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Abstract—Automatic music generation represents a 

challenging task within the field of artificial intelligence, aiming to 

harness machine learning techniques to compose music that is 

appreciable by humans. In this context, we introduce a text-based 

music data representation method that bridges the gap for the 

application of large text-generation models in music creation. 

Addressing the characteristics of music such as smaller note 

dimensionality and longer length, we employed a deep generative 

adversarial network model based on music measures (MT-CHSE-

GAN). This model integrates paragraph text generation methods, 

improves the quality and efficiency of music melody generation 

through measure-wise processing and channel attention 

mechanisms. The MT-CHSE-GAN model provides a novel 

framework for music data processing and generation, offering an 

effective solution to the problem of long-sequence music 

generation. To comprehensively evaluate the quality of the 

generated music, we used accuracy, loss rate, and music theory 

knowledge as evaluation metrics and compared our model with 

other music generation models. Experimental results demonstrate 

our method's significant advantages in music generation quality. 

Despite progress in the field of automatic music generation, its 

application still faces challenges, particularly in terms of 

quantitative evaluation metrics and the breadth of model 

applications. Future research will continue to explore expanding 

the model's application scope, enriching evaluation methods, and 

further improving the quality and expressiveness of the generated 

music. This study not only advances the development of music 

generation technology but also provides valuable experience and 

insights for research in related fields. 

Keywords—Deep learning; style transfer; innovative 

composition; Generative Adversarial Networks 

I. INTRODUCTION 

Music, as one of the greatest inventions in human history, 
not only serves as a medium for cultural expression but also 
represents a cultural industry with tremendous potential for 
growth [1]. In recent years, with the rapid development of digital 
technology [2] [3] [4], the music industry is undergoing 
profound changes. As society's demand for music continues to 
expand, diversified music creation has become an inevitable 
trend. The demand for higher-quality music creation is evident 
in everything from the background music for short videos to the 
theme songs for movies and TV shows. However, traditional 
music composition methods, constrained by the need for 
specialized knowledge of music theory and instrumental skills, 
cannot meet the growing market demand. Against this backdrop, 
the use of computers to aid music composition and achieve 
automated music generation has emerged as a new research 
frontier. 

Automatic music generation is a product of the intersection 
of information science and art studies, aimed at minimizing 
human intervention in computer-aided music composition [5]. It 
is not only a significant part of multimedia research but also a 
hot topic in artificial intelligence. Researchers are working on 
how to generate music that has both a clear style and conforms 
to audience aesthetics, delving into the deep connections behind 
music data. Therefore, an in-depth mining and analysis of music 
data features have significant theoretical and practical 
significance [6]. It can enrich the methods for generating music 
datasets and help build efficient music generation models, 
reducing the burden of manual composition and offering the 
possibility of music creation for non-professionals. By 
establishing objective music evaluation models, we can 
scientifically measure the quality and style consistency of 
automatically generated music. 

Identifying the structure and style of music is core to the field 
of music generation. To track the development of elements such 
as melody, harmony, and rhythm, and to provide valuable 
information for music composition and automatic generation, 
advanced data processing techniques and algorithms are 
required. Although modern music generation technologies can 
create music in various styles, their application in automated 
composition and arrangement is still insufficient to capture the 
full complexity of music creation. 

In the application of music generation, we need to optimize 
algorithms to generate music segments that are coherent and 
consistent in style. Considering the complexity of melody and 
harmony, the diversity of musical styles, and the uncertainty of 
melodic lines and harmonic progressions, we must enhance the 
algorithm's fitting ability to address these challenges. To this 
end, we attempt to introduce structures similar to squeeze-and-
excitation models into music generation networks, forming a 
music generation model with feature extraction capabilities. 
Additionally, we incorporate attention mechanisms based on 
batch normalization, such as channel attention modules. Music 
generation models can draw inspiration from the Swin 
Transformer structure, introducing Swin Blocks to capture the 
long-range dependencies of music data and better extract deep 
music features. 

II. LITERATURE REVIEW 

This article will collect existing work in the field of 
automated music composition to highlight the shortcomings of 
current research. 
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A. Traditional Music Generation Methods 

Over time, the field of music generation has experienced 
significant development, with early algorithms laying the 
groundwork for more complex systems. The earliest models of 
music generation operated on random principles within fixed 
parameters such as pitch, duration, and rhythm, often resulting 
in melodies lacking in musical coherence and artistic intent. The 
advent of sequence modeling algorithms marked a turning point 
in traditional automated music generation methods. These 
methods often rely on statistical probability methods such as 
Markov models, introducing a more structured composition 
technique that uses Markov chains and stochastic processes to 
predict future outcomes, greatly reducing the randomness 
problems in early music generation efforts [7]. 

David Cope's "Experiments in Musical Intelligence" (EMI) 
combined music language models by identifying repetitive 
structures in composers' works and reusing these patterns in new 
arrangements [8], thus generating music of a similar style. This 
method further demonstrated the potential of using Markov 
models and N-gram methods to create music in different styles 
[9] [10] [11]. Subsequently, Bretan and others [12] proposed a 
method based on the similarity ranking of musical fragments and 
the combination of new musical fragments to create new works 
from existing pieces. On the other hand, Pachet and others [13] 
introduced a method that uses chords to guide the selection of 
melodies. These techniques rely on the feature parameters of 
musical sequence data, using sequence models to achieve the 
desired musical output through signal reconstruction theory. 

Despite progress, traditional probabilistic models such as 
Markov chains have a significant limitation: they can only 
generate subsequences that already exist in the training dataset. 
In areas where innovation and creativity are crucial, these 
algorithms inherently lack the ability to generate truly novel and 
creative content. Developing music generation systems that can 
not only replicate but also innovate and further push the 
boundaries of musical computational creativity remains a 
challenge. 

B. Deep Learning Generation Methods 

The template is used to format your paper and style the text. 
All margins, column widths, line spaces, and text fonts are 
prescribed; please do not alter them. You may note peculiarities. 
For example, the head margin in this template measures 
proportionately more than is customary. This measurement and 
others are deliberate, using specifications that anticipate your 
paper as one part of the entire proceedings, and not as an 
independent document. Please do not revise any of the current 
designations. 

In recent years, the rapid development of deep learning 
technology has made breakthrough progress in multiple fields, 
especially in the processing of sequential data such as computer 
vision, speech recognition, and natural language processing, 
sparking intense interest in the application of deep learning in 
the field of music generation. 

In the research of automated music generation, Mangal and 
others [14] used Long Short-Term Memory networks (LSTM) 
and Recurrent Temporal Restricted Boltzmann Machines 
(RTRBM) models, achieving certain results. Johnson [15] 

explored new paths for polyphonic music generation through the 
CharRNN model. Nayebi [16] used Recurrent Neural Networks 
(RNN) to generate music based on MIDI files. 

In the exploration of generating more complex music 
sequences, Franklin [17] proposed using RNNs to represent the 
possibility of multiple notes sounding simultaneously. 
Additionally, Huang's team [18] proposed a new music 
generation framework based on Deep Belief Networks (DBN). 
Hadjeres and others [19] used an RNN model combined with 
Gibbs sampling techniques to successfully generate multi-part 
gospel music. 

On a different path from RNN models, Sabathe and others 
[20] introduced Variational Autoencoders (VAEs) to generate 
music by learning the distribution of music fragments. 
Concurrently, researchers like Yang, Mogren, and others [21] 
used Generative Adversarial Networks (GANs) to compose 
music, a method that takes random noise as input to produce new 
melodic sequences. 

Overall, the application of deep learning in music generation 
is in rapid development, with different deep learning models 
continually pushing the limits of music generation technology. 
Despite many challenges, deep learning models have already 
shown great potential in imitation, innovation, and exploring the 
complex structure of music. With the deepening of research and 
the maturity of technology, future music generation systems are 
expected to become more intelligent, creating a richer and more 
diverse range of musical works. 

C. Research Gaps 

Although the field of music generation has made a series of 
advancements, there are still important gaps in existing research. 
There are several key musical elements that have not been fully 
considered in the generation process, such as the duration of 
notes, the handling of rests, the diversity of musical styles, and 
the musical formats of input models. Based on this, future 
research needs to address the following issues: 

1) Limitations of Probabilistic Models in Music 
Generation: The traditional probabilistic models currently in use 
have some feasibility in music generation, but due to the 
diversity and evolution of music, these models may not be able 
to adapt to new musical trends in a timely manner. Moreover, 
building effective probabilistic models requires a deep 
foundation in musical theory. Traditional methods also rely on a 
lot of manual feature design and extraction, leading to low 
efficiency and a large workload. 

2) Lack of Uniformity in Music Data Preprocessing: 
Currently, there is no unified standard for music data 
preprocessing methods, resulting in different studies adopting 
their own methods, such as music generation methods based on 
variational autoencoders and melody algorithms based on digital 
signal processing. These methods often neglect the rhythmic 
nature of music, such as the length of notes and pauses. Even in 
generation models that consider both melody and rhythm, there 
are problems with the compatibility of pitch and rhythm during 
training. This lack of standardized representation hinders the 
universality and compatibility between different music 
generation methods. 
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3) Limitations of Deep Learning Models in Music 
Generation: While deep learning models such as LSTM have 
shown potential in music generation, they usually cannot 
generate long-term melodic sequences. Existing large text 
generation models, such as BERT and GPT-2, perform 
excellently in text generation but face data representation issues 
when directly applied to music generation. Due to the 
fundamental differences between music signal representation 
and text, existing language generation models cannot be directly 
applied to music generation. 

In summary, future research needs to develop new models 
and techniques to address these challenges in music generation, 
to truly enhance the novelty of musical composition and the 
acceptance of the audience. 

III. AUTOMATIC MUSIC GENERATION METHODS BASED ON 

GENERATIVE ADVERSARIAL NETWORKS 

Music generation has been achieved using the CHSE-GAN 
model based on the segmentation of music text into measures. 
The current state of research is first elucidated, followed by an 
introduction to GAN networks, and then music segments are 
generated using the segmentation of music text into measures. 
Finally, this method's potential in music generation is described 
by comparing it with other generation models in terms of loss 
rate, accuracy, and other indicators. 

A. Model Introduction 

In the contemporary field of music composition, deep 
learning technologies such as Convolutional Neural Networks 
(CNNs) and Generative Adversarial Networks (GANs) have 
begun to be explored for constructing musical works. With their 
advanced data processing capabilities, they exhibit notable 
creative potential. 

Generative Adversarial Networks (GANs) are a unique 
unsupervised learning framework, designed around the concept 
of two neural networks contesting with each other to promote 
the learning process. The generator network (G) is responsible 
for transforming a random noise vector z into the data space, 
simulating samples from the real data distribution. Meanwhile, 
the discriminator network (D) has the task of outputting a scalar 
value, predicting whether a given sample is from the real data 
distribution or produced by the generator G. 

These two networks compete with each other during 
training, adjusting their parameters to enhance their own 
performance: the generator G tries to produce more realistic 
data, while the discriminator D strives to more accurately 
distinguish between real and generated data. This adversarial 
training process can be viewed as a minimax game where both 
the generator and discriminator have their own objective 
functions, which are in opposition to each other. They evolve 
together until a dynamic equilibrium is reached. 

min
𝐺
 max
𝐷

 𝑉(𝐷, 𝐺) = Ex∼𝑝(𝑥)[log𝐷(𝑥)] + Ez∼𝑝𝑧[1 −

log(𝐷(𝐺(z))]

In this, 𝑃𝑑𝑎𝑡𝑎 represents the distribution of real data x, and 
𝑃𝑧  denotes the prior distribution of z. Nevertheless, the 
application of GANs in music composition is still at an 
exploratory stage, and this method still shows limitations in 
capturing the complex interactions of musical elements in time 
and space. Compared to the short sequences generated in text, 
music composition deals with much longer time series, which 
makes it difficult for the network to grasp the profound 
connections between sequences during learning. 

In view of this, this study adopted the CHSE-GAN model, 
which is designed under the influence of GAN concepts, for 
music composition. The model combines a discriminator and a 
generator, and specifically, allows the discriminator to pass 
feature information to the generator, supporting the generator to 
learn and understand data of longer time series, which to some 
extent eases the challenge of dealing with complex musical 
structures. This paper will first provide an overview of the 
foundations of Generative Adversarial Networks, followed by 
an in-depth discussion of the structure and functions of the 
CHSE-GAN model. 

B. CHSE-GAN Music Generation Method 

In this section, we introduce the CHSE-GAN (Channel 
Attention and Squeeze-Excitation based Generative Adversarial 
Networks), which is specially designed for music generation. Its 
network structure has been adjusted to suit the characteristics of 
music data, as shown in Fig. 1. Based on CycleGAN, CHSE-
GAN has made the following improvements to enhance its 
application in the field of music composition: 

Introduced a channel attention mechanism based on batch 
normalization, NAM (ch). Traditional channel attention 
methods calculate weights through complex network structures, 
which may not be sufficient to capture the complex patterns in 
music. By extracting the scaling factors from batch 
normalization as channel attention weights, we can effectively 
distribute weights to features within the network without 
increasing network complexity and extra parameters, thereby 
strengthening the focus on important musical features. 

Music features often have rich hierarchical levels and subtle 
dynamic changes, thus a single feature extraction structure may 
not capture them adequately. CHSE-GAN introduces a Squeeze-
Excitation (SE) attention mechanism into the residual network 
to form a new Res-SE module. Combined with the channel 
attention mechanism based on batch normalization, it creates a 
new backbone network for feature extraction, enhancing the 
generator's perception of complex musical structures and details, 
and improving the capture of musical features. 

As shown in Fig. 2, the generator network structure of 
CHSE-GAN consists of three main parts: downsampling, the 
backbone network, and upsampling. Specifics are as follows: 

Downsampling part: Three downsampling operations using 
convolutional layers with a stride of 2 are performed to expand 
the receptive field and reduce dimensions. The first layer uses a 
64-dimensional 7×7 convolution kernel to capture a broader 
range of musical structure information. 
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Fig. 1. Network structure diagram based on CHSE-GAN music generation.
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Fig. 2. Schematic diagram of the network structure of the CHSE-GAN 

algorithm generator. 

Backbone network: Consists of NAM(ch) and the new Res-
SE modules, which, through a combination of Squeeze-
Excitation attention and channel attention based on batch 
normalization, enhance the extraction and expression 
capabilities for musical features. 

Upsampling network: After extracting deep features, the SE 
module adjusts the output of the convolution from the backbone 
network, then NAM(ch) redistributes channel weights after each 
residual block. Upsampling is constructed using 
deconvolutional layers, with batch normalization and ReLU 
activation functions applied after each layer to restore the data 
to the original spatial dimensions of the musical signal. 

With this carefully designed network structure, CHSE-GAN 
can generate music works that are rich in expressiveness and 
dynamism, providing a powerful tool for automated music 
composition and style transformation. 

1) Batch Normalization-based Channel-wise Attention: In 
deep learning models for music generation, it is crucial to 
effectively utilize the time-frequency features in music signals. 
To enhance the ability to extract these deep features, we can 
adopt an attention mechanism based on batch normalization. 
This mechanism can reinforce the model's focus on important 
parts of music features, thereby improving the quality of music 
generation. Batch Normalization is commonly used in deep 

learning to speed up the training process and improve model 
performance. In music generation models, we can use the 
statistical parameters obtained during the batch normalization 
process to calculate channel attention. Specifically, the 
parameters of batch normalization are used not only for feature 
normalization but can also serve as weight information to adjust 
feature mappings on different channels. This method is known 
as the Normalization-based Attention Module (NAM). 

For instance, we can design an NAM(ch) module to 
adaptively readjust the feature weights on each channel without 
adding extra network parameters. The NAM(ch) module can be 
placed after each part of the residual network structure to 
enhance the fine expression of musical spectral features. The 
computational flowchart of NAM(ch) is shown in Fig. 3, where 
ω_i represents the weights, and γ_i represents the scaling factors 
for each channel. The pseudo-code for the batch normalization-
based channel attention algorithm is as follows. 

Algorithm 1: Channel Attention Algorithm Based on Batch 
Normalization 

Initialize  

Step 1: 𝜇ℬ ←
1

𝑚
∑𝑖=1
𝑚  𝑥𝑖  

Step 2: 𝜎ℬ
2 ←

1

𝑚
∑𝑖=1
𝑚  (𝑥𝑖 − 𝜇ℬ)

2 

Step 3: 𝑥𝑖ˆ ←
𝑥𝑖−𝜇ℬ

√𝜎ℬ
2+𝜖

 

Step 4: 𝑦𝑖 ← 𝛾�̂�𝑖 + 𝛽 = BN𝛾,𝛽(𝑥𝑖) 

Step 5: 𝜔i =
𝛾𝑖

∑𝑗=0  𝛾𝑗
  

Step 6: 𝑀𝑆 = Sigmoid(𝜔𝑖 × 𝑦𝑖) 

B = BN(B) = 𝛾
B−𝜇B

√𝜎B
2+𝜀

+ 𝛽𝜔i =
𝛾𝑖

∑  𝑗=0  𝛾j


2) Res-SE Module Based on Residual Blocks and Squeeze-
and-Excitation Attention: In music generation models, the Res-
SE module, which combines residual blocks and squeeze-and-
excitation attention mechanisms, has been proven to 
significantly enhance the representational capacity of music 
features. The design of this structure is inspired by successful 
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experiences in the field of image processing, but it has been 
optimized for the characteristics of music data. 

Input features

γ0

γ1

γ2

 

γn

Ψ0

Ψ1

Ψ2

 

Ψn 

BN Weight

Sigmoid

Output features  

Fig. 3. Schematic diagram of batch normalization channel attention 

calculation structure in CHSE-GAN. 

As shown in Fig. 4, taking music signal processing as an 
example, suppose we have an input with a time-frequency 
representation of size 256×64×64, which represents 256 
channels, each with 64 time steps and 64 frequency components. 
The input first goes through two layers of convolution, batch 
normalization, and ReLU activation function, and then it is 
divided into two branches: 

i. The first branch is passed through directly without 

processing to preserve the original features of the music signal. 

ii. The second branch is enhanced through an SE 

(Squeeze-and-Excitation) module. This module first employs a 

global average pooling operation to "squeeze" each channel, 

reducing the 64×64 feature map of each channel to a single 

scalar to capture the global contextual information. 

256*64*64

Conv2d (k=3*3,s=1,p=1) 256*64*64

BatchNorm+Relu

Conv2d (k=3*3,s=1,p=1)

BatchNorm+Relu

256*64*64

Global pooling

Fc+relu

Fc+relu

LinerNorm

SigmoidX

+
256*64*64

256*64*64

256*1*1

256*1*1

256*1*1

 

Fig. 4. Schematic diagram of Res-SE network structure in CHSE-GAN. 

Next, this global information is processed through two layers 
of fully connected layers, which include ReLU activation 
functions, to capture the inter-channel dependencies and 
generate a weight for each channel. These weights are further 
transformed through a Sigmoid activation function to obtain the 
final weights for each channel, which determine which channels 
are important. 

Finally, we multiply these weights by the original input to 
recalibrate the features. This process allows the model to 

emphasize those channel features that are important for music 
generation while suppressing the less important parts. 

IV. AUTOMATIC MUSIC GENERATION METHODS BASED ON 

GENERATIVE ADVERSARIAL NETWORKS 

This section will validate the effectiveness of the proposed 
method based on a self-made experimental dataset. 

A. Experimental Environment 

The hardware environment for the experiments in this 
chapter is shown in Table I: 

TABLE I. EXPERIMENTAL SOFTWARE AND HARDWARE ENVIRONMENT 

CPU  Intel i7 8700k 

GPU  GTX 3080 

Memory 32G 

Operating System  Ubuntu 18.04 

CUDA  11.1 

Main Frameworks  Pytorch, Keras 

Main Programming Language  Python 3.6 

To explore the automatic generation of pop music, this study 
has selected the widely popular POP909 music dataset as the 
training resource. The characteristic of the POP909 dataset is the 
clear division of its melody tracks, making the melodies easy to 
extract and process separately. The preprocessing of music data 
adopted the method introduced in Chapter 3, converting MIDI 
files into text format, with the help of the music21 toolkit in the 
Python platform. 

The experimental part designed four different studies to 
comprehensively evaluate music generation performance. These 
four areas are: comparison of music generation effects at 
different tempos, performance comparison of various music 
generation models, comparison of the quality of generation with 
other algorithms, and evaluation using the music evaluation 
model introduced in Chapter 6. By analyzing the results of 
different tempos, the comprehensive performance of the MT-
CHSE-GAN network can be assessed, and its applicability for 
generating different types of music can be determined. 
Compared with algorithms such as Rank-GAN and Seq-GAN, 
this study aims to verify the advantages of MT-CHSE-GAN in 
the field of music composition. Finally, based on the evaluation 
model in Chapter 6, the music generated by MT-CHSE-GAN is 
compared and analyzed with real music samples, melodies 
produced by LSTM networks, and MT-GPT-2 networks, to 
examine from a more objective perspective whether the MT-
CHSE-GAN network can meet the standards of real music 
melody generation. 

B. Experiment 

After a series of in-depth training, the innovative CHSE-
GAN model we used, which is based on bar segmentation, 
successfully created numerous musical works. By careful 
listening tests, we noticed that most of these works exhibit 
smooth and pleasant characteristics. To give everyone an 
intuitive feeling, we randomly selected some sample fragments 
to showcase this achievement. Before that, it should be noted 
that since this work adopted a way of expressing music as text, 
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all generated music works initially exist in text form. To convert 
these text data into audible music, we used the music21 toolkit 
under the Python environment to achieve the transformation 
from text to MIDI format. Subsequently, we used MusicScore 3 
software to open it in the form of a score for a more detailed 
display, with the specific effects shown in Fig. 5. 

 

 

Fig. 5. Generated fragment display. 

During the model training, the accuracy of the model was 
recorded, as shown in Fig. 6 below. 

 

Fig. 6. Model accuracy curve. 

The changes in loss rate are shown in Fig. 7 below. 

 

Fig. 7. Model loss rate curve. 

As can be seen from the figures above, the MT-CHSE-GAN 
model, which used adversarial pre-training, reached 
convergence quickly with both the accuracy rate and loss values 
stabilizing around 100 epochs. 

1) Comparison of Music Generation at Different Tempos 

By training the model with pop music at different tempos, 
the following generated music was obtained, as shown in Fig. 8. 

 
CHSE-GAN Slow Tempo Generation Example 

 
CHSE-GAN Fast Tempo Generation Example 1 

Fig. 8. MT- CHSE-GAN generates fast and slow music comparisons. 

In the examples shown in Fig. 8, we can see that the two slow 
tempo music segments on the left were generated by the MT-
CHSE-GAN after training, while the two fast tempo segments 
on the right also used the MT-CHSE-GAN model. Although the 
slow tempo music has a pleasant melody, there is a minor issue: 
some notes are repeated too often, as indicated by the red box in 
the figure (a note's duration exceeds one measure). In contrast, 
the fast tempo segments avoid this issue; their melodies progress 
in a stepwise fashion, with a clear rhythm, as shown by the notes 
marked with a blue box. From this comparison, we can observe 
that in the generation of slow tempo music, the model still has 
room for improvement in handling long-duration notes, while in 
the generation of fast tempo music, the model performs 
relatively well. 

2) Comparison of Music Generation for Different Models 

Next, we compared the music generated by different models 
(see Fig. 9). From top to bottom, the figure sequentially shows 
music segments generated by the MT-CHSE-GAN, Rank-GAN, 
and Seq-GAN networks. As indicated by the pink arrows in the 
figure, the melody segments generated by the MT-CHSE-GAN 
and Seq-GAN networks show clear high and low fluctuations, 
with most of the melodic changes revolving around the theme 
pitch and returning to the theme pitch at the end, which is 
consistent with the melodic development pattern of pop music. 

On the other hand, the music segment generated by the 
Rank-GAN network shows an overall descending trend, with the 
melody starting high and gradually descending. This type of 
melodic structure is often inconsistent with the typical 
composition of pop music and may give a sense of oppression 
and unease. This indicates that, in handling long sequence 
melodies, the MT-CHSE-GAN and Seq-GAN networks have 
better generative effects compared to the Rank-GAN network. 

After an in-depth analysis of three different music melody 
generation models, we specifically observed the characteristics 
of note changes, especially the melody parts marked with yellow 
boxes in the figures. The melody fragments produced by the 
MT-CHSE-GAN network exhibit gentle note changes, with 
melodies that are smooth and orderly, rhythmically fluctuating 
around the tonic. In contrast, the melodies produced by the 
Rank-GAN and Seq-GAN networks (also marked with yellow 
boxes) show more dramatic note changes, sometimes with 
jumps between notes approaching an octave. Such abrupt 
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melodic changes may seem jarring and not quite in line with the 
conventions of pop music composition. 

 
CHSE-GAN Example  

 
Rank-GAN Example 

 
Seq-GAN Example 

Fig. 9. Generate samples for each model. 

In evaluating the generated music, we scored several key 
aspects based on music theory, including the harmony of the 
melody, the logical coherence of the melody, the contour of the 
melody, and the tonality of the melody. We had the MT-CHSE-
GAN, Rank-GAN, and Seq-GAN networks each generate 10 
pieces of music, scored them, and calculated the average score 
for each item (out of a possible 10 points). The scoring results 
are summarized in the Table II shown below. 

TABLE II. MELODY THEORY SCORE 

 
Melody 

Harmony 

Melody 

correlation 

Melody 

contour 

Melodic 

tonality 

Average 

score 

MT- 

CHSE-

GAN 

8.4 7.4 7.6 8.2 7.9 

Rank-

GAN 
6.9 5.8 6.4 7.2 6.575 

Seq-

GAN 
7.3 6.1 7.2 7.1 6.925 

Based on the melody evaluation metrics introduced in the 
previous chapters and through comparative analysis, we found 
that the music melodies generated by the MT-CHSE-GAN 
model are of significantly higher quality than those generated by 
the Rank-GAN and Seq-GAN models when trained with the 
same music text data. The melodies generated by the MT-

CHSE-GAN network are closer to the style and texture of real 
music. 

3) Comparative Analysis of Computational Complexity 

In the experiments, an AMD Ryzen 7 4800H processor and 
RTX2060 graphics card were used for training and music 
generation of the various models. A comparison of the running 
time was made among the CHSE-GAN, Rank-GAN, and Seq-
GAN models. In each model, music samples of 1024 characters 
in length were generated. The specific running time comparison 
results are presented in the table below in Table III. This 
comparison helps to assess the efficiency and resource 
consumption of different models when generating melodies. 

TABLE III. COMPARISON OF RUNNING COMPLEXITY 

Model Time 

CHSE-GAN 4.9s 

Rank-GAN 6.5s 

Seq-GAN 4.8s 

As the data in the table shows, the time taken to generate 
1024 characters varies slightly among the three models: the 
CHSE-GAN model requires approximately 4.9 seconds, the 
Rank-GAN model takes 6.5 seconds, and the Seq-GAN model 
needs 4.8 seconds. Although the generation times are similar, 
the CHSE-GAN has an advantage in terms of the quality of 
generation compared to the other two models. 

4) Comparison of the Fit of Music Generated by Different 
Models 

Based on a unified data representation, we trained the Rank-
GAN and Seq-GAN networks and subsequently evaluated the 
models' performance. Maximum likelihood estimation (MLE) 
aims to minimize the cross-entropy between the true data 
distribution pp and the data distribution qq generated by the 
model. By quantifying MLE, we are able to assess the fit 
between the data and the model. This reflects not only the 
specific details of the data but also considers the details of the 
model. 

Negative log-likelihood (NLL) was originally proposed in 
Seq-GAN research as an improved metric based on MLE, 
specifically to measure the degree of match between generated 
data and real data. Fig. 10 shows the training loss changes for 
NLL-test. 

The NLL-test training loss curves from Fig. 10 indicate that 
the CHSE-GAN model converges more quickly and 
demonstrates better performance on this metric. Throughout the 
testing phase, CHSE-GAN consistently showed the best NLL 
performance, while Rank-GAN performed the worst. The NLL 
loss curves for Seq-GAN and Rank-GAN almost coincide 
before the solid line, but after the solid line, the performance of 
Rank-GAN declines compared to other stages. These results 
suggest that the music generated by the MT-CHSE-GAN 
network performs better in fitting real music. 
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Fig. 10. NLL-test loss. 

V. CONCLUSION 

This research is dedicated to exploring the important branch 
of artificial intelligence that is automatic music generation, with 
a particular focus on the application of deep learning 
technologies in this field and their practical value. In order to 
improve the stability of music generation models, a CHSE-GAN 
based model was developed, effectively addressing the issue of 
length in music melody generation. The model integrates music 
theory and mathematical statistics, and through the 
textualization and bar-wise processing of music data, as well as 
the introduction of the SE module and the channel attention 
module based on batch normalization, it enhances feature 
extraction capabilities without the need to add extra network 
parameters. Experiments show that CHSE-GAN can generate 
music of higher quality compared to traditional algorithms. 
Although research in music generation has made certain 
advances, its range of application is still relatively limited, and 
it lacks quantitative evaluation metrics. In particular, evaluation 
models that combine mathematical statistics with music theory 
knowledge still have great potential for development. Future 
work will continue to focus on expanding model applications, 
enriching evaluation methods, and improving the quality of 
generated music. 
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