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Abstract—Inspired by the principles of decomposition and 

ensemble, we introduce an Ensemble Empirical Mode 

Decomposition (EEMD) method that incorporates Sparse 

Bayesian Learning (SBL) with Mixed Kernel, referred to as 

EEMD-SBLMK, specifically tailored for landslide displacement 

prediction. EEMD and Mutual Information (MI) techniques were 

jointly employed to identify potential input variables for our 

forecast model. Additionally, each selected component was trained 

using distinct kernel functions. By minimizing the number of 

Relevance Vector Machine (RVM) rules computed, we achieved 

an optimal balance between kernel functions and selected 

parameters. The EEMD-SBLMK approach generated final results 

by summing the prediction values of each subsequence along with 

the residual function associated with the corresponding kernel 

function. To validate the performance of our EEMD-SBLMK 

model, we conducted a real-world case study on the Liangshuijing 

(LSJ) landslide in China. Furthermore, in comparison to RVM-

Cubic and RVM-Bubble, EEMD-SBLMK emerged as the most 

effective method, delivering superior results in the same 

measurement metrics. 

Keywords—Bubble; cublic; ensemble empirical mode 

decomposition; landslide; Sparse Bayesian Learning 

I. INTRODUCTION 

Landslide, a natural geological occurrence, refers to a type 
of mass wasting that involves diverse ground movements [1, 2]. 
Essentially, it signifies a transition from a stable slope to an 
unstable one [3, 4]. The occurrence of this transition can be 
prompted by numerous internal and external factors, including 
vegetative cover, weather conditions, evaporation, and 
transpiration, either operating alone or jointly. Given the 
significant damage and casualties caused by landslides globally, 
considerable efforts are underway to establish a pr-warning 
system capable of predicting their occurrence. The task of 
landslide forecasting is not only crucial but also challenging, 
particularly in the context of rapidly increasing peak flows due 
to urbanization. To mitigate potential flood-related damages in 
the future, it is imperative to develop an accurate model for 
landslide forecasting. 

It is well-established that Three Gorges Region, situated at 
the upstream section in Chinese Yangtze River, experiences lots 
of landslides, posing serious dangers to the region. These 
landslides, which occur almost annually, result in significant 
damage to both the local population and property. Given this, it 
is evident that the phenomenon involves numerous stochastic, 

interrelated components and exhibits highly nonlinear 
characteristics. 

Currently, various methods, including artificial neural 
networks (ANN), fuzzy theory, chaos theory, and statistical 
approaches, have been extensively employed in the realm of 
nonlinear analysis [5-21]. A two-stage Bayesian integration 
framework has been effectively utilized for detecting prominent 
objects in light field images [5]. 

The resolution of nonlinear characteristics does not solely 
rely on a single approach; hybrid models also demonstrate their 
effectiveness. Methods for per-processing signals and 
evolutionary SVR have been developed to enhance short-term 
wind speed predictions [6]. Furthermore, a hybrid approach that 
incorporates the minimum cycle decomposition has proven 
effective in predicting temporary electrical load data [7]. Chen 
et al. proposed an innovative methodology that integrates 
genetic algorithm and simulated annealing algorithm with 
improved BPNN modeling for landslide prediction [8]. Extreme 
learning machines (ELM) excel in learning with superior 
generalization capabilities, thereby circumventing the 
challenges encountered by gradient-based learning methods. 
Lian et al. pointed out the potential applications of modified 
ELM in predicting landslide displacements [9, 10]. Furthermore, 
dynamic time series predictors leveraging echo state networks 
and ELM have been constructed to forecast landslide 
displacements [11, 12]. Functional networks (FNs) combined 
with hybrid methods have also been explored for landslide 
forecasting [13]. The paper harnessed MGGP to build a forecast 
method for landslide displacement without prior knowledge of 
the nonlinear model’s structure. Bootstrap-based generalized 
neural networks (Bootstrap-GRNN) have been utilized for 
interval prediction of displacements [14]. Kanungo et al. 
exhibited an integration model, combining with NN, fuzzy logic 
and likelihood concepts to forecast landslide occurrence [15]. 

Regrettably, the majority of current landslide prediction 
methods remain deterministic, falling short in providing 
meaningful insights into the uncertainty surrounding their 
predicted values. This significant limitation restricts the 
practical application of landslide forecasting in stochastic 
decision-making and analytical frameworks. EEMD [16] 
addresses the mode mixing issue by introducing finite noise, 
effectively eliminating it while preserving the physical 
uniqueness of the decomposition. On the other hand, SBL [17] 
leverages a parameterized prior to favor models with sparse 
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nonzero weights. Drawing inspiration from Yang et al.’s idea 
[17], we introduce a novel hybrid approach, EEMD-SBLMK, 
which combines EEMD and SBL. This approach generates 
probabilistic prediction by assessing the probabilistic 
distribution of weights linked to Gaussian kernel functions. 
Finally, the last section summarizes our findings and discusses 
potential avenues for future improvements. 

II. THEORY 

A. EEMD 

EMD is a technique that exhibits great adaptability and 
efficiency in decomposing complex, nonlinear, and unstable 
signals. It leverages the HHT to accomplish this. The 
introduction of the IMF concept marks a pivotal innovation in 
EMD, as each IMF encapsulates the unique local information 
embedded in lots of data sheets. 

Utilizing EMD allows for the decomposition of any 
sophisticated temporal datasets into multiple IMF components, 
along with a residual component that encapsulates the primary 
trend of data. IMFs adhere to certain criteria, which are as 
follows: 

1) The total count of extreme points, including both peaks 
and valleys, should match how much zero crossings in 
the entire data-set, with a maximum difference of one. 

2) For a specific point, the average value of the envelope 
formed by the local peaks and troughs should be zero. 

Despite its strengths, EMD also exhibits certain limitations. 
A significant challenge arises from mode mixing, which occurs 
when signals of diverse scales coexist within a single IMF, or 
conversely, signals of identical scale are distributed across 
various IMFs. Tackling this problem, a novel method known as 
EEMD was introduced, which incorporates noise-assisted 
analysis (see Fig. 1). The EEMD approach could be summarized 
as:  

Step 1: Augment the original signal series with white noise. 

Step 2: Employ the EMD method to decompose the signal, 
incorporating the incorporated white noise, into its constituent 
IMFs. 

Step 3: Execute the previous two steps repeatedly, 
introducing a fresh white noise with each iteration. 

Step 4: Compute the average of the corresponding IMFs 
from all decompositions to arrive at the final IMFs. 

Step 5: Calculate the mean of the corresponding residue 
components across all decompositions to determine the final 
residue, as shown in Eq. (1) to Eq. (3). 
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B. Mutual Information (MI) 

Input selection serves as a crucial aspect in the development 
of any neural network. It holds a crucial position in ascertaining 
the precision of the model’s forecasts. Furthermore, 
incorporating irrelevant inputs can significantly impact the 
precision and reliability of the neural network. 

The Mutual Information (MI) [20, 21] between random 
variable X and random variable Y, is a measure that quantifies 
the shared information between them, as shown in Eq. (4). 

,

,

( , )
( , ) log[ ]

( ) ( )

X Y

X Y

X Y

x y
MI x y dxdy

x y
 




 
            (4) 

where, ( )X x  and (y)Y  represent the the individual 

probability density functions of variable X and variable Y, 

respectively, while , ( , )X Y x y  denotes their joint probability 

density function. Considering the restricted quantity of data 
accessible for this research, we employ the kth nearest neighbor 
approach, as described in studies [12-16], to assess MI. This 
evaluation method is particularly suitable for small datasets. 
Based on the recommendations in references [12-16], it is 
advisable to set k to a value between 2 and 4. Given the small 
size of our data sample, we have chosen to set k equal to 3 in 
this paper. 

 

Fig. 1. EEMD. 
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C. Sparse Bayesian Learning (SBL) 

The SBL model, alternatively known as a relevance vector 
machine, exhibits excellent adaptability for forecasting non-
stationary random variables. This is due to its straightforward 
modeling of probabilistic quantity changes [17]. Fundamentally, 
SBL adopts a Bayesian viewpoint for kernel-based forecast 
models, capitalizing on a distinct prior for parameters that 
encourages sparsity in the prediction function. 

Commonly, in a GR context, the correlation concerning the 

desired value tn  and the input vector xn  can be formulated as 

follows: 

 t ;n n ny x                                  (5) 

where,  0 1 2, , , T      represents the weight 

vector that needs to be determined. On the other hand, n
represents the forecast error, which follows an independent and 
identically distributed normal distribution with a mean of N (0, 

2 ). Furthermore, yn  follows a normal distribution, with its 

mean value designated as  f ;nx   and its variance designated 

as 2 . 

Utilizing the kernel method,  ;ny x   can be formally 

defined as: 
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where,    1x 1, ( , ), , ( , )
T

n n n MK x x K x x  ,  ,n iK x x  

signifies the Gaussian kernel function, and M denotes the total 
count of such kernel functions employed. Given the inherent 

nonlinearity of  ,n iK x x , the model effectively captures and 

expresses nonlinear complexities with ease. 

Recalling our earlier discussion, the joint distribution of 

target values  1 2t , , Nt t t , pertaining to N independent 

groups of sampling data, can be formulated based on the 
distribution of t as follows: 
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where, 1 2[ ( ), ( ), ( )]T

Nx x x     . 

Employ the process of maximizing the likelihood function, 
which signifies the likelihood of observing the provided data 

given the assumed model, to estimate i  and 2 , but it may 

have over fitting phenomenon. Then to avoid it, we use the 
mandatory additional prerequisites to some parameters, based 

on Bayesian theory then define i function, normal distribution: 
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    , parameters a , b, c, d have no 

prior knowledge, values are small, a=b=c=d=10-4. Then, it can 
obtain uniform hyper parameters a=b=c=d=0. 

Under bias framework, the prediction is based on the training 

data i , , 2 posterior distribution. According to Bayesian 

formula: 
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But, the above formula ride is hard to solve up, the left 
formula can be decomposed into: 

 2 2 2, , ( , , ) ( , t)p t p t p                      (12) 

Through the above analysis, the original problem is 
decomposed into two steps to solve: 

1) Compute  , 
2 under t posterior distribution. 

2) Compute   under  , 
2 , t posterior distribution. 

In practice, to simplify the calculation, Dirac distribution
2( , )MP MP   as   under  , 2 , t posterior distribution: 
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After the model parameters are obtained by training data, 
new input vectors x*, target value t* distribution density: 

2 2 2

* *( ) ( , , ) ( , , )p t t p t p d d d                (15) 

RVM regression model 
2

* : 

2 2

* * *( ) ( )T

MP x F x                                (16) 

Finally, the main problem MP  and 
2

MP , the maximum 

likelihood estimation method. 

III. FORECAST MODEL AND ANALYSIS 

In the RVM [18] model training, it assumed that there exist 
no errors in the historical data of each sample. And it used eight 
kernel functions respectively in Eq. (17) to Eq. (22). 

1) Gaussian 
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The landslide data, presented as a time series, typically 
exhibit nonlinear and non-stationary characteristics. To address 
this, we adopt an approach that combines decomposition and 
ensemble techniques. Specifically, we utilize the ensemble 
EEMD method to decompose three distinct types of landslide 
data. Three sets of sequences are obtained, the correlation 
between three groups of sub sequences and landslide 
displacement was calculated, and the best correlation group was 

selected as SBL parameters. Then, different kernel functions 
with each selected parameters are used to compute.  Using 
distinct kernel functions in a mixed kernel model for landslide 
prediction offers benefits in terms of enhanced model flexibility, 
improved feature representation, enhanced prediction accuracy, 
robustness and generalization, as well as increased 
interpretability and understanding of model decisions.  Based on 
the minimum number of computed RVM rules, it can obtain one 
selected parameter corresponds to one kernel function. 
Moreover, EEMD-SBLMK used selected kernels functions with 
corresponded input parameters to gain the final predicted results 
by assembling. 

There several steps for EEMD-SBLMK: 

1) All data (including displacement reservoir level and 
rainfall) are decomposed using EEMD into n IMFs and 
one residual function Residue (t) (see Fig. 2). 

2) Use MI method to choose strong correlation between the 
IMFs component and displacement, and then it can 
decide the input parameters of EEMD-SBLMK (see Fig. 
3). 

3) Each selected IMFs component to be trained by different 
kernels functions, which can be predefined based on 
domain knowledge or determined through a data-driven 
approach, where different kernels are tested to find the 
optimal combination. 

4) According to the minimum number of computed RVM 
rules, it gets some computed rules between kernel 
functions and selected parameter. 

5) The final predicted result presents the sum of each 
subsequence prediction value of IMF and residual 
function Residue (t) with corresponded kernel function. 

 

Fig. 2. Decomposed by EEMD. 

 

Fig. 3. EEMD-SBLMK. 
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IV. APPLICATION OF EMMD-SBLMK ON LANDSLIDE 

PREDICTION: A CASE STUDY 

A. Dataset 

In this paper, we endeavor to introduce the EMMD-SBLMK 
approach for elucidating significant nonlinear relationships 
among diverse parameters pertaining to a practical geotechnical 
problem. All experiments conducted in this study were executed 
on the MATLAB 2013 platform. Given the uncertainty, 
instability, and intricate nature of landslides, their formation 
remains highly elusive. This complexity encompasses factors 
such as loose loess material susceptible to sliding, variations in 
reservoir levels, rainfall patterns, intricate geological formations, 
precipitation, and anthropogenic engineering activities, among 
others. 

The landslide is very complicate, and some data about 
landslide are extremely difficult to collect or measure. So, we 
cannot analyze all collected data. All data have internal relations, 
not a single existence. Actually, scholars devote to study 
landslide based on two sides. Some scholars pay some interest 
in inter factor like mechanics, the other scholars are pay 
attention to numerical value. Then, the data of displacement, 
reservoir level and rainfall were collected to study landslide like 
[12-14]. Given the computational intensity of the EMD-SBLMK 
algorithm, a practical application was conducted by selecting the 
LSJ landslide at monitoring point 24 in the Three Gorges 
Reservoir area of China as a test case (see Fig. 4).The inclusion 
of mixed kernel functions in EEMD-SBLMK enables the model 
to effectively capture diverse patterns and features in landslide 
displacement data, enhancing generalization, robustness, 
interpretability, and overall modeling performance. Monitoring 
data about displacement and reservoir water level (see Fig. 5) 
and (see Fig. 6) are date from April 6, 2009 to May 25, 2011 at 
time interval six days. Monitoring about rainfall data (see Fig. 6) 
are date from April 6, 2009 to June 16, 2010 at time interval six 
days. The left data about rainfall data are recorded 0. 

 

Fig. 4. LSJ landslide. 

 

Fig. 5. LSJ displacement. 

 

Fig. 6. LSJ rainfall and reservoir level. 

The SBL method departs from ANNs in its requirement for 
equal-length training and prediction datasets, focusing on 
maintaining a balance between capturing complex patterns for 
model expressiveness and ensuring good generalization to 
unseen data. Consequently, we divide the entire dataset evenly 
into two parts to establish our prediction model. The dataset is 
bifurcated for analysis, with 50% allocated to the first group for 
model construction and the remaining 50% reserved for 
landslide displacement predictions. Additionally, we restrict the 
minimum number of time delays for input parameters to 10. Our 
EEMD integration totaled 100 iterations, augmented with 0.2 of 
white noise. This technique facilitates the decomposition of 
initial landslide displacement, reservoir water level, and rainfall 
time series. Specifically, displacement and reservoir water level 
series are broken down into five finite subsequences (IMF) and 
a residual function, while rainfall series yield four IMF 
subsequences and a residual function. The decomposition 
outcomes are graphically represented in Fig. 7, 8, and 9.
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Fig. 7. EEMD decomposition of displacement. 

 

Fig. 8. EEMD decomposition of reservoir level. 

 

Fig. 9. EEMD decomposition of rainfall. 

The choice of input parameters is critical to the outcome of 
the prediction, where we compute the correlation between each 
subsequence and the original displacement by MI (see Table Ⅰ). 
In Table Ⅰ, C represents for category, DD represents for 
displacement, RL represents for Reservoir Level, RR represents 
for Rainfall. According to the value MI between original 
displacement and component decomposition in Table Ⅰ, we 
chose seven values as input to build model, such as displacement 
decomposition IMF3, IMF4, IMF5, residual, reservoir water 
level IMF4, IMF5, and Residual. The value MI between original 
displacement and decomposition of Rainfall are the same, also 
is lowest among three values. So the rainfall is not as inputs in 

the paper. The process of selecting sub-series for forecast model 
construction involves segmenting the data-set based on relevant 
criteria to represent key patterns and features, ensuring a 
balanced representation of training and testing sub-series. 

TABLE I.  CALCULATE THE MI VALUES 

C IMF1 IMF2 IMF3 IMF4 IMF5 RESIDUE 

DD 0.0739 0.1360 0.5523 1.1587 1.5003 2.7303 

RL 0.1114 0.1168 0.2243 0.3214 0.3795 0.4800 

RF 0.1163 0.1163 0.1163 0.1163 0.1163 0.1163 
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B. Analysis and Results 

Then we choose eight kernel functions to train each input 
separately, and compute the number of RVM. Each input 
parameter use eight kernel functions to compute. According to 
the minimum number of computed RVM rules, each input 
parameter can choose best kernel function. That is mean each 
input parameter have own kernel function to compute. The 
model uses many different kernel functions to build. In Table Ⅱ, 
D, E, F, G, H, I, J stand for displacement decomposition (IMF3, 
IMF4, IMF5, Residual), reservoir water level (IMF4, IMF5, 
Residual). 0 cannot be computed by kernel functions, other 
number means that can be computed by kernel functions and the 
number of kernel functions. Each variable selects different 
kernel functions as much as possible base on least number of 
using RVM. 

The symbols A through G correspond to various kernel 
functions: A represents the Gauss, B the Laplace, C the R, D the 
Spline, E the Cubic kernel function (chosen twice), F the Cauchy 
kernel function, and G the Thin-plate spline (TPS) kernel 
function. In Table Ⅱ, all data set can be computed only by two 
kernel functions. One is Cublic, the other is Bubble. Because the 
prerequisite of SBL is that the array of Hessian should be 
positive definite. Then it can be decomposed by Cholesky. Then, 
in this paper, we use hybrid kernel models, Cublic kernel model 
and Cholesky kernel model to build our model. 

TABLE II.  8 KERNEL FUNCTIONS FOR EACH COMPONENT 

Category A B C D E F G 

Rvm-Gauss 5 7 2 7 7 3 0 

Rvm-Cauchy 0 15 0 52 45 2 0 

Rvm-Cublic 5 7 8 6 5 2 6 

Rvm-Bubble 5 52 52 52 29 28 23 

Rvm-Laplace 18 5 45 29 6 48 0 

Rvm-R 18 49 2 28 7 5 0 

Rvm-Spline 3 7 0 2 0 7 15 

Rvm-Tps 2 44 4 49 7 7 0 

Measuring the quality of algorithms involves various 
commonly employed methods, including the Relative Error 
(RE), Root Mean Square Error (RMSE), Mean Absolute Error 
(MAE), and Correlation Coefficient (R), as shown in Eq. (23) to 
Eq. (26). 
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The findings pertaining to three distinct kernel functions are 
presented in Fig. 10, Fig. 11, and Table Ⅲ. Fig. 10 illustrates 
that the predicted values deviate slightly from the actual values. 
Notably, the first 38 data points utilizing the hybrid kernel 
function align most closely with the original data, followed by 
the Cubic kernel function for the remaining data. While the 
Bubble kernel function exhibits a similar trend to the hybrid 
kernel, its performance is inferior. In Fig. 11, the relative values 
of these three methods mirror the patterns observed in Fig. 10. 
Notably, the hybrid kernel function averages the best prediction 
results among the three methods. 

In addition to these metrics, we computed four additional 
values for the three kernel functions: MAE, RMSE, R, and the 
number of RVM. The evaluation criteria for MAE, RMSE, and 
the number of RVM variables favor lower values, whereas a 
higher value is preferred for R. The hybrid kernel function 
achieved the minimum values for MAE, RMSE, and the number 
of RVM, while attaining the maximum value for R. According 
to the current evaluation standards, the hybrid kernel function 
demonstrates superior predictive performance. The hybrid 
approach involves selecting the most appropriate kernel 
calculation for each variable, thereby leveraging the unique 
characteristics of each kernel. 

TABLE III.  COMPARISON OF THREE METHODS 

Method MAE RMSE R RVM 

Cublic 266.8843 273.5266 0.9873 42 

Bubble 280.1885 286.6568 0.9593 204 

Hybrid 244.6038 247.7012 0.9710 38 

 

Fig. 10. Three methods predictive values. 

 

Fig. 11. Three methods relative values. 
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V. CONCLUSION 

Employing the principles of decomposition and ensemble, 
we commence by decomposing three distinct types of landslide 
data using EEMD methods. This decomposition results in three 
separate groups, each containing multiple subseries. 
Subsequently, we utilize mutual information (MI) to assess the 
correlation between each subseries and landslide displacement, 
enabling us to identify potential input variables for our forecast 
model. Next, we select specific subseries to construct forecast 
models using support vector regression with mixed kernels. 
Ultimately, the results of these predictive models are combined 
to reconstitute the initial landslide displacement sequence. To 
showcase the potency of our model across varying kernels, we 
provide a case study centered on the LSJ landslide monitoring 
site ZJG24 in the vicinity of China Three Gorges. The EEMD-
SBLMK method we introduce is notably beneficial due to its 
suitability for single-step-ahead (SS) forecasts in real-world 
situations. Additionally, it possesses the capability for precise 
multi-step-ahead (MS) forecasts down the line. 
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