99,25%

In this scenario, we apply transfer learning and fine-tuning
in both cases with and without data augmentation to classify
Coccidiosis and Healthy of seven different machine learning
models. The results obtained in the transfer learning part in
Table I show the effectiveness of the model when trained on
the data set after augmentation. The accuracy of the proposed
model has been improved from 98% to 99.25%. A bright
spot besides the proposed model is that the MobileNet model
also achieves high efficiency when achieving 100% accuracy.
Regarding the fine-tuning showed in Table II, we obtain the
results before and after enhancing the data set respectively as
98.00%-98.75%.

Fig. 6 and Fig. 7 depict a graphical representation of
the training accuracy and loss on the augmented dataset.
Throughout the training process, the two curves intersect mul-
tiple times, illustrating the model’s ability to strike a balance
between learning from the training data and generalizing to
new data. In general, both the training accuracy and loss curves
exhibit a smooth behavior without any significant disparity,
thereby indicating the model’s suitability and robustness in
terms of generalization capability.
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TABLE II. THE RESULTS OF CLASSIFYING IMAGES INTO 2 CLASSES
COCCIDIOSIS AND HEALTHY IN FINE-TUNING

Fine-Tuning Without Augmentation
Model ACC Precision Recall F1

EfficientNetB3 67,00% 70,64% 67,00% 65,47%
ResNet50 82,00% 83,33% 82,00% 81,81%
VGG16 97,00% 97,00% 97,00% 97,00%
MobileNet 97,00% 97,00% 97,00% 97,00%
InceptionV3 94,00% 94,00% 94,00% 94,00%
ViT32 97,00% 97,00% 97,00% 97,00%
ViT16
(Our Proposed) 99,00% 99,00% 99,00% 99,00%

Fine-Tuning With Augmentation
Model ACC Precision Recall F1

EfficientNetB3 50,00% 25,00% 50,00% 33,33%
ResNet50 91,25% 91,25% 91,25% 91,25%
VGG16 97,50% 97,50% 97,50% 97,50%
MobileNet 99,50% 99,50% 99,50% 99,50%
InceptionV3 97,50% 97,50% 97,50% 97,50%
ViT32 99,00% 99,00% 99,00% 99,00%
ViT16
(Our Proposed) 99,25% 99,25% 99,25% 99,25%

Fig. 6. Training accuracy and validation accuracy in fine-tuning of ours
model (coccidiosis and healthy).

Fig. 8 presents the confusion matrix of 400 test images of
Coccidiosis and Healthy. Fig. 9 is the result of the Integrated
Gradients explanation. Through the two pictures above, we
can see the transparency of the training process as well as
overfitting does not happen.

Fig. 7. Training loss and validation accuracy in fine-tuning of ours model
(coccidiosis and healthy).

Fig. 8. Confusion matrix in fine-tuning of ours model (coccidiosis and
healthy).

Fig. 9. Output of our model with integrated gradients explanation in scenario
1.
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C. Scenario 2: Classification of 2 Classes (New Castle Disease
and Healthy)

In this scenario, we classify the next two classes including
New Castle Disease and Healthy. The scenario performs trans-
fer learning and fine-tuning in both cases with and without data
augmentation. The results obtained in the transfer learning part
of the proposed model in Table III are 98.50% accuracy - an
improvement of more than 3.5% compared to training on the
original data set. Table IV also shows the effectiveness of fine-
tuning when the obtained accuracy is 99.75%, which is higher
than that of transfer learning.

TABLE III. THE RESULTS OF CLASSIFYING IMAGES INTO 2 CLASSES
NEW CASTLE DISEASE AND HEALTHY IN TRANSFER LEARNING

Transfer learning Without Augmentation
Model ACC Precision Recall F1

EfficientNetB3 76,00% 76,68% 76,00% 75,84%
ResNet50 86,00% 86,05% 86,00% 85,99%
VGG16 88,00% 88,06% 88,00% 87,99%
MobileNet 95,00% 95,16% 95,00% 94,99%
InceptionV3 89,00% 89,01% 89,00% 88,99%
ViT32 95,00% 95,16% 95,00% 94,99%
ViT16
(Our Proposed) 95,00% 95,01% 95,00% 94,99%

Transfer learning With Augmentation
Model ACC Precision Recall F1

EfficientNetB3 74,75% 75,14% 74,75% 74,65%
ResNet50 88,75% 88,75% 88,75% 88,75%
VGG16 92,25% 92,49% 92,25% 92,24%
MobileNet 98,50% 98,50% 98,50% 98,50%
InceptionV3 96,50% 96,51% 96,50% 96,50%
ViT32 98,50% 98,52% 98,50% 98,50%
ViT16
(Our Proposed) 98,50% 98,50% 98,50% 98,50%

TABLE IV. THE RESULTS OF CLASSIFYING IMAGES INTO 2 CLASSES
NEW CASTLE DISEASE AND HEALTHY IN FINE-TUNING

Fine-Tuning Without Augmentation
Model ACC Precision Recall F1

EfficientNetB3 68,00% 68,11% 68,00% 68,00%
ResNet50 86% 87,50% 86% 85,85%
VGG16 95% 95% 95% 95%
MobileNet 93% 93,43% 93% 93%
InceptionV3 91,00% 91,00% 91,00% 91,00%
ViT32 97% 97% 97% 97%
ViT16
(Our Proposed) 97% 97% 97% 97%

Fine-Tuning With Augmentation
Model ACC Precision Recall F1

EfficientNetB3 74,50% 74,62% 74,50% 74,46%
ResNet50 51,25% 75,31% 51,25% 36,05%
VGG16 94,25% 94,38% 94,25% 94,24%
MobileNet 98,75% 98,75% 98,75% 98,74%
InceptionV3 95,50% 95,54% 95,50% 95,49%
ViT32 99,50% 99,50% 99,50% 99,49%
ViT16
(Our Proposed) 99,75% 99,75% 99,75% 99,74%

Fig. 10 and Fig. 11 show the training process’s accuracy
and loss in the second scenario experiment. The two curves
do not noticeably vary from one another during the training
period and climb steadily. The model is adequate and has a

great potential for generalization because the training and loss
accuracy curves are generally smooth and show no discernible
deviation between them.

Fig. 10. Training accuracy and validation accuracy in fine-tuning of ours
model (new castle disease and healthy).

Fig. 11. Training loss and validation accuracy in fine-tuning of ours model
(new castle disease and healthy).

Fig. 12 presents the confusion matrix of the 2-type classi-
fication scenario New Castle Disease and Healthy. From the
matrix, we see that the model performs absolutely well when
identifying the healthy class. At the same time, the New Castle
Disease class has only one flaw. Fig. 13 is the result of the
built-in Gradient explanation for this scenario.
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Fig. 12. Confusion matrix in fine-tuning of ours model (New castle disease
and healthy).

Fig. 13. Output of our model with integrated gradients explanation in
scenario 2.

D. Scenario 3: Classification of 2 Classes (Salmonella and
Healthy)

This scenario presents the results of classifying the two
classes Salmonella and Healthy before and after data forti-
fication. In Table V, we note the improvement in the accu-
racy of the proposed model by up to 8% when it reaches
98%. Furthermore, after fine-tuning, the proposed model has
achieved 100% absolute accuracy with data augmentation and
most other models in the Table VI have also improved.

Fig. 14 and Fig. 15 show the training process’ accuracy
and loss in the scenario 3 experiment. The two curves contin-
uously rise and do not considerably diverge from one another
during the training phase, demonstrating the transparency and
dependability of the suggested model.

Fig. 16 presents the confusion matrix of the Salmonella and
Healthy class classification test. From the matrix, we see that
the model performs best when classifying chicken diseases
with an accuracy rate of 100%. Fig. 17 is the result of the
explanation of Integrated Gradients for Salmonella and Healthy
classification.

TABLE V. THE RESULTS OF CLASSIFYING IMAGES INTO 2 CLASSES
SALMONELLA AND HEALTHY IN TRANSFER LEARNING

Transfer learning Without Augmentation
Model ACC Precision Recall F1

EfficientNetB3 68,00% 68,26% 68,00% 67,88%
ResNet50 81,00% 81,61% 81,00% 80,90%
VGG16 88,00% 88,06% 88,00% 87,99%
MobileNet 93,00% 93,85% 93,00% 92,96%
InceptionV3 92,00% 92,61% 92,00% 91,97%
ViT32 92,00% 92,00% 92,00% 92,00%
ViT16
(Our Proposed) 90,00% 90,06% 90,00% 89,99%

Transfer learning With Augmentation
Model ACC Precision Recall F1

EfficientNetB3 76% 76,87% 76% 75,80%
ResNet50 92,25% 92,33% 92,25% 92,24%
VGG16 94,25% 94,26% 94,25% 94,25%
MobileNet 96,50% 96,50% 96,50% 96,50%
InceptionV3 94,75% 94,76% 94,75% 94,75%
ViT32 97,75% 97,75% 97,75% 97,75%
ViT16
(Our Proposed) 98% 98,02% 98% 98%

TABLE VI. THE RESULTS OF CLASSIFYING IMAGES INTO 2 CLASSES
SALMONELLA AND HEALTHY IN FINE-TUNING

Fine-Tuning Without Augmentation
Model ACC Precision Recall F1
EfficientNetB3 72% 72,32% 72% 71,89%
ResNet50 92% 92% 92% 92%
VGG16 95% 95% 95% 95%
MobileNet 95% 95,45% 95,00% 95%
InceptionV3 94% 94,28% 94% 93,99%
ViT32 97% 97,17% 97% 97%
ViT16
(Our Proposed) 98% 98,07% 98% 98%

Fine-Tuning With Augmentation
Model ACC Precision Recall F1
EfficientNetB3 59,00% 63,33% 59,00% 55,37%
ResNet50 91,25% 91,55% 91,25% 91,23%
VGG16 92,25% 92,81% 92,25% 92,22%
MobileNet 95,25% 95,44% 95,25% 95,24%
InceptionV3 95,50% 95,50% 95,50% 95,50%
ViT32 98,75% 98,78% 98,75% 98,74%
ViT16
(Our Proposed) 100,00% 100,00% 100,00% 100,00%

Fig. 14. Training accuracy and validation accuracy in fine-tuning of ours
model (salmonella and healthy).
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Fig. 15. Training loss and validation accuracy in fine-tuning of ours model
(salmonella and healthy).

Fig. 16. Confusion matrix in fine-tuning of ours model (salmonella and
healthy).

Fig. 17. Output of our model with integrated gradients explanation in
scenario 3.

E. Scenario 4: Classification of 4 Classes (Coccidiosis, New
Castle Disease, Salmonella and Healthy)

This is an important scenario that shows the strong perfor-
mance of the proposed model when the classification problem
has up to 4 classes. It can be seen that after the transfer learning

process in Table VII, the proposed model achieved 97.75%
accuracy when trained on the augmented data set. In contrast,
the model only achieved 89.50% accuracy when trained on the
original data set. After the stage of fine-tuning the proposed
model with the augmented data set, the final result obtained
in Table VIII has an accuracy of 98.25%.

TABLE VII. THE RESULTS OF CLASSIFYING IMAGES INTO 4 CLASSES
COCCIDIOSIS, NEW CASTLE DISEASE, SALMONELLA AND HEALTHY IN

TRANSFER LEARNING

Transfer learning Without Augmentation
Model ACC Precision Recall F1

EfficientNetB3 40,50% 30,50% 40,50% 33,92%
ResNet50 70,50% 72,04% 70,50% 70,75%
VGG16 73,50% 74,83% 73,50% 73,84%
MobileNet 89,00% 89,22% 89,00% 89,03%
InceptionV3 84,00% 84,16% 84,00% 83,90%
ViT32 92,00% 92,13% 92,00% 92,00%
ViT16
(Our Proposed) 89,50% 89,59% 89,50% 89,50%

Transfer learning With Augmentation
Model ACC Precision Recall F1

EfficientNetB3 41,37% 41,48% 41,37% 39,38%
ResNet50 73,50% 74,19% 73,50% 73,63%
VGG16 85,37% 85,51% 85,37% 85,40%
MobileNet 93,87% 93,86% 93,87% 93,86%
InceptionV3 91,87% 91,88% 91,87% 91,87%
ViT32 96,25% 96,24% 96,25% 96,24%
ViT16
(Our Proposed) 97,75% 97,76% 97,75% 97,74%

TABLE VIII. THE RESULTS OF CLASSIFYING IMAGES INTO 4 CLASSES
COCCIDIOSIS, NEW CASTLE DISEASE, SALMONELLA AND HEALTHY IN

FINE-TUNING

Fine-Tuning Without Augmentation
Model ACC Precision Recall F1

EfficientNetB3 30,50% 18,57% 30,50% 20,95%
ResNet50 38,00% 20,89% 38,00% 25,48%
VGG16 56,50% 53,28% 56,50% 51,11%
MobileNet 86,00% 88,22% 86,00% 85,59%
InceptionV3 83,00% 83,78% 83,00% 83,02%
ViT32 95,00% 95,14% 95,00% 95,01%
ViT16
(Our Proposed) 98,00% 98,03% 98,00% 97,99%

Fine-Tuning With Augmentation
Model ACC Precision Recall F1

EfficientNetB3 49,75% 39,66% 49,75% 43,24%
ResNet50 26,25% 31,32% 26,25% 12,48%
VGG16 90,25% 91,12% 90,25% 90,16%
MobileNet 92,25% 92,56% 92,25% 92,25%
InceptionV3 90,25% 90,25% 90,25% 90,24%
ViT32 97,25% 97,25% 97,25% 97,24%
ViT16
(Our Proposed) 98,25% 98,25% 98,25% 98,24%

Fig. 18 and Fig. 19 illustrate the training accuracy and loss
in the test of scenario 4. Fig. 20 presents the confusion matrix
of 800 test images of four classes including Coccidiosis, New
Castle Disease, Salmonella and Healthy. Fig. 21 is the result
of the explanation of the Integrated Gradient to classify the
above four classes.
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Fig. 18. Training accuracy and validation accuracy in fine-tuning of ours
model (coccidiosis, new castle disease, salmonella and healthy).

Fig. 19. Training loss and validation accuracy in fine-tuning of ours model
(Coccidiosis, new castle disease, salmonella and healthy).

Fig. 20. Confusion matrix in fine-tuning of ours model (Coccidiosis, new
castle disease, salmonella and healthy).

F. Comparison with other State-of-the-art Methods

This section completely compares our proposed method
with several existing state-of-the-art classification methods.

Fig. 21. Output of our model with Integrated Gradients Explanation in
Scenario 4.

Table IX compares chicken disease classification methods
using ViT and CNN architectures. It can be seen that the
proposed model (fine-tuned ViT16) performs better than most
recently published works on disease detection in chickens.

TABLE IX. COMPARISON WITH OTHERS STATE-OF-THE-ART METHODS

Ref. Architecture ACC
Moch. Kholil et al. [29] CNN 95,28%
Mizanu Zelalem Degu et al. [31] YOLOv3 98,70%
Dina Machuve et al. [35] Xception 98,24%
Our Proposed Model (ViT16) 98,25%

Our proposed model outperforms most state-of-the-art
methods in terms of accuracy and other evaluation metrics.
Specifically, our model achieves higher accuracy than CNN,
Xception and approximates the YOLOv3 model. The outstand-
ing performance of our model can be attributed to its ability to
effectively capture and classify features associated with poultry
diseases, leveraging the strengths of deep learning techniques
and innovative architectural design.

V. DISCUSSION

Our study aimed to develop a robust model for poultry
disease image classification, leveraging transfer learning and
fine-tuning techniques. The results demonstrated the efficacy
of this approach, with the proposed model (ViT16) achieving
high accuracy rates across various scenarios. This outcome
underscores the importance of utilizing pre-trained models and
optimizing them for specific tasks, highlighting the potential
of transfer learning in medical image analysis.

Furthermore, by meticulously fine-tuning hyperparameters
and incorporating dense layers, dropout layers, and BatchNor-
malization, we successfully mitigated overfitting and improved
classification accuracy. These findings underscore the impor-
tance of meticulous model development and optimization to
achieve superior performance in medical image classification
tasks.

Moreover, the integration of Integrated Gradients for vi-
sual explanation provided valuable insights into the model’s
decision-making process. This transparency not only enhances
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trust in the model’s predictions but also facilitates error recog-
nition and model improvement. The discussion also empha-
sizes the broader implications of the research, particularly
in advancing diagnostics and anomaly detection in livestock
farming.

In summary, through rigorous experimentation and op-
timization, our study contributes to the growing body of
literature on transfer learning and deep learning applications
in medical imaging, paving the way for future advancements
in disease detection and diagnosis.

VI. CONCLUSION

In this work, we used transfer learning, a powerful ma-
chine learning method, to improve the model’s performance
in four-class classification. Transfer learning uses information
obtained from a model that has been pre-trained on a large data
set for a given task and applies it to another activity. In our
study, we started with 5 models (EfficientNetB3, ResNet50,
VGG16, MobileNet, InceptionV3) of CNN architecture and
two models (ViT32, ViT16) of Vision Transformer architec-
ture. These models have been trained on large amounts of data,
which allows our model to inherit knowledge about common
image aspects, allowing it to focus on the complexity of image
classification.

Fine-tuning was important in developing a pre-trained
model for our medical image classification application. To
improve the performance of the model, we added dense layers,
dropout layers, and BatchNormalization, as well as modified
many hyperparameters. This combination of layers enables
the network to learn complex patterns and relationships in
the data, leading to efficient classification performance while
minimizing overfitting, resulting in improved accuracy higher.
After fine-tuning and training on the augmented data set, the
proposed model (ViT16) achieved accuracy in 4 scenarios of
99.25% - 99.75% - 100% - 98.25% respectively. Compared
to the situation without data augmentation, the model has
achieved accuracy in 4 scenarios of 99% - 97% - 98% - 98%
respectively.

To provide transparency and to better understand how the
model makes decisions and makes predictions during training.
We used Integrated Gradients for visual explanation. This helps
experts understand the model’s predictions to recognize errors
and easily improve the model.

Our results demonstrate the robustness of the ViT16 model
in the image classification problem compared to other popular
models. Strong precision, accuracy, recall and F1 score demon-
strate their usefulness in livestock production. This research
actually makes a significant contribution as we tackle the rather
rare problem of disease diagnosis in chickens. This research
paves the way for future developments in image processing
and diagnostics in livestock.

In the future, we will to continue to fine-tuning the model,
expand the challenge, use other advanced visualization tools,
and improve the dataset. In addition, evaluating different
preprocessing techniques on different chicken disease images
is also an issue that needs research. By undertaking this action,
our objective is to enhance the Accuracy of the model, solid-
ifying its role as a fundamental solution within the realm of

avian image categorization.. Our ongoing efforts highlight the
importance of artificial intelligence in improving diagnostics
and anomaly detection.
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