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Abstract—This paper proposes a new EP-PER-SAC 

algorithm to solve the problems of slow training speed and low 

learning efficiency of the SAC (Soft Actor Critic) algorithm in 

the local path planning of mobile robots by introducing the 

Priority Experience Replay (PER) strategy and Experience Pool 

(EP) adjustment technique. This algorithm replaces equal 

probability random sampling with sampling based on the 

priority experience to increase the frequency of extracting 

important samples, thereby improves the stability and 

convergence speed of model training. On this basis, it requires to 

continuously monitor the learning progress and exploration rate 

changes of the robot to dynamically adjust the experience pool, 

so the robot can adapt effectively to the environment changes and 

the storage requirements and learning efficiency of the algorithm 

are balanced. Then, the algorithm's reward and punishment 

function is improved to reduce the blindness of algorithm 

training. Finally, experiments are conducted under different 

obstacle environments to verify the feasibility of the algorithm 

based on ROS (Robot Operating System) simulation platform 

and real environment. The results show that the improved EP-

PER-SAC algorithm has a shorter path length and faster model 

convergence speed than the original SAC algorithm and PER-

SAC algorithm. 
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I. INTRODUCTION 

The ability of mobile robots to plan their paths is a critical 
task in the field of robotics. The robot explores an optimal or 
sub-optimal safe path from the starting point to the end point in 
workplace according to the given requirements [1]. The 
common traditional path planning algorithms mainly include 
A* algorithm [2-3], Artificial Potential Field method [4-5], 
Dijkstra algorithm [6], Genetic algorithm [7], Fuzzy Control 
algorithm [8], and Ant Colony algorithm [9-10]. These 
algorithms rely on maps and environmental models during the 
path planning process and are prone to falling into local 
minima when dealing with complex environments. With the 
development of computer science and artificial intelligence, 
intelligent algorithms have received widespread attention due 
to vast database and powerful computing capability to perform 
various tasks. Reinforcement Learning algorithm [11-12] is a 
typical example. It learns the optimal policy through 
interaction with the environment, thus can overcome the 
difficulties associated with map modeling. The Deep 
Reinforcement Learning algorithm [13-14] further combine 
Deep Learning [15] with Reinforcement Learning. It has the 
ability to learn and make decisions in complex environments, 

and has also achieved remarkable results of dealing with the 
path planning of mobile robots. 

Typical algorithms of Deep Reinforcement Learning 
include DDPG (Deep Deterministic Policy Gradient) algorithm 
[16-17], TD3 (Twin Delayed Deep Deterministic policy 
gradient) [18] and SAC algorithm. Silver et al. proposed the 
DPG (Deterministic Policy Gradient) algorithm, which updated 
the value function to address Reinforcement Learning 
problems in a continuous action space [19]. Lillicrap et al. 
extended the DPG algorithm by incorporating the principles of 
Deep Q-learning and introduced the DDPG algorithm, which 
can effectively deal with high-dimensional continuous action 
[20]. Fujimoto et al. improved the DDPG algorithm by 
employing two separate Q-network to evaluate action values 
and proposed the TD3 algorithm. This improved method can 
reduce the overestimation of action values and enhance 
training stability [21]. Haarnoja et al. introduced the SAC 
algorithm, which used dual Q-network and incorporated the 
principle of maximum entropy. It maximized entropy to 
increase the exploratory capability of the algorithm [22]. 
Yuxiang Z et al. proposed the SAC algorithm combining with 
the Artificial Potential Field method. The self attention 
mechanism had been introduced into the Actor network of the 
SAC algorithm in response to the high dimensionality and 
complexity of environmental state in 3D environmental space. 
It improved the convergence speed and success rate of the 
algorithm, but the hyper-parameters can also be adjusted to 
improve the algorithm performance [23]. 

This paper presents an EP-PER-SAC algorithm to solve the 
shortcomings of the SAC algorithm, such as long training time 
and wasted effective experience. The improved algorithm uses 
the fully connected neural network in which the obstacle 
information is detected by the ten radar sensors of robot, where 
the angle and the distance between the robot and the target 
point are as inputs of the network, the angular velocity and 
linear velocity of the robot as outputs. Combined with the 
preferential experience playback mechanism, the samples with 
high priority are preferentially selected. The experience pool is 
dynamically adjusted according to the learning progress and 
changes of the exploration rate, thus balancing the efficiency of 
exploration and exploitation of samples. A detailed reward and 
punishment function is designed to enable robots to more 
easily obtain effective feedback from environmental 
exploration, which can solve the issue of reward sparsity and 
enhance the sample utilization rate and learning efficiency of 
the algorithm. 
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II. SAC ALGORITHM 

The SAC algorithm is a Deep Reinforcement Learning 
algorithm that maximizes policy entropy [24]. It can be used to 

address the problem within continuous action space. The SAC 
algorithm consists of an Actor network, two Critic networks 
and two Target Critic networks. Fig. 1 depicts the flowchart of 
SAC algorithm. 

 
Fig. 1. The flowchart of SAC algorithm. 

The SAC algorithm obtains the maximum expected reward 
value by training effective samples, while satisfying the 
maximization of entropy value. The algorithm can be 
represented as: 
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In Eq. (1), E is a reward expectation, (st,at)~ρβ is the state 
distribution related to strategy, r(st,at) is the return value 
obtained by executing the action at, α is a parameter that 
controls entropy regularization, H is the entropy in the state st 
which can be expressed as: 
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The algorithm selects the initial state st, and obtains the 
action probability π(at|st) after passing through the Actor 
network. Then, the algorithm obtains the action at according to 
probability sampling and applies it to the environment to 
generate a set of empirical tuples (st, at, st+1, rt+1). 

The input of the Actor network is the state st, and the 
output is the action probability π(at|st). The changes in loss 
during training can be expressed as: 
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In Eq. (3), B represents the experience pool, represents the 
possible actions predicted by the Actor network again. 

The Critic networks are used to evaluate the expected 
return on a given state and action under the current strategy. 
The Target Critic networks are used to provide stable target 
value estimates. In order to accurately evaluate the state-action 
function Q(st,at) (abbreviated as Q-value), the SAC algorithm 

combines the maximum entropy principle and uses the smaller 
values output by two Critic networks for estimation. The Q-
value is as follows: 
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In Eq. (4), α is a temperature parameter used to regulate the 
importance of entropy. 

The loss function of the Critic networks are: 
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The SAC algorithm uses gradient descent and ascent 
methods to update the parameters of the strategy and value 
network, while updating the target networks and clearing the 
current gradient information to prepare for the next round of 
training. 

III. IMPROVE THE SAC ALGORITHM 

This research proposes the EP-PER-SAC algorithm, which 
uses neural network to predict the state and the action of robot. 
The improved algorithm extracts samples with higher priority 
multiple times to increase the utilization of effective samples. It 
dynamically adjusts the experience pool based on training 
progress and performance to adapt to different training stages. 
This approach can balance the need of exploration and 
utilization, while improving the training effectiveness of the 
algorithm. The EP-PER-SAC algorithm includes the 
improvement of state and action space design, network 
structure, and design of the reward and punishment function. 

A. State and Action Space Design 

The state space refers to the set including all possible states 
which may occur in an environment. Inputting this information 
into the network, the robot execute an action based on the 
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current state to accumulate more rewards and optimize its 
strategy. 

Radar sensors are mounted on a two wheel differential 
drive robot to detect the obstacles within a range of 180° in 
front, which are returned with every 20° a set, for a total of 10 
sets. Fig. 2 shows the radar detection structure. 

 
Fig. 2. Radar detection structure. 

The robot state space S consists of the distance information 
to the nearest obstacles from ten direction sensors dk (k=0~9), 
the angular angle between the robot and the target point θi and 
the distance between the robot and the target point Di: 

),,~( 90 ii DddS                                  (6) 

The action space A is used for exploring and executing 
various actions within a certain range which includes the 

robot's angular velocity ],[ maxmin i and linear velocity 

],[ maxmin i , where ]2,2[],[ maxmin   with the unit 

rad/s, ]34.0,0[],[ maxmin   with the unit m/s. The robot’s 

action space A is defined as: 
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B. Priority Experience Replay 

The SAC algorithm uses a random sampling method during 
sampling, which cannot ensure repeated sampling of important 
samples. Priority Experience Replay technology assigns 
different priorities to each sample based on the TD error value, 
and samples with higher priorities are more likely to be 
extracted. The framework for prioritizing experience replay is 
shown in Fig. 3. 

 

Fig. 3. Priority experience replay framework. 

The TD error of samples is commonly used to measure the 
discrepancy between the actual value and the predicted value. 
When the TD error value is large, it may indicate that the 
training performance at that particular state is poor. The 
learning efficiency can be improved by increasing the 
probability of samples with large errors being extracted and 
training them for multiple times. TD error δi is defined as: 
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In Eq. (8), γ represents the discount factor, Q(st,at) and 
Qtarget(st+1,at+1) represent the states value of the critic networks 
and the target critic networks, respectively. 

The probability of extracting samples from the experience 
pool can be expressed as: 













n

i

i

i
ip

1

                                       (9) 

In Eq. (9), α parameter is used to control the sample 
priority. 

During the calculation of TD error in the SAC algorithm, 
the impacts of Critic networks, Target Critic networks and 
Actor network on the algorithm are different. The addition of 
balance parameters to the algorithm can improve the influence 
of the strategy network on the total error. The TD 
comprehensive error with balance parameters η, σ and φ is:
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C. Dynamic Adjustment of Experience Pool 

The experience pool is used to store data generated by the 
interaction between robot and the environment. The EP-PER-
SAC algorithm dynamically adjusts the capacity of the 
experience pool according to the progress of training and the 
change of exploration rate. This improved method can 
optimize the efficiency and quality of sample utilization, and 
save memory resource. The adjustment framework of 
experience pool is shown in Fig. 4. 

 
Fig. 4. The adjustment framework of experience pool. 

During the training process, the change of the robot's 
strategy leads to a variation of the data distribution in the 
experience pool. The algorithm dynamically adjusts the 
experience pool can ensure that the data in it matches the 
current strategy more closely, and can improve the stability of 
training. In the early stage of training, the exploration rate is 
higher than the exploration utilization rate, and increasing the 
experience pool can quickly accumulate experience. In the later 
stage of training, the exploration rate decreases, and the robot 
needs more refined optimization. Reducing the experience pool 
can avoid data over-fitting and improve the effectiveness of the 
algorithm. 

D. Network Structure 

The network input of EP-PER-SAC algorithm includes 
obstacle detection data dk from ten directions of the radar, 
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angle θi and distance Di between the robot and the target point. 
The network output of the algorithm includes the angular 
velocity ωi and the linear velocity vi of the robot. Fig. 5 shows 
the network input and output of the EP-PER-SAC algorithm. 

 
Fig. 5. Network input and output of the EP-PER-SAC algorithm. 

Fig. 6 shows the network structure of the algorithm. The 
algorithm inputs action and state information into the network. 
The hidden layer consists of three fully connected layers, and 
each fully connected layer contains 512 neuronal nodes. The 
activation function in the algorithm network is used to 
perform nonlinear transformation to improve the learning 
ability. Then, the algorithm samples to obtain specific actions 
in the continuous action space. Finally, the network maps 
these action values to angular velocity ωi and linear velocity vi, 
and sends them to the robot. 

 
Fig. 6. The network structure of EP-PER-SAC algorithm. 

E. Design of Reward and Punishment Functions 

The reward and punishment function guides robot to 
perform appropriate actions in the environment to achieve 
specific goals which play a crucial role in the success of the 
algorithm. 

In the design of the reward and punishment function, the 
reward and punishment R1 shows the distance between the 
robot and the environment. It controls the distance between the 
robot and the obstacle environment, and rewards robots to 
approach the target or avoid obstacles for completing path 
planning quickly and accurately. The reward and punishment 
R2 shows the angle between the robot and the target point. It 
adjusts the angle between the robot and the target direction, 
encourages the robot to choose the path with the minimum 
angle, reduces unnecessary movement, and enhances the target 
orientation property. The total reward R consists of reward R1 
and reward R2: 
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Where, 

rg  is the reward value of the robot to reach the target, 

rc  is the penalty value of the robot to collide with obstacles, 

di is the distance from the robot to the target point at this 
time, 

cd is the minimum range threshold for reaching the target, 

mink is the minimum value detected by radar, 

co is the minimum safe distance from the obstacle 
environment, 

C is a positive integer, 

θ is the angle value between the robot and the target point. 

IV. EXPERIMENTAL TEST AND RESULT ANALYSIS 

The improved algorithm is first tested in a simulation 
environment under ROS platform. After the algorithm 
converges, it is loaded into the robot for real environment 
experiments. This research uses Gazebo on the ROS platform 
to build the robot running environments of obstacle-free, 
discrete obstacles, 1-shaped obstacle, U-shaped obstacle, and 
mixed obstacles, respectively. The feasibility of the designed 
EP-PER-SAC algorithm is verified by model training, and 
compared with the original SAC algorithm and PER-SAC 
algorithm (the SAC algorithm combined with Preferential 
Empirical Replay). The path planned is projected to Rviz in 
which the blue square represents the target point, gray circles 
denotes obstacles, and green line means the path trajectory. 
The parameters of the experimental model are shown in Table I. 

TABLE I.  EXPERIMENTAL MODEL PARAMETERS 

Parameter Initial value 
Attenuation degree factor 0.99

 

Maximum number of steps per training round 1000 

Number of samples per round 256 

Strategy network learning rate 0.0003 

Q-network learning rate 0.0003 

A. Obstacle-free Environment Simulation 

Fig. 7 shows the obstacle-free simulation model of 4m×4m 
built in Gazebo, with the starting point of the robot set to (-1,0) 
and the target point set to (1,0). 
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Fig. 7. Obstacle-free environment in Gazebo. 

Fig. 8 shows the results of 300 rounds of simulation 
training on three different algorithms in Gazebo, and records 
the average reward and punishment return value for each round 
of the training. The horizontal axis represents the number of 
training rounds, and the vertical axis denotes the average 
reward for each round. The results in the graph shows that the 
average return value of the EP-PER-SAC algorithm 
significantly increases after 35 rounds, with a faster 
convergence speed than the original SAC algorithm and PER-
SAC algorithm, and tends to stabilize after 150 rounds. 

The paths planned by the converged models of the three 
algorithms in Rviz are drawn in Fig. 9 (a), (b), and (c), 
respectively. The EP-PER-SAC algorithm has 90 steps in the 
path, 94 steps in the PER-SAC algorithm, and 95 steps in the 
original SAC algorithm. The improved algorithm has a slightly 
shorter path than the other two algorithms. 

 
Fig. 8. Comparison of the average reward in the obstacle-free environment of 

the three methods. 

 
(a) EP-PER-SAC         (b) PER-SAC         (c) SAC 

Fig. 9. Path planning of the three algorithms in an obstacle-free environment. 

B. Discrete Obstacles Environment Simulation 

Fig. 10(a) and (b) shows the Gazebo discrete obstacles 
environment and the Rviz projection, respectively. 

     
(a) Gazebo environment             (b)  Rviz projection 

Fig. 10. Discrete obstacles simulation environment. 

In this test, the three algorithms are trained for 800 rounds, 
respectively, and the average reward and punishment return 
value of each round is shown in Fig. 11. The EP-PER-SAC 
algorithm has a higher return value than the original SAC 
algorithm after 150 rounds. While compared to the PER-SAC 
algorithm, the average return of the EP-PER-SAC algorithm 
fluctuates less per round, and the probability of the robot 
reaching the target point is higher. 

The path planning results of the three algorithms in the 
discrete obstacles environment are shown in Fig. 12(a), (b) and 
(c), respectively. The starting position of the robot is (-1, -1), 
and the target point is (1,1). The EP-PER-SAC algorithm takes 
102 steps to plan the path, the PER-SAC algorithm is 115 
steps, and the SAC algorithm owns 123 steps. The improved 
algorithm has a smoother path and shorter length. 

 
Fig. 11. Comparison of the average reward in the discrete obstacles 

environment of the three methods. 

 
(a) EP-PER-SAC             (b) PER-SAC          (c) SAC 

Fig. 12. Path planning of the three algorithms in a discrete obstacles 

environment. 

C. Special Obstacles Environment Simulation 

Fig. 13 and 14 represent two special obstacles environment, 
1-shaped and U-shaped, respectively. The starting point in the 
1-shaped environment is (-1.5,0), and the target point is (1.5,0). 
In the U-shaped environment, the starting point is set to (-1,0) 
and the ending point is set to (1,0). 
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(a) Gazebo environment            (b)  Rviz projection 

Fig. 13. The 1-shaped obstacle simulation environment. 

     
(a) Gazebo environment             (b)   Rviz projection 

Fig. 14. The U-shaped obstacle simulation environment. 

Fig. 15 and 16 show the planned paths of the three 
algorithms in the 1-shaped and U-shaped environment, 
respectively. In the 1-shaped obstacle environment, the EP-
PER-SAC algorithm, the PER-SAC algorithm and the SAC 
algorithm take 138 steps, 142 steps and 146 steps, respectively. 
While in the U-shaped environment, the planned path of the 
three algorithms owns 131 steps, 140 steps and 143 steps, 
respectively. The improved algorithm can navigate around the 
special obstacles environment faster and the planned path 
length is shorter in both environments. 

 
(a) EP-PER-SAC         (b) PER-SAC            (c) SAC 

Fig. 15. Path planning of the three algorithms in the 1-shaped obstacles 

environment. 

 
(a) EP-PER-SAC          (b) PER-SAC            (c) SAC 

Fig. 16. Path planning of the three algorithms in the U-shaped obstacles 

environment. 

D. Simulation of Mixed Obstacles Environment 

Fig. 17 represents a mixed obstacles environment of 
6m×6m in Gazebo. The environment consists of discrete 
obstacles, 1-shaped and U-shaped obstacles, with the starting 
point set to (-2, 2), and the target point being (2,-2). 

       
(a) Gazebo environment              (b)  Rviz projection 

Fig. 17. The mixed obstacles environment 1. 

Fig. 18 represents the planned paths of the three algorithms 
in the mixed obstacles environment 1. Compared with the 
original SAC algorithm and the PER-SAC algorithm, the EP-
PER-SAC algorithm has a shorter path length and it is easier to 
pass through complex obstacles, which has a significant effect. 
The planning steps of the EP-PER-SAC algorithm is 194 steps, 
while PER-SAC algorithm is 217 steps and the original 
algorithm is 244 steps. 

 
(a) EP-PER-SAC            (b) PER-SAC           (c) SAC 

Fig. 18. Path planning of the three algorithms in the mixed obstacles 

environment 1. 

In order to further verify the feasibility and universality of 
the convergence algorithm, the algorithm is tested again in a 
mixed obstacles environment 2, as shown in Fig. 19. The 
starting point is set to (-2,2), and the target point is set to (2,0) 

      
(a) Gazebo environment           (b)  Rviz projection 

Fig. 19. The mixed obstacles environment 2. 

The converged model is loaded into the mixed obstacles 
environment 2, and the path results planned by the three 
algorithms are shown in Fig. 20. The path steps planned by the 
EP-PER-SAC algorithm is 199 steps, while the other two 
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algorithms use 238 and 286 steps by the PER-SAC algorithm 
and SAC algorithm, respectively. The EP-PER-SAC algorithm 
still has a shorter path length, which can better avoid obstacles 
and verify the effectiveness of the algorithm. 

 
(a) EP-PER-SAC         (b) PER-SAC           (c) SAC 

Fig. 20. Path planning of the three algorithms in the mixed obstacles 

environment 2. 

E. Comparison of Experimental Results 

Through the experimental results in the aforementioned 
simulation environments, the EP-PER-SAC algorithm is 
compared with the SAC algorithm and the PER-SAC 
algorithm. The feasibility and performance advantages of the 
designed EP-PER-SAC algorithm have been verified. In 
different simulation environments, the paths planned by the 
EP-PER-SAC algorithm are smoother and converge faster than 
those planned by the SAC algorithm and the PER-SAC 
algorithm. 

The number of steps taken by the three algorithms in 
different simulation environments are compared in the bar 
chart, as shown in Fig. 21. From the graph, it can be seen more 
clearly that the EP-PER-SAC algorithm has fewer steps than 
the SAC algorithm and the PER-SAC algorithm in any 
obstacles environment. 

 
Fig. 21. Comparison of path lengths of the three algorithms in different 

running environments. 

F. Experiments in Real Environment 

This research applies three algorithms to mobile robot 
based on the ROS platform, and performs path planning tasks 
in a real environment to verify the performance of the 
improved algorithm. The Gmapping algorithm is used to 
construct a two-dimensional laboratory environment map. In 
order to test the real-time planning ability of the algorithm, 

temporary unknown obstacles are added in laboratory 
environment. Fig. 22 shows the laboratory environment and 
laboratory map model. 

       
(a) Laboratory environment       (b) Laboratory map model 

Fig. 22. Laboratory environment. 

Fig. 23 shows the laboratory environment with temporary 
obstacles and laboratory map model with temporary obstacles. 
The radar sensors detect obstacles information and provide 
real-time feedback, and achieve self-localization through the 
AMCL (Adaptive Monte Carlo Localization) module. 

    
(a) Laboratory environment       (b) Laboratory map model 

Fig. 23. Laboratory environment with temporary obstacles. 

The robot plans a collision-free path from the starting point 
to the target point, and visualizes the paths planned by the three 
algorithms in Rviz to verify the real-time obstacle avoidance 
ability of the algorithms. Fig. 24(a), (b) and (c) show the 
planned path by the EP-PER-SAC algorithm, PER-SAC 
algorithm, and the SAC algorithm, respectively. In the real 
environment, the path lengths of the three algorithms are 5.562 
meters, 6.159 meters, and 6.965 meters, respectively. 
Compared with PER-SAC and SAC algorithms, EP-PER-SAC 
algorithm has a shorter path length and smoother path during 
obstacle avoidance. The experiments indicate that the path 
planned by the proposed algorithm is feasible and effective in 
both the simulation environment and the real environment, and 
the performance is better than the original SAC algorithm and 
PER-SAC algorithm. 
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(a) EP-PER-SAC algorithm            (b) PER-SAC algorithm 

 
(c) SAC algorithm 

Fig. 24. Paths planned by the three algorithms in laboratory environment. 

V. CONCLUSION 

This research improves the original SAC algorithm and 
proposes the EP-PER-SAC algorithm based on the Priority 
Experience Replay and dynamic adjustment of experience 
pool. Simulation comparisons and real environment 
experiments are made with the original SAC and PER-SAC 
algorithms in specific environments to verify that the improved 
algorithm can reach the target point faster and more efficiently. 
The improved EP-PER-SAC algorithm has the following 
characteristics: 

1) The Priority Experience Replay technology is added to 

improve the sampling probability of important samples, and 

improve the convergence speed and effectiveness of the 

algorithm. 

2) According to the comparison of exploration rate and 

exploration-utilization rate in the training process, the 

experience pool is dynamically adjusted to avoid over-fitting 

of the model and improve the stability of the algorithm. 

The improved algorithm has certain practical applications 
in the field of mobile robots, such as autonomous vehicles, 
warehouse automation, and service robots working in the 
unknown environment. We can download the improved 
algorithm to the controller of a mobile robot. According to the 
instructions of the algorithm, the robot can perceive the 
environment in real time, autonomously avoid obstacles and 
reach the designated target through the optimal path, 
completing the given transportation task. 

However, the improved algorithm is relatively simple and 
rigid in evaluating the effect of adjusting the method in the 
experience rules, which may lead to bias in the information 
obtained from training. The next step of research will consider 
conducting more complex and diverse evaluations of the 
adjustment performance in the experience rules, which can 
enhance the algorithm's adaptability to more complex 
environments and enable robots to better perform path 
planning. 
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