
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

991 | P a g e

www.ijacsa.thesai.org

Local Path Planning of Mobile Robots Based on the

Improved SAC Algorithm

Ruihong Zhou1, Caihong Li2*, Guosheng Zhang3, Yaoyu Zhang4, Jiajun Liu5

School of Computer Science and Technology, Shandong University of Technology, Zibo 255049, China1, 2, 3, 4

Faculty of Business, Lingnan University, Hong Kong5

Abstract—This paper proposes a new EP-PER-SAC

algorithm to solve the problems of slow training speed and low

learning efficiency of the SAC (Soft Actor Critic) algorithm in

the local path planning of mobile robots by introducing the

Priority Experience Replay (PER) strategy and Experience Pool

(EP) adjustment technique. This algorithm replaces equal

probability random sampling with sampling based on the

priority experience to increase the frequency of extracting

important samples, thereby improves the stability and

convergence speed of model training. On this basis, it requires to

continuously monitor the learning progress and exploration rate

changes of the robot to dynamically adjust the experience pool,

so the robot can adapt effectively to the environment changes and

the storage requirements and learning efficiency of the algorithm

are balanced. Then, the algorithm's reward and punishment

function is improved to reduce the blindness of algorithm

training. Finally, experiments are conducted under different

obstacle environments to verify the feasibility of the algorithm

based on ROS (Robot Operating System) simulation platform

and real environment. The results show that the improved EP-

PER-SAC algorithm has a shorter path length and faster model

convergence speed than the original SAC algorithm and PER-

SAC algorithm.

Keywords—Mobile robots; local path planning; reinforcement

learning; SAC algorithm; priority experience replay; experience

pool adjustment; Robot Operating System (ROS)

I. INTRODUCTION

The ability of mobile robots to plan their paths is a critical
task in the field of robotics. The robot explores an optimal or
sub-optimal safe path from the starting point to the end point in
workplace according to the given requirements [1]. The
common traditional path planning algorithms mainly include
A* algorithm [2-3], Artificial Potential Field method [4-5],
Dijkstra algorithm [6], Genetic algorithm [7], Fuzzy Control
algorithm [8], and Ant Colony algorithm [9-10]. These
algorithms rely on maps and environmental models during the
path planning process and are prone to falling into local
minima when dealing with complex environments. With the
development of computer science and artificial intelligence,
intelligent algorithms have received widespread attention due
to vast database and powerful computing capability to perform
various tasks. Reinforcement Learning algorithm [11-12] is a
typical example. It learns the optimal policy through
interaction with the environment, thus can overcome the
difficulties associated with map modeling. The Deep
Reinforcement Learning algorithm [13-14] further combine
Deep Learning [15] with Reinforcement Learning. It has the
ability to learn and make decisions in complex environments,

and has also achieved remarkable results of dealing with the
path planning of mobile robots.

Typical algorithms of Deep Reinforcement Learning
include DDPG (Deep Deterministic Policy Gradient) algorithm
[16-17], TD3 (Twin Delayed Deep Deterministic policy
gradient) [18] and SAC algorithm. Silver et al. proposed the
DPG (Deterministic Policy Gradient) algorithm, which updated
the value function to address Reinforcement Learning
problems in a continuous action space [19]. Lillicrap et al.
extended the DPG algorithm by incorporating the principles of
Deep Q-learning and introduced the DDPG algorithm, which
can effectively deal with high-dimensional continuous action
[20]. Fujimoto et al. improved the DDPG algorithm by
employing two separate Q-network to evaluate action values
and proposed the TD3 algorithm. This improved method can
reduce the overestimation of action values and enhance
training stability [21]. Haarnoja et al. introduced the SAC
algorithm, which used dual Q-network and incorporated the
principle of maximum entropy. It maximized entropy to
increase the exploratory capability of the algorithm [22].
Yuxiang Z et al. proposed the SAC algorithm combining with
the Artificial Potential Field method. The self attention
mechanism had been introduced into the Actor network of the
SAC algorithm in response to the high dimensionality and
complexity of environmental state in 3D environmental space.
It improved the convergence speed and success rate of the
algorithm, but the hyper-parameters can also be adjusted to
improve the algorithm performance [23].

This paper presents an EP-PER-SAC algorithm to solve the
shortcomings of the SAC algorithm, such as long training time
and wasted effective experience. The improved algorithm uses
the fully connected neural network in which the obstacle
information is detected by the ten radar sensors of robot, where
the angle and the distance between the robot and the target
point are as inputs of the network, the angular velocity and
linear velocity of the robot as outputs. Combined with the
preferential experience playback mechanism, the samples with
high priority are preferentially selected. The experience pool is
dynamically adjusted according to the learning progress and
changes of the exploration rate, thus balancing the efficiency of
exploration and exploitation of samples. A detailed reward and
punishment function is designed to enable robots to more
easily obtain effective feedback from environmental
exploration, which can solve the issue of reward sparsity and
enhance the sample utilization rate and learning efficiency of
the algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

992 | P a g e

www.ijacsa.thesai.org

II. SAC ALGORITHM

The SAC algorithm is a Deep Reinforcement Learning
algorithm that maximizes policy entropy [24]. It can be used to

address the problem within continuous action space. The SAC
algorithm consists of an Actor network, two Critic networks
and two Target Critic networks. Fig. 1 depicts the flowchart of
SAC algorithm.

Fig. 1. The flowchart of SAC algorithm.

The SAC algorithm obtains the maximum expected reward
value by training effective samples, while satisfying the
maximization of entropy value. The algorithm can be
represented as:

T

t

tttas sHasrEJ
tt

0

~),())|((),()((1)

In Eq. (1), E is a reward expectation, (st,at)~ρβ is the state
distribution related to strategy, r(st,at) is the return value
obtained by executing the action at, α is a parameter that
controls entropy regularization, H is the entropy in the state st
which can be expressed as:

)]|(log[))|((sEsH
tat (2)

The algorithm selects the initial state st, and obtains the
action probability π(at|st) after passing through the Actor
network. Then, the algorithm obtains the action at according to
probability sampling and applies it to the environment to
generate a set of empirical tuples (st, at, st+1, rt+1).

The input of the Actor network is the state st, and the
output is the action probability π(at|st). The changes in loss
during training can be expressed as:

),,,(

''

11

')]|(ln),([
||

1
)(

tttt

t

rsas

tttta
saasqE

B
L (3)

In Eq. (3), B represents the experience pool, represents the
possible actions predicted by the Actor network again.

The Critic networks are used to evaluate the expected
return on a given state and action under the current strategy.
The Target Critic networks are used to provide stable target
value estimates. In order to accurately evaluate the state-action
function Q(st,at) (abbreviated as Q-value), the SAC algorithm

combines the maximum entropy principle and uses the smaller
values output by two Critic networks for estimation. The Q-
value is as follows:

)),(log(),(min),(),(1111
2,1

 tttti
i

tttt saasQasrasQ (4)

In Eq. (4), α is a temperature parameter used to regulate the
importance of entropy.

The loss function of the Critic networks are:

))],(),([()(),(ttttasic asQasQEL
itt

 (5)

The SAC algorithm uses gradient descent and ascent
methods to update the parameters of the strategy and value
network, while updating the target networks and clearing the
current gradient information to prepare for the next round of
training.

III. IMPROVE THE SAC ALGORITHM

This research proposes the EP-PER-SAC algorithm, which
uses neural network to predict the state and the action of robot.
The improved algorithm extracts samples with higher priority
multiple times to increase the utilization of effective samples. It
dynamically adjusts the experience pool based on training
progress and performance to adapt to different training stages.
This approach can balance the need of exploration and
utilization, while improving the training effectiveness of the
algorithm. The EP-PER-SAC algorithm includes the
improvement of state and action space design, network
structure, and design of the reward and punishment function.

A. State and Action Space Design

The state space refers to the set including all possible states
which may occur in an environment. Inputting this information
into the network, the robot execute an action based on the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

993 | P a g e

www.ijacsa.thesai.org

current state to accumulate more rewards and optimize its
strategy.

Radar sensors are mounted on a two wheel differential
drive robot to detect the obstacles within a range of 180° in
front, which are returned with every 20° a set, for a total of 10
sets. Fig. 2 shows the radar detection structure.

Fig. 2. Radar detection structure.

The robot state space S consists of the distance information
to the nearest obstacles from ten direction sensors dk (k=0~9),
the angular angle between the robot and the target point θi and
the distance between the robot and the target point Di:

),,~(90 ii DddS (6)

The action space A is used for exploring and executing
various actions within a certain range which includes the

robot's angular velocity],[maxmin i and linear velocity

],[maxmin i , where]2,2[],[maxmin with the unit

rad/s,]34.0,0[],[maxmin with the unit m/s. The robot’s

action space A is defined as:

),(iiA (7)

B. Priority Experience Replay

The SAC algorithm uses a random sampling method during
sampling, which cannot ensure repeated sampling of important
samples. Priority Experience Replay technology assigns
different priorities to each sample based on the TD error value,
and samples with higher priorities are more likely to be
extracted. The framework for prioritizing experience replay is
shown in Fig. 3.

Fig. 3. Priority experience replay framework.

The TD error of samples is commonly used to measure the
discrepancy between the actual value and the predicted value.
When the TD error value is large, it may indicate that the
training performance at that particular state is poor. The
learning efficiency can be improved by increasing the
probability of samples with large errors being extracted and
training them for multiple times. TD error δi is defined as:

),(),(max),(11target
1

tttt
a

tti asQasQasr
t

 (8)

In Eq. (8), γ represents the discount factor, Q(st,at) and
Qtarget(st+1,at+1) represent the states value of the critic networks
and the target critic networks, respectively.

The probability of extracting samples from the experience
pool can be expressed as:

n

i

i

i
ip

1

 (9)

In Eq. (9), α parameter is used to control the sample
priority.

During the calculation of TD error in the SAC algorithm,
the impacts of Critic networks, Target Critic networks and
Actor network on the algorithm are different. The addition of
balance parameters to the algorithm can improve the influence
of the strategy network on the total error. The TD
comprehensive error with balance parameters η, σ and φ is:

)()()(target TDQTDQTDi (10)

C. Dynamic Adjustment of Experience Pool

The experience pool is used to store data generated by the
interaction between robot and the environment. The EP-PER-
SAC algorithm dynamically adjusts the capacity of the
experience pool according to the progress of training and the
change of exploration rate. This improved method can
optimize the efficiency and quality of sample utilization, and
save memory resource. The adjustment framework of
experience pool is shown in Fig. 4.

Fig. 4. The adjustment framework of experience pool.

During the training process, the change of the robot's
strategy leads to a variation of the data distribution in the
experience pool. The algorithm dynamically adjusts the
experience pool can ensure that the data in it matches the
current strategy more closely, and can improve the stability of
training. In the early stage of training, the exploration rate is
higher than the exploration utilization rate, and increasing the
experience pool can quickly accumulate experience. In the later
stage of training, the exploration rate decreases, and the robot
needs more refined optimization. Reducing the experience pool
can avoid data over-fitting and improve the effectiveness of the
algorithm.

D. Network Structure

The network input of EP-PER-SAC algorithm includes
obstacle detection data dk from ten directions of the radar,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

994 | P a g e

www.ijacsa.thesai.org

angle θi and distance Di between the robot and the target point.
The network output of the algorithm includes the angular
velocity ωi and the linear velocity vi of the robot. Fig. 5 shows
the network input and output of the EP-PER-SAC algorithm.

Fig. 5. Network input and output of the EP-PER-SAC algorithm.

Fig. 6 shows the network structure of the algorithm. The
algorithm inputs action and state information into the network.
The hidden layer consists of three fully connected layers, and
each fully connected layer contains 512 neuronal nodes. The
activation function in the algorithm network is used to
perform nonlinear transformation to improve the learning
ability. Then, the algorithm samples to obtain specific actions
in the continuous action space. Finally, the network maps
these action values to angular velocity ωi and linear velocity vi,
and sends them to the robot.

Fig. 6. The network structure of EP-PER-SAC algorithm.

E. Design of Reward and Punishment Functions

The reward and punishment function guides robot to
perform appropriate actions in the environment to achieve
specific goals which play a crucial role in the success of the
algorithm.

In the design of the reward and punishment function, the
reward and punishment R1 shows the distance between the
robot and the environment. It controls the distance between the
robot and the obstacle environment, and rewards robots to
approach the target or avoid obstacles for completing path
planning quickly and accurately. The reward and punishment
R2 shows the angle between the robot and the target point. It
adjusts the angle between the robot and the target direction,
encourages the robot to choose the path with the minimum
angle, reduces unnecessary movement, and enhances the target
orientation property. The total reward R consists of reward R1
and reward R2:

21

2

1

4

1

4

1
,

4

1

4

1
,

min,

,

RRR

θorθC

θC

R

cr

cdr
R

okc

dig

 (11)

Where,

rg is the reward value of the robot to reach the target,

rc is the penalty value of the robot to collide with obstacles,

di is the distance from the robot to the target point at this
time,

cd is the minimum range threshold for reaching the target,

mink is the minimum value detected by radar,

co is the minimum safe distance from the obstacle
environment,

C is a positive integer,

θ is the angle value between the robot and the target point.

IV. EXPERIMENTAL TEST AND RESULT ANALYSIS

The improved algorithm is first tested in a simulation
environment under ROS platform. After the algorithm
converges, it is loaded into the robot for real environment
experiments. This research uses Gazebo on the ROS platform
to build the robot running environments of obstacle-free,
discrete obstacles, 1-shaped obstacle, U-shaped obstacle, and
mixed obstacles, respectively. The feasibility of the designed
EP-PER-SAC algorithm is verified by model training, and
compared with the original SAC algorithm and PER-SAC
algorithm (the SAC algorithm combined with Preferential
Empirical Replay). The path planned is projected to Rviz in
which the blue square represents the target point, gray circles
denotes obstacles, and green line means the path trajectory.
The parameters of the experimental model are shown in Table I.

TABLE I. EXPERIMENTAL MODEL PARAMETERS

Parameter Initial value
Attenuation degree factor 0.99

Maximum number of steps per training round 1000

Number of samples per round 256

Strategy network learning rate 0.0003

Q-network learning rate 0.0003

A. Obstacle-free Environment Simulation

Fig. 7 shows the obstacle-free simulation model of 4m×4m
built in Gazebo, with the starting point of the robot set to (-1,0)
and the target point set to (1,0).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

995 | P a g e

www.ijacsa.thesai.org

Fig. 7. Obstacle-free environment in Gazebo.

Fig. 8 shows the results of 300 rounds of simulation
training on three different algorithms in Gazebo, and records
the average reward and punishment return value for each round
of the training. The horizontal axis represents the number of
training rounds, and the vertical axis denotes the average
reward for each round. The results in the graph shows that the
average return value of the EP-PER-SAC algorithm
significantly increases after 35 rounds, with a faster
convergence speed than the original SAC algorithm and PER-
SAC algorithm, and tends to stabilize after 150 rounds.

The paths planned by the converged models of the three
algorithms in Rviz are drawn in Fig. 9 (a), (b), and (c),
respectively. The EP-PER-SAC algorithm has 90 steps in the
path, 94 steps in the PER-SAC algorithm, and 95 steps in the
original SAC algorithm. The improved algorithm has a slightly
shorter path than the other two algorithms.

Fig. 8. Comparison of the average reward in the obstacle-free environment of

the three methods.

(a) EP-PER-SAC (b) PER-SAC (c) SAC

Fig. 9. Path planning of the three algorithms in an obstacle-free environment.

B. Discrete Obstacles Environment Simulation

Fig. 10(a) and (b) shows the Gazebo discrete obstacles
environment and the Rviz projection, respectively.

(a) Gazebo environment (b) Rviz projection

Fig. 10. Discrete obstacles simulation environment.

In this test, the three algorithms are trained for 800 rounds,
respectively, and the average reward and punishment return
value of each round is shown in Fig. 11. The EP-PER-SAC
algorithm has a higher return value than the original SAC
algorithm after 150 rounds. While compared to the PER-SAC
algorithm, the average return of the EP-PER-SAC algorithm
fluctuates less per round, and the probability of the robot
reaching the target point is higher.

The path planning results of the three algorithms in the
discrete obstacles environment are shown in Fig. 12(a), (b) and
(c), respectively. The starting position of the robot is (-1, -1),
and the target point is (1,1). The EP-PER-SAC algorithm takes
102 steps to plan the path, the PER-SAC algorithm is 115
steps, and the SAC algorithm owns 123 steps. The improved
algorithm has a smoother path and shorter length.

Fig. 11. Comparison of the average reward in the discrete obstacles

environment of the three methods.

(a) EP-PER-SAC (b) PER-SAC (c) SAC

Fig. 12. Path planning of the three algorithms in a discrete obstacles

environment.

C. Special Obstacles Environment Simulation

Fig. 13 and 14 represent two special obstacles environment,
1-shaped and U-shaped, respectively. The starting point in the
1-shaped environment is (-1.5,0), and the target point is (1.5,0).
In the U-shaped environment, the starting point is set to (-1,0)
and the ending point is set to (1,0).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

996 | P a g e

www.ijacsa.thesai.org

(a) Gazebo environment (b) Rviz projection

Fig. 13. The 1-shaped obstacle simulation environment.

(a) Gazebo environment (b) Rviz projection

Fig. 14. The U-shaped obstacle simulation environment.

Fig. 15 and 16 show the planned paths of the three
algorithms in the 1-shaped and U-shaped environment,
respectively. In the 1-shaped obstacle environment, the EP-
PER-SAC algorithm, the PER-SAC algorithm and the SAC
algorithm take 138 steps, 142 steps and 146 steps, respectively.
While in the U-shaped environment, the planned path of the
three algorithms owns 131 steps, 140 steps and 143 steps,
respectively. The improved algorithm can navigate around the
special obstacles environment faster and the planned path
length is shorter in both environments.

(a) EP-PER-SAC (b) PER-SAC (c) SAC

Fig. 15. Path planning of the three algorithms in the 1-shaped obstacles

environment.

(a) EP-PER-SAC (b) PER-SAC (c) SAC

Fig. 16. Path planning of the three algorithms in the U-shaped obstacles

environment.

D. Simulation of Mixed Obstacles Environment

Fig. 17 represents a mixed obstacles environment of
6m×6m in Gazebo. The environment consists of discrete
obstacles, 1-shaped and U-shaped obstacles, with the starting
point set to (-2, 2), and the target point being (2,-2).

(a) Gazebo environment (b) Rviz projection

Fig. 17. The mixed obstacles environment 1.

Fig. 18 represents the planned paths of the three algorithms
in the mixed obstacles environment 1. Compared with the
original SAC algorithm and the PER-SAC algorithm, the EP-
PER-SAC algorithm has a shorter path length and it is easier to
pass through complex obstacles, which has a significant effect.
The planning steps of the EP-PER-SAC algorithm is 194 steps,
while PER-SAC algorithm is 217 steps and the original
algorithm is 244 steps.

(a) EP-PER-SAC (b) PER-SAC (c) SAC

Fig. 18. Path planning of the three algorithms in the mixed obstacles

environment 1.

In order to further verify the feasibility and universality of
the convergence algorithm, the algorithm is tested again in a
mixed obstacles environment 2, as shown in Fig. 19. The
starting point is set to (-2,2), and the target point is set to (2,0)

(a) Gazebo environment (b) Rviz projection

Fig. 19. The mixed obstacles environment 2.

The converged model is loaded into the mixed obstacles
environment 2, and the path results planned by the three
algorithms are shown in Fig. 20. The path steps planned by the
EP-PER-SAC algorithm is 199 steps, while the other two

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

997 | P a g e

www.ijacsa.thesai.org

algorithms use 238 and 286 steps by the PER-SAC algorithm
and SAC algorithm, respectively. The EP-PER-SAC algorithm
still has a shorter path length, which can better avoid obstacles
and verify the effectiveness of the algorithm.

(a) EP-PER-SAC (b) PER-SAC (c) SAC

Fig. 20. Path planning of the three algorithms in the mixed obstacles

environment 2.

E. Comparison of Experimental Results

Through the experimental results in the aforementioned
simulation environments, the EP-PER-SAC algorithm is
compared with the SAC algorithm and the PER-SAC
algorithm. The feasibility and performance advantages of the
designed EP-PER-SAC algorithm have been verified. In
different simulation environments, the paths planned by the
EP-PER-SAC algorithm are smoother and converge faster than
those planned by the SAC algorithm and the PER-SAC
algorithm.

The number of steps taken by the three algorithms in
different simulation environments are compared in the bar
chart, as shown in Fig. 21. From the graph, it can be seen more
clearly that the EP-PER-SAC algorithm has fewer steps than
the SAC algorithm and the PER-SAC algorithm in any
obstacles environment.

Fig. 21. Comparison of path lengths of the three algorithms in different

running environments.

F. Experiments in Real Environment

This research applies three algorithms to mobile robot
based on the ROS platform, and performs path planning tasks
in a real environment to verify the performance of the
improved algorithm. The Gmapping algorithm is used to
construct a two-dimensional laboratory environment map. In
order to test the real-time planning ability of the algorithm,

temporary unknown obstacles are added in laboratory
environment. Fig. 22 shows the laboratory environment and
laboratory map model.

(a) Laboratory environment (b) Laboratory map model

Fig. 22. Laboratory environment.

Fig. 23 shows the laboratory environment with temporary
obstacles and laboratory map model with temporary obstacles.
The radar sensors detect obstacles information and provide
real-time feedback, and achieve self-localization through the
AMCL (Adaptive Monte Carlo Localization) module.

(a) Laboratory environment (b) Laboratory map model

Fig. 23. Laboratory environment with temporary obstacles.

The robot plans a collision-free path from the starting point
to the target point, and visualizes the paths planned by the three
algorithms in Rviz to verify the real-time obstacle avoidance
ability of the algorithms. Fig. 24(a), (b) and (c) show the
planned path by the EP-PER-SAC algorithm, PER-SAC
algorithm, and the SAC algorithm, respectively. In the real
environment, the path lengths of the three algorithms are 5.562
meters, 6.159 meters, and 6.965 meters, respectively.
Compared with PER-SAC and SAC algorithms, EP-PER-SAC
algorithm has a shorter path length and smoother path during
obstacle avoidance. The experiments indicate that the path
planned by the proposed algorithm is feasible and effective in
both the simulation environment and the real environment, and
the performance is better than the original SAC algorithm and
PER-SAC algorithm.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

998 | P a g e

www.ijacsa.thesai.org

(a) EP-PER-SAC algorithm (b) PER-SAC algorithm

(c) SAC algorithm

Fig. 24. Paths planned by the three algorithms in laboratory environment.

V. CONCLUSION

This research improves the original SAC algorithm and
proposes the EP-PER-SAC algorithm based on the Priority
Experience Replay and dynamic adjustment of experience
pool. Simulation comparisons and real environment
experiments are made with the original SAC and PER-SAC
algorithms in specific environments to verify that the improved
algorithm can reach the target point faster and more efficiently.
The improved EP-PER-SAC algorithm has the following
characteristics:

1) The Priority Experience Replay technology is added to

improve the sampling probability of important samples, and

improve the convergence speed and effectiveness of the

algorithm.

2) According to the comparison of exploration rate and

exploration-utilization rate in the training process, the

experience pool is dynamically adjusted to avoid over-fitting

of the model and improve the stability of the algorithm.

The improved algorithm has certain practical applications
in the field of mobile robots, such as autonomous vehicles,
warehouse automation, and service robots working in the
unknown environment. We can download the improved
algorithm to the controller of a mobile robot. According to the
instructions of the algorithm, the robot can perceive the
environment in real time, autonomously avoid obstacles and
reach the designated target through the optimal path,
completing the given transportation task.

However, the improved algorithm is relatively simple and
rigid in evaluating the effect of adjusting the method in the
experience rules, which may lead to bias in the information
obtained from training. The next step of research will consider
conducting more complex and diverse evaluations of the
adjustment performance in the experience rules, which can
enhance the algorithm's adaptability to more complex
environments and enable robots to better perform path
planning.

ACKNOWLEDGMENT

This work was supported by the Natural Science
Foundation of Shandong Province, China (Nos.
ZR2023MF015 and ZR2021MF072) and the National Natural
Science Foundation of China (Nos. 61973184 and 61473179).

REFERENCES

[1] Z. S. Wu and W. P. Fu, “A review of path planning method for mobile
robot,” Advanced Materials Research, vol. 1030, pp. 1588-1591, 2014.

[2] Z. Deng and D. Wang, “Research on parking path planing based on a-star
algorithm.” Journal of New Media, vol. 5, no. 1, 2023.

[3] H. Jiang and Y. Sun, “Research on global path planning of electric
disinfection vehicle based on improved a* algorithm,” Energy Reports,
vol. 7, pp. 1270-1279, 2021.

[4] P. Wang, S. Gao, L. Li, B. Sun and S. Cheng, “Obstacle avoidance path
planning design for autonomous driving vehicles based on an improved
artificial potential field algorithm,” Energies, vol. 12, no. 12, p. 2342,
2019.

[5] T. Gao, J. Wang, Z. Wang, W. Chen, G. Chen and S. Zhang, “Research
on path planning of mobile robot with a novel improved artificial
potential field algorithm,” Mathematical Problems in Engineering, vol.
2022, 2022.

[6] X. Li, “Path planning of intelligent mobile robot based on dijkstra
algorithm,” in Journal of Physics: Conference Series, vol. 2083, no. 4,
IOP Publishing, 2021, p. 042034.

[7] P. G. Luan and N. T. Thinh, “Hybrid genetic algorithm based smooth
global-path planning for a mobile robot,” Mechanics Based Design of
Structures and Machines, vol. 51, no. 3, pp. 1758-1774, 2023.

[8] H. Gao, S. Lu and T. Wang, “Motion path planning of 6-dof industrial
robot based on fuzzy control algorithm,” Journal of Intelligent & Fuzzy
Systems, vol. 38, no. 4, pp. 3773-3782, 2020.

[9] Y. Tan, J. Ouyang, Z. Zhang, Y. Lao and P. Wen, “Path planning for spot
welding robots based on improved ant colony algorithm,” Robotica, vol.
41, no. 3, pp. 926-938, 2023.

[10] K. Shi, L. Huang, D. Jiang, Y. Sun, X. Tong, Y. Xie and Z. Fang, “Path
planning optimization of intelligent vehicle based on improved genetic
and ant colony hybrid algorithm,” Frontiers in Bioengineering and
Biotechnology, vol. 10, p. 905983, 2022.

[11] W. Zhang and G. Wang, “Reinforcement learning-based continuous
action space path planning method for mobile robots,” Journal of
Robotics, vol. 2022, 2022.

[12] Y. Xu, “Research on reinforcement learning algorithm for path planning
of multiple mobile robots,” in Journal of Physics: Conference Series, vol.
1915, no. 4. IOP Publishing, 2021, p. 042022.

[13] H. Meng and H. Zhang, “Mobile robot path planning method based on
deep reinforcement learning algorithm,” Journal of Circuits, Systems and
Computers, vol. 31, no. 15, p. 2250258, 2022.

[14] W. Lan, X. Jin, X. Chang, T. Wang, H. Zhou, W. Tian and L. Zhou,
“Path planning for underwater gliders in time-varying ocean current using
deep reinforcement learning,” Ocean Engineering, vol. 262, p. 112226,
2022.

[15] P. Wang, J. Qin, J. Li, M. Wu, S. Zhou and L. Feng, “Optimal
transshipment route planning method based on deep learning for
multimodal transport scenarios,” Electronics, vol. 12, no. 2, p. 417, 2023.

[16] H. Gong, P. Wang, C. Ni and N. Cheng, “Efficient path planning for
mobile robot based on deep deterministic policy gradient,” Sensors, vol.
22, no. 9, p. 3579, 2022.

[17] P. Li, X. Ding, H. Sun, S. Zhao and R. Cajo, “Research on dynamic path
planning of mobile robot based on improved ddpg algorithm,” Mobile
Information Systems, vol. 2021, pp. 1-10, 2021.

[18] D. Zahng, Z. Xuan, Y. Zhang, J. Yao, X. Li and X. Li, “Path planning of
unmanned aerial vehicle in complex environments based on state-
detection twin delayed deep deterministic policy gradient,” Machines,
vol. 11, no. 1, p. 108, 2023.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

999 | P a g e

www.ijacsa.thesai.org

[19] D. Silver, G. Lever, N. Heess, T. Degris, D. Wierstra and M. Riedmiller,
“Deterministic policy gradient algorithms,” in International conference on
machine learning, Pmlr, 2014, pp. 387-395.

[20] T. P. Lillicrap, J. J. Hunt, A. Pritzel, N. Heess, T. Erez, Y. Tassa, D.
Silver and D. Wierstra, “Continuous control with deep reinforcement
learning,” US Patent, vol. 15, no. 217,758, 2020.

[21] S. Fujimoto, H. Hoof, and D. Meger, “Addressing function approximation
error in actor-critic methods,” in International conference on machine
learning. PMLR, 2018, pp. 1587-1596.

[22] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, “Soft actor-critic: off-
policy maximum entropy deep reinforcement learning with a stochastic

actor,” in International conference on machine learning. PMLR, 2018, pp.
1861-1870.

[23] Y. Zhou, J. Shu, H. Hao, H. Song and X. Lai, “Uav 3d online track
planning based on improved sac algorithm,” Journal of the Brazilian
Society of Mechanical Sciences and Engineering, vol. 46, no. 1, p. 12,
2024.

[24] T. Haarnoja, A. Zhou, P. Abbeel and S. Levine, “Soft actor-critic: off-
policy maximum entropy deep reinforcement learning with a stochastic
actor,” in International conference on machine learning. PMLR, 2018, pp.
1861-1870.

