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Abstract—Task scheduling in cloud computing is a complex 

optimization problem influenced by the ever-changing user 

requirements and the different architectures of cloud systems. 

Efficiently distributing workloads across Virtual Machines (VMs) 

is critical to mitigate the negative consequences of inadequate and 

excessive workloads, such as higher power consumption and 

possible machine malfunctions. This paper presents a novel 

method for dynamic load balancing using a Modified Artificial Bee 

Colony (MABC) algorithm. The ABC algorithm has exceptional 

competence in solving complex nonlinear optimization problems 

based on bee colonies' foraging behavior. Nevertheless, the 

traditional version of the ABC algorithm cannot effectively use 

resources, resulting in a rapid decline in population diversity and 

an ineffective spread of knowledge about the best solution between 

generations. To address these limitations, this study integrates a 

genetic model into the algorithm, enhancing population diversity 

through crossover and mutation operators. The developed 

algorithm is compared with the prevailing algorithms to confirm 

its effectiveness. The results of the proposed MABC algorithm for 

the load balancing method are compared with the current ones, 

and it is observed that this algorithm is more beneficial in terms of 

cost and energy as well as resource utilization. 
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I. INTRODUCTION 

Cloud computing is a recently emerged computing paradigm 
that provides a wide variety of services using the resources of 
hardware and software systems available in the data centers 
through the Internet [1]. These services are pay-as-you-go, 
meaning users can acquire computing resources, storage, 
applications, and services on demand. Opting for cloud services 
presents many benefits to the users, including scalability, global 
accessibility, reliability, flexibility, and reduced costs for 
businesses. It permits organizations to quickly extend and 
reduce their IT infrastructure; thus, resources can be delivered 
and regained at a minimum cost [2]. 

A. Context 

Cloud computing services are offered in three primary ways: 
Infrastructure as a Service (IaaS), Platform as a Service (PaaS), 
and Software as a Service (SaaS), with four deployment 
strategies: private, public, community, and hybrid [3]. SaaS 
enables consumers to effortlessly utilize cloud providers' 
programs without the requirement to acquire, install, and 
manage the software on their servers. This solution eliminates 
the need to manage the cloud infrastructure and platform used 
by the software [4]. PaaS allows consumers to utilize 
computational assets and applications via the Internet without 
requiring them to handle the underlying infrastructure 

personally [5]. Instances of this platform category encompass 
GoGrid, Aptana, EMC Atmos, and Amazon Elastic Cloud. 
These platforms enable customers to acquire the necessary 
technologies without incurring real hardware and software costs. 
IaaS provides many capabilities, offerings, and assets for 
developing an on-demand virtual computing framework [6]. 
Such suppliers include Google Base, IBM, Savvis, Rackspace, 
and Amazon Web Services. 

Third-party vendors offer public cloud services over the 
Internet. The term "public cloud" does not imply that a user's 
data is accessible or useable by the general public. Public cloud 
services often provide consumers with an access control method 
[7]. Private clouds are defined as data and process management 
for a company and are protected from external network 
bandwidth constraints, security concerns, or legislative 
provisions in cloud-based data sharing. Private cloud services 
improve security and operational resilience by limiting user 
access and networks while having unmodified infrastructure 
control for providers and users [8]. 

In the community cloud, various organizations share and 
manage cloud computing infrastructure for a special interest 
group, specific security needs, or a similar mission [9]. From a 
security perspective, this type of cloud is better than a public 
cloud, as it allows the community to maintain its security 
environment and apply additional requirements. This allows 
each member to share resources and store them and use 
applications without sharing the same physical environment. A 
hybrid cloud is a cloud service model that includes two or more 
public, private, and community clouds connected to one another 
by standard or private technology. This method gives cloud 
users more power over their data and application use while 
remaining independent entities [10]. 

B. Problem Statement 

The cost savings associated with cloud services are attracting 
small and medium-sized businesses. Cloud service suppliers 
provide services to clients on a rental basis. Providing cloud 
services to users is extremely complex, as users can access 
virtual cloud resources easily. Computing resources are made 
available to customers via Virtual Machines (VMs) running on 
physical machines in the cloud. Virtual machines resemble 
physical computers in terms of capability [11]. As a guest 
program, a VM mimics the functionality of a physical machine. 
Optimizing server usage is achieved by dynamically allocating 
resources based on application requirements [12]. This approach 
operates dynamically to distribute non-preemptive workloads 
evenly. Load balancing is a challenging optimization issue in 
cloud computing that falls under Non-Polynomial-Hard (NP-
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Hard) problems [13]. Therefore, researchers have devoted more 
attention to load balancing, which is found to improve system 
performance. 

Load balancing facilitates the equitable distribution of 
workloads across available resources. The objective is to ensure 
uninterrupted operation in the event of a service component 
failure by managing the allocation and maintenance of 
application instances and optimizing resource usage [14]. 
Furthermore, load balancing aims to minimize task reaction time 
and enhance resource allocation, enhancing system performance 
while reducing expenses [15]. Moreover, load balancing aims to 
enhance the scalability and adaptability of applications that may 
expand in magnitude in the future. It also prioritizes tasks that 
demand immediate execution above other tasks [16]. To 
improve data center efficiency and reduce system reaction time, 
it is imperative to distribute the workloads evenly among 
physical hosts in the cloud environment, thereby enhancing 
throughput. Given several physical hosts in a data center, it is 
crucial to implement load balancing by migrating VMs across 
these hosts [17]. This is essential for ensuring the delivery of 
resilient and high-performing services. It is important to 
prioritize fault tolerance to provide dependable services for load 
balancing during the migration of VMs. 

C. Motivation 

Traditionally, load balancing has been accomplished 
through static and dynamic load balancing strategies [18]. The 
present status of the system has no effect on static load balancing 
strategies. Prior knowledge of the system is necessary. During 
the compilation phase, static load balancing techniques allocate 
tasks to processors before the commencement of program 
execution. The scheduling approach relies on preexisting 
knowledge about node characteristics and capabilities, including 
execution time, CPU resources, memory, and storage capacity, 
which are assumed to be known throughout the compilation 
process. These algorithms are suitable for stable situations with 
little load fluctuations but cannot adjust to load changes while in 
operation. In contrast, dynamic approaches consider the 
system's status and present situation, enabling them to handle 
varying load circumstances effectively. These solutions employ 
dynamic procedures to manage users' requests efficiently. While 
dynamic approaches provide superior performance than static 
approaches, formulating an algorithm for a dynamic cloud 
environment poses significant challenges [19]. 

The cloud platform efficiently manages task scheduling and 
allocates substantial virtual resources, no matter the duration 
needed [20]. Therefore, the cloud platform's effectiveness 
depends entirely on the selected technique for scheduling task 
resources. Furthermore, it is vital to have a streamlined and 
productive approach to assigning cloud resources to fulfill users' 
incoming tasks. Also, the user's tasks must be promptly, 
efficiently, and dependably processed [21]. Efficient load 
balancing and minimal resource usage are essential for 
executing user operations in the cloud computing environment. 
Nevertheless, the complex structure of the cloud environment 
and the stringent demands for managing the task scheduling 
process provide significant challenges in developing and 
carrying out optimization models [22]. 

Furthermore, the cloud task scheduling process is highly 
uncertain because of multiple factors triggering the 
unpredictable cloud environment, including network 
connectivity [23], resource usage [24], peak network demands 
[25], and web service performance inherent to service models of 
the cloud [26]. Artificial intelligence and machine learning 
techniques offer intelligent and adaptive solutions by analyzing 
patterns and predicting future demands, leading to proactive 
load management [27, 28]. Inspired by natural processes, meta-
heuristic algorithms excel at solving complex, nonlinear 
optimization problems by offering robust and scalable solutions 
[29]. Their ability to explore and exploit the search space 
effectively helps achieve balanced load distribution across 
virtual machines. Integrating these technologies enhances the 
performance and resilience of cloud systems, enabling them to 
meet dynamic user demands while minimizing operational costs 
and resource waste [30]. 

D. Contribution 

This study presents a new method for scheduling tasks in 
cloud computing using the Artificial Bee Colony (ABC) 
algorithm. The traditional ABC algorithm is well-suited for 
exploration but tends to ignore exploitation due to its intrinsic 
operating strategy. In the conventional ABC algorithm, the 
solutions produced in each generation are acquired by random 
search, resulting in the algorithm's inherent vulnerability to 
exploitation. Furthermore, the method fails to properly exploit 
the rich information in the best solution during execution. 
Moreover, the utilization of random neighborhood search results 
in a fast decline in population variety, rendering the algorithm 
susceptible to early convergence and trapped in local 
optimization. To solve these drawbacks, the ABC algorithm is 
enhanced by implementing two modifications. 

The neighborhood search operator incorporates the location 
information of the global optimal solution to assist the bee 
colony in finding food. This approach effectively utilizes the 
information from the previous generation's optimal solution and 
improves the accuracy of the algorithm's exploitability search. 
Furthermore, to solve the issue of insufficient population 
variety, the algorithm integrates a genetic model that enhances 
population diversity by employing crossover and mutation 
operators. These two enhancements successfully reconcile the 
conflict between the ABC algorithm's research and application, 
strengthening the method's optimization accuracy and speed. 
The efficacy of the enhanced ABC method is validated by a set 
of commonly employed numerical functions. In summary, the 
study made the following contributions: 

 Enhanced ABC algorithm for task scheduling: A novel 
approach is introduced for task scheduling in cloud 
computing, leveraging the ABC algorithm. Two crucial 
adjustments are suggested to overcome the shortcomings 
of the classic ABC algorithm in terms of exploitation. 

 Improved exploitation through global neighborhood 
search: The study integrates a global neighborhood 
search operator to improve exploitation. By using the 
location information of the global optimal solution, this 
modification helps the bee colony to find food 
efficiently. This ensures better utilization of the 
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information from the previous generation's optimal 
solution and improves exploitability search accuracy. 

 A genetic model for population diversity: To tackle the 
issue of insufficient population variety and potential 
premature convergence, a genetic model is integrated 
into the algorithm. This model introduces crossover and 
mutation operators, enhancing population diversity. 
These additions successfully balance the conflict 
between the algorithm's research and practical 
application, leading to improved optimization accuracy 
and speed. 

The rest of the paper is organized as follows. Section II 
provides a comprehensive review of the existing literature and 
identifies gaps and limitations of current approaches. Section III 
precisely formulates the task scheduling problem. The proposed 
task scheduling technique is discussed in Section IV. Section V 
examines the theoretical underpinnings and practical 
implications of the proposed algorithm for load balancing. 
Section VI presents the empirical evaluation of the proposed 
method and compares its performance with existing methods. 
Section VII concludes the study by summarizing the main 
contributions, highlighting results, and suggesting possible 
avenues for future research in Section VIII. 

II. RELATED WORK 

This section offers an overview of the current body of 
literature about task scheduling in cloud computing. Our 
objective is to uncover fundamental insights, techniques, and 
advancements by analyzing various algorithms developed to 
tackle particular challenges in cloud settings. 

Wei [31] suggested an approach for optimizing task 
scheduling in cloud infrastructure using a modified version of 
the Ant Colony Optimization (ACO) algorithm. The scheduling 
model utilizes an improved ACO algorithm to prevent the 
optimization strategy from being stuck in local optimization 
under cloud computing task scheduling principles. The task 
scheduling satisfaction function is created by integrating the 
three objectives of minimizing waiting time, optimizing 
resource load distribution, and lowering task completion cost to 
identify the most efficient task scheduling solution. Ultimately, 
introducing the reward and punishment coefficient enhances the 
optimization of the pheromone update rules in the ACO 
algorithm, resulting in an accelerated solution speed. 
Furthermore, the volatility coefficient is dynamically updated to 
improve the overall performance of this method. According to 
the test findings, the suggested algorithm outperforms previous 
approaches regarding convergence speed, completion time, load 
balancing, and consumption of virtual machine resources. 

Abualigah and Diabat [32] presented a novel hybrid Antlion 
optimization algorithm that combines elite-based differential 
evolution to address multi-objective task scheduling challenges 
in cloud computing environments. The challenge is multi-
objective since it requires minimizing the makespan and 
maximizing resource consumption simultaneously. The Antlion 
optimization algorithm is enhanced by including elite-based 
differential expansion as a local search approach to increase its 
capacity to explore the search space and prevent being stuck in 
suboptimal solutions. Two tests were conducted using the 

CloudSim toolbox, one on synthetic datasets and the other on 
actual trace datasets. The findings indicated that the suggested 
algorithm exhibited a more rapid convergence rate than 
alternative methods, rendering it well-suited for extensive 
planning scenarios. 

Ben Alla, et al. [33] proposed a novel approach to 
prioritizing customer demands and supplier resources. They 
introduced a highly effective method for scheduling tasks called 
MCPTS, which involves adjusting the priority depending on 
four task factors: duration, delay, deadline, and burst time. The 
MCPTS structure has three components: task priority, task 
queue priority, and resource priority. A new strategy is 
suggested to assess and establish task priorities, utilizing an 
integrated Multi-criteria Decision-Making (MCDM) technique 
known as ELECTRE III and a metaheuristic algorithm named 
Differential Evolution. Furthermore, a unique dynamic priority 
queuing algorithm derived from the queuing model is presented. 
Moreover, the allocation of resources is dynamically modified 
according to the task priority model to establish an effective and 
adaptable connection between resource and task categories. The 
experimental findings demonstrate the superiority of the 
MCPTS algorithm in comparison to other current algorithms. 
Furthermore, it shows the efficacy of the suggested approach in 
delivering commendable system performance, fulfilling user 
demands and QoS prerequisites, enhancing load distribution, 
and optimizing resource usage. 

Malti, et al. [34] offer a highly effective task scheduling 
method that leverages flower pollination behavior. This 
algorithm incorporates the Pareto optimality principle and the 
TOPSIS approach to enhance the quality of the solutions 
achieved. Both single and multi-objective optimization 
variations are analyzed. In the second scenario, three 
optimization criteria are considered: decreasing the duration or 
schedule length, reducing the execution cost, and optimizing the 
overall dependability of task distribution. The study examined 
several test bench situations and Quality of Service (QoS) 
measures. The acquired findings validate the advantages of the 
suggested method. 

Mangalampalli, et al. [35] proposed a Multi-Objective Task 
Scheduling Gray Wolf Optimization (MOTSGWO). This 
algorithm is capable of making scheduling decisions in real-time 
by considering the current state of cloud resources and future 
workload demands. Moreover, the suggested method distributes 
resources according to the end users' financial constraints and 
the tasks' importance. The MOTSGWO technique is applied 
using the Cloudsim toolbox, and the workload is created by 
building datasets with various task densities and workload 
patterns. The comprehensive studies demonstrate that the 
suggested MOTSGWO strategy surpasses previous baseline 
strategies and enhances the crucial metrics. 

Saravanan, et al. [36] proposed the enhanced Wild Horse 
Optimization (IWHO) algorithm to tackle the issues of lengthy 
scheduling time, excessive cost consumption, and high use of 
virtual machines. Initially, a model for scheduling and 
distributing cloud computing tasks is constructed, considering 
the primary aspects of time, cost, and virtual machines. To 
enhance the local search capability and minimize premature 
convergence, the IWHO algorithm employs the inertia weight 
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technique to effectively identify the ideal individual. The IWHO 
method is augmented with the Levy-Flight algorithm to 
optimize task scheduling in cloud computing. The effectiveness 
of the proposed hybrid algorithm is verified, and the outcomes 
are assessed utilizing several methodologies. The simulation 
results demonstrated that the suggested approach surpassed 
others in various scenarios. 

Behera and Sobhanayak [37] suggested a hybrid approach 
that integrates the GWO algorithm with the Genetic Algorithm 
(GA). GWO-GA optimizes multi-objective task scheduling in 
cloud computing by minimizing processing time, energy usage, 
and cost. The enhancements to GWO-GA involve incorporating 
the crossover and mutation operator from the genetic algorithm. 
Moreover, the accelerated convergence of the GA-based GWO 
method is a benefit when dealing with extensive planning 
problems. The suggested algorithm performs better than existing 
GWO, GA, and PSO algorithms in terms of makespan, cost, and 
energy usage. It achieves reductions of 19%, 21%, and 15% 
correspondingly, compared to each of these approaches. In 
addition, it leads to energy conservation rates of 17%, 19%, and 
23% when compared to GWO, GA, and PSO, respectively. 
Simultaneously, it reduces the total design expenditure by 13%, 
17%, and 22%, respectively. The findings illustrate the efficacy 
of the suggested approach in addressing the task scheduling 
issue in cloud computing settings. 

Pabitha, et al. [38] proposed the Chameleon and Remora 
Search Optimization (CRSO) algorithm to enhance the 
scheduling procedure by investigating the influence of MIPS 
and network bandwidth on virtual machine performance. 
Furthermore, the study considers the uncertainty aspects of task 

completion rates, distribution of loads, cost, and makespan 
concurrently during the scheduling process. The formulation of 
an optimization model with multiple objectives for cloud task 
scheduling involves the integration of the advantages of 
Chameleon Search Algorithm (CSA) and Remora Search 
Optimization Algorithm (RSOA) utilizing a greedy technique to 
mimic the actual process of cloud computing task scheduling. 
Simulation findings confirm that the proposed CRSOA 
technique substantially decreases the time required for task 
completion and efficiently manages the workload distribution 
across the available virtual machines, surpassing other 
competing algorithms. 

III. PROBLEM DEFINITION 

The assignment of incoming jobs to free VMs located in 
cloud data centers is a major problem. This scenario involves a 
collection of uniform and diverse tools where individual servers 
run many virtual machines. Virtualization enables users to 
utilize virtual environments' flexible computing resources. The 
data center broker controls the scheduling system, supervising 
the allocation and monitoring of user tasks. Fig. 1 depicts the 
schematic layout of the scheduling procedure. Initially, cloud 
users enter tasks kept in the Task Manager module. This module 
monitors the arrival of tasks and provides relevant information 
to the corresponding individuals. These task submissions are 
transmitted to the cloud scheduling system by the task manager. 
A number of jobs are allocated to VMs according to the MABC 
algorithm. The cloud information repository is used to gather 
details about VMs and tasks. 

 
Fig. 1. Scheduling process. 

Several data centers are involved in the public cloud system 
paradigm in order to meet resource demands. Consider a 
collection of data centers (𝑑𝑐1, 𝑑𝑐2, … , 𝑑𝑐𝑝 ). A data center 

comprises several Physical Hosts (PHs). For instance, the data 
center dcr includes k PHs labeled (𝑃𝐻𝑟1, 𝑃𝐻𝑟2, … , 𝑃𝐻𝑟𝑘). Each 
PH possesses distinct characteristics, including the 
computational capability of a processor determined by the 
number of cores measured in Millions of Instructions Per 
Second (MIPS). Each PH is equipped with bandwidth, memory, 
storage capacity, and a VM Manager (VMM). The VMM 

installed on PHs has a vital function in keeping track of all VMs 
located on that specific physical host. It guarantees the effective 
distribution and usage of resources for the virtual machines 
operating on the host. Each PH inside a data center can handle a 
specific number of VMs, represented as (𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑚). 
Each VM possesses its own distinct settings, outlined as follows: 

 Number of cores: This parameter defines the VM's 
capacity for handling several tasks simultaneously while 
simultaneously processing. 
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 Processing power: This is expressed in MIPS, which 
denotes the computational capacity for processing 
commands and performing tasks. 

 Storage: The allocated capability for storing data and 
files particular to virtual machines. 

 Main memory: Designated for the storage of data and the 
execution of applications within the virtual machine. 

Furthermore, each VM is associated with an hourly rate 
representing the expense incurred for utilizing that specific VM 
for every utilization. Virtual machine configurations and the 
time spent using them determine how much users are billed for 
resources. Within the realm of cloud computing, individuals or 
organizations utilizing cloud services may effortlessly forward 
their individual requests to the service supplier for processing 
with no extensive knowledge of its underpinnings. These 
assignments include distinct criteria regarding the duration of 
the job and the assets needed. Users enter a set of n jobs labeled 
(𝑡1, 𝑡2, … , 𝑡𝑛). Tasks are given a distinct duration (li), quantified 
in Millions of Instructions (MI). The process starts with 
determining the duration of the ith job on the jth virtual machine, 
outlined in Eq. (1). 

𝐸𝑇(𝑙𝑖 , 𝑣𝑚𝑗) =
𝑙𝑖

𝑡𝑜𝑡𝑎𝑙𝑀𝐼𝑃𝑆(𝑣𝑚𝑗)
   (1) 

The scheduler evaluates the VM's energy usage during task 
execution and the cost of processing tasks within the VM. The 
primary goal is to lower the total costs associated with task 
completion by finding the VM with the most favorable costs that 
meets the individual criteria for the task. Due to the varying 
processing capabilities of multiple VMs, the execution time and 
cost of performing a specific function on distinct VMs are 
inconsistent. As a result, a problem with multiple objectives 
develops, which seeks to reduce the time it takes to complete a 
task, the amount of energy used, and the cost incurred while 
maximizing resource efficiency. Thus, this study aims to tackle 
the complex challenge of solving the multi-objective scheduling 
issue using the suggested MABC algorithm. 

Cloud computing services are delivered on a two-actor 
model, encompassing cloud service suppliers and consumers. 
Service suppliers provide clients with resources to accomplish 
jobs. Cloud users place a high premium on application 
efficiency, preferring rapid and efficient computation 
capabilities. In contrast, cloud service suppliers focus on 
optimizing resource utilization to achieve optimal financial 
returns. The purposes may be categorized into client demands, 
which include the cost of execution and the duration of the 
schedule, and supplier demands, which encompass energy 
consumption and resource utilization. Within the cloud 
computing domain, execution cost signifies the total expenditure 
accrued during the operation of a given application. It serves as 
a quantifiable indicator to evaluate financial outlays. However, 
it is important to specify the costs associated with the assets 
used. Clients seek to decrease both expenses and schedule 
duration. The computation of expenses associated with the 
execution can be summarized as follows: 

𝐸𝐶 = ∑ 𝐸𝑇𝑗 × 𝑝𝑟𝑖𝑐𝑒𝑗
𝑚
𝑗=1         (2) 

𝐸𝑇𝑗 denotes the length of time that the jth VM is allocated for 

executing a task, following the completion of the final task. The 
schedule length is crucial for assessing the quality of scheduling 
and is determined by the longest time it takes for any task to be 
completed, either among all submitted tasks or by the time the 
final processing virtual machine is complete. The scheduler's 
efficiency can be accurately assessed using this essential 
measure. A shorter schedule length indicates an improved 
scheduling procedure in which tasks are distributed optimally to 
appropriate resources. In contrast, a longer schedule length 
signifies a less efficient scheduling method. Eq. (3) can 
determine the value of the schedule length. 

𝑆𝐿 = max⁡(∑ 𝐸𝑇(𝑙𝑖 , 𝑣𝑚𝑗)𝑥𝑖𝑗
𝑛
𝑖=1 )∀𝑣𝑚𝑗  (3) 

Eq. (3) represents the allocation decision variable, 𝑥𝑖𝑗 , which 

indicates whether task i is assigned to the jth VM. The variable 
is binary, with a value of 1 indicating that task i is assigned to 
VM j, and 0 stating otherwise. Maximizing resource efficiency 
is crucial for cloud service providers. Their main goal is to 
maximize the utilization of resources in order to enhance 
profitability. Providers attempt to optimize their usage given the 
constraints of limited resources. Eq. (4) clearly describes how to 
calculate the average resource utilization. 

𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑅𝑈 =
∑ 𝐸𝑇𝑖
𝑚
𝑖=1

𝑂1
      (4) 

The variable O1 in Eq. (4) denotes the minimum schedule 
length, which serves as a measure of the desired service quality. 
In this situation, efficient use of resources implies the optimal 
exploitation of available VMs to handle tasks. Data center 
energy usage involves several components, including CPU, 
network interfaces, and storage devices. Out of all these 
resources, the CPU is generally the most power-intensive. When 
evaluating the energy usage of a VM, it is divided into two 
categories: energy consumption during times of idle and energy 
consumption during active phases. The overall energy usage 
takes into account both the idle and active modes of the VM. 
The energy spent during periods of idle is approximately 60% 
of the energy consumed by a fully functional VM. The 
remaining 40% represents the energy consumed by the VM 
during active calculations. This energy expenditure is dependent 
on the processing speed of the VM, calculated by Eq. (5). 

𝐸𝐶 = 10−8 × (𝑣𝑚𝑖𝑚𝑖𝑝𝑠
)2

𝐽

𝑀𝐼
𝑎𝑛𝑑⁡𝐼𝐸𝑖 = 0.6 × 𝐸𝐶𝑖(5) 

𝐸𝐶𝑖  denotes the energy consumed when the VM is in an 
active state 𝐼𝐸𝑖  represents the energy consumed when the VM is 
idle. The model's energy usage can be defined according to Eq. 
(6). 

𝑇𝐸𝑖 = 𝐼𝐸𝑖 + 𝐸𝐶𝑖   (6) 

IV. MODIFIED ABC ALGORITHM FOR TASK SCHEDULING 

The ABC algorithm applies a kind of bionic 
intelligence inspired by honey bee foraging behavior. In this 
algorithm, food source position indicates a potential 
optimization solution, while nectar quality indicates the quantity 
of nectar [39]. An optimization problem is addressed by three 
types of bees: worker, onlooker, and scout. Employed bees are 
equal to food sources. So, each worker bee has access to a food 
source around the hive. An onlooker bee continuously watches 
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and selects food resources under the activities of employed bees. 
A scout bee uncovers new sources of food not found by 
employed bees by searching randomly. Fig. 2 illustrates how the 
ABC algorithm finds an optimal solution for the optimization 
problem. Initially, nectar sources are produced in a random 
manner using Eq. (7). 

𝑥𝑖,𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (7) 

 
Fig. 2. Workflow of ABC algorithm. 

where, 𝑥𝑖,𝑗 ⁡ ∈ [𝑥𝑗
𝑚𝑎𝑥 , 𝑥𝑗

𝑚𝑖𝑛]⁡ denotes the jth dimension 

boundary of the optimization problem, and 𝑟𝑎𝑛𝑑(0, 1) is a 
random number ranging from 0 to 1. The ABC optimization 
process consists of three separate stages: the employed bee 
stage, the onlooker bee stage, and the scout bee stage. 

The employed bees have the ability to scan the whole 
optimization problem space for new sources of nectar. Eq. (8) 
updates the position of the nectar source simultaneously. 

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜙𝑖,𝑗 . (𝑥𝑖,𝑗 − 𝑥𝑘,𝑗)  (8) 

where, 𝑥𝑖  represents the initial nectar source, 𝑣𝑖  reflects a 
recently discovered nectar source, 𝜙𝑖,𝑗𝜖[−1,1]  is a random 

number chosen uniformly, 𝑥𝑘 is a nectar source taken randomly 
from the population, and 𝑥𝑘 is not equal to 𝑥𝑖. It should be noted 
that 𝑗 is a dimension that is chosen without any specific criteria, 
and 𝑥𝑖  and 𝑣𝑖  vary simply in this particular dimension. If the 
amount of nectar in 𝑣𝑖  is more than that in 𝑥𝑖 , then 𝑣𝑖  will 
replace 𝑥𝑖  in the subsequent round. Alternatively, 𝑥𝑖  stays 
unaltered. 

ffigOnlooker bees will select optimal nectar sources for 
exploitation depending on the quantity of nectar available, using 
information provided by employed bees. Additionally, it 
explores new nectar sources by employing the solution search 
equation given in Eq. (8). The fitness value of an individual is 
determined by the quantity of nectar from the nectar supply. This 
is estimated using the Eq. (9). 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 {

1

1+𝑓(𝑋𝑖)
⁡⁡⁡⁡⁡𝑓(𝑋𝑖) ≥ 0

1 + |𝑓(𝑋𝑖)|⁡⁡⁡𝑓(𝑋𝑖) < 0
  (9) 

Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖  refers to the fitness value of the nectar 
source, and (⋅) indicates the objective function value. A higher 
quantity of nectar in a nectar source increases the likelihood of 

onlooker bees choosing that source. The probability of selection 
is computed using the Eq. (10). 

𝑝𝑖 =
𝑓(𝑋𝑖)

∑ 𝑓(𝑋𝑖)
𝑆𝑁
𝑗=1

   (10) 

After determining the probability of selecting each nectar 
source, the onlooker bees will employ the roulette method. If the 
nectar supply linked to the employed bees is not refreshed over 
a specified threshold 𝑙𝑖𝑚𝑖𝑡, we assume that the nectar source has 
been exhausted. In this scenario, a novel nectar source is 
introduced at random using Eq. (7) to substitute 𝑋𝑖. 

The conventional ABC algorithm fails to fully exploit the 
location details of the optimal solution in each iteration, a 
valuable piece of information. This study introduces a global 
neighborhood search operator (as given in Eq. (11)). With this 
operator, the bee colony locates food sources using the 
positional data from the global optimal solution, XGbestj. By using 
this approach, the honey source XGbest,j can be fully exploited and 
utilized. Furthermore, exploring the vicinity of the optimal 
solution accelerates the convergence of the algorithm. The 
variable β is given a random number from 0 to 1. 

𝑁𝑒𝑤𝑋𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝜙𝑖,𝑗(𝑋𝐺𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑘,𝑗) + 𝛽(𝑋𝐺𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑖,𝑗) (11) 

While the current generation's optimal solution information 
is incorporated into the neighborhood search operator, the 
random neighborhood search approach remains unchanged. Eq. 
(11) facilitates algorithm convergence and enhances 
exploitation capabilities. Nevertheless, it may lead to local 
optimization by steering the colony towards local extremes. In 
order to address this constraint and enhance the algorithm's 
ability to consistently generate new viable solutions, a genetic 
model is utilized. Each iteration retains half of the ideal solution. 
Afterward, the preserved solutions undergo recombination 
according to Eq. (12). Ultimately, the new solution passes the 
mutation and crossover procedures, as shown in Fig. 3. By 
employing this evolutionary process, the search range expands, 
and the variety of viable solutions is enhanced to avoid local 
optimization. 

𝑋𝑖,𝑗 = 𝑋𝑘1,𝑗 + 𝛾(𝑋𝑘2,𝑗 − 𝑋𝑘3,𝑗)  (12) 

 
Fig. 3. An illustration of mutations and crossovers. 
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Three solutions, Xk1, Xk2, and Xk3, are chosen from the 
preserved feasible solutions through random probability 
selection. 𝛾 is a randomly generated number within the range [0, 
1], and j denotes the position of an array element in the plane 
array. 

V. DISCUSSION 

This section examines the theoretical underpinnings and 
practical implications of the MABC algorithm for load 
balancing in cloud computing environments. The MABC 
algorithm enhances the ABC algorithm by solving its main 
limitations, specifically the lack of exploitation capability and 
rapid loss of population diversity. The traditional ABC 
algorithm is augmented by including a mechanism for retaining 
optimal solution information within the neighborhood search 
operator. By modifying the algorithm, best practices are 
preserved and utilized effectively in subsequent iterations. 
Furthermore, the incorporation of a genetic evolution 
mechanism fosters a balance between exploratory and 
exploitative behaviors within the scheduling process. 

Among the primary advantages of the MABC algorithm is 
its ability to balance load across VMs in a cloud computing 
environment. MABC algorithm adapts to dynamic workloads 
and varying user demands by maintaining a diverse population 
and effectively utilizing optimal solution information. The result 
is more efficient resource utilization, reduced energy 
consumption, and a shorter time to complete tasks. The 
modifications to the ABC algorithm result in faster convergence 
rates, making the MABC algorithm well-suited to real-time load 
balancing applications. While the MABC algorithm 
demonstrates significant improvements over traditional 
methods, potential limitations must be acknowledged. The 
higher complexity due to the retention of optimal solutions and 
the genetic evolution mechanism may lead to additional 
computational overhead. This could impact the algorithm's 
performance under resource-constrained environments. 
Furthermore, the effectiveness of the MABC algorithm depends 
on the proper tuning of its parameters. Inappropriate parameter 
settings may produce suboptimal performance or excessive 
computational costs. 

VI. SIMULATION RESULTS 

In this section, the suggested algorithm is benchmarked 
against recent swarm-based algorithms (GA, Harris Hawks 
Optimizer (HHO), ACO, and traditional ABC). Simulations 
were conducted with the CloudSim 3.0.3 simulator on a 
Windows 10 laptop powered by 16 GB of RAM. Table I outlines 
the specifications of the virtual cloud computing environment. 
Table II provides a summary of the VM parameters involved in 
the experiment. The synthetic workload is created using an even 
distribution, guaranteeing an equal spread of tasks in different 
dimensions. The assessment examines the High-Performance 
Computing Centre (HPC2N) workload, which is commonly 
acknowledged as a benchmark for evaluating the performance 
of distributed systems. 

Results of resource utilization for the different methods, 
including MABC, ABC, GA, HHO, and ACO, using the 
HPC2N real-word dataset are illustrated in Fig. 4 and 5. Fig. 4 
compares different load balancing algorithms applied to 40 
VMs. The MABC algorithm demonstrates superior resource 
utilization across all task quantities. This is because MABC 
considers resource usage when scheduling tasks, ensuring tasks 
are allocated to the most appropriate VMs. VMs are thus utilized 
more efficiently, resulting in enhanced overall performance and 
reduced idle times compared to ABC, GA, HHO, and ACO. Fig. 
5 shows the resource utilization of different algorithms when 80 
VMs are used. Similar to the results for 40 VMs, the MABC 
algorithm consistently outperforms the others. This performance 
is due to MABC’s advanced scheduling mechanism, which 
dynamically adjusts to the available resources, thereby 
maximizing VM efficiency and minimizing resource wastage. 

TABLE I.  DATACENTER AND HOST CONFIGURATIONS 

Cloud component Feature Value 

Host  Storage 2 TB 

RAM F GB 

Bandwidth 5 GB 

Datacenter User count 1 

 Host count 2  

 Datacenter count 1 2 

TABLE II.  VMS CONFIGURATIONS 

Characteristic Value 

VM count 20-100 

MIPS 500-1000 

Bandwidth 0.5 Gb/S 

VMM Xen 

Size 100 MB 

Fig. 6 compares the energy consumption of various load 
balancing algorithms under HPC2N workloads with 40 VMs. 
The energy conservation performance of each algorithm is 
evaluated as task counts increase. Traditional algorithms such as 
ABC, ACO, GA, and HHO exhibit linear rises in energy 
consumption with increasing task counts, but the MABC 
algorithm shows a more gradual rise. Under varying workloads, 
MABC conserves energy efficiently, which makes it a suitable 
solution for energy-efficient cloud task scheduling. Fig. 7 
compares the energy consumption of different load balancing 
algorithms when applied to 80 VMs. Similar to Fig. 6, the energy 
consumption patterns of various algorithms are analyzed under 
a variety of task counts. According to the results, MABC is more 
effective than traditional algorithms at conserving energy and 
optimizing resource allocation compared to traditional 
algorithms. Fig. 8 illustrates the energy consumption across 
different load balancing algorithms when applied to a synthetic 
workload with 120 VMs. 
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Fig. 4. Resource utilization for HPC2N tasks involving 40 virtual machines. 

 
Fig. 5. Resource utilization for HPC2N task involving 80 virtual machines. 

 
Fig. 6. Energy consumption for HPC2N tasks involving 40 virtual machines. 

Fig. 9 to 11 offer a comparative evaluation of various 
algorithms concerning execution costs. This analysis 
encompasses both synthetic and HPC2N workloads, 
highlighting the potential impact of task duration and VM 
selection on execution costs. The results indicate that MABC 

outperforms the traditional ABC algorithm across varying task 
numbers for synthetic and HPC2N workloads. As shown in Fig. 
9 to Fig. 11, MABC demonstrates its cost-effectiveness by 
consistently reducing execution costs across a variety of 
scenarios. When applied to real-world tasks ranging from 250 to 
2000 units, MABC exhibits an average cost reduction of 11% to 
43% compared to the ABC algorithm. This advantage extends 
to synthetic workloads as well, with MABC achieving average 
cost reductions of 9% to 60% for tasks between 500 and 2000 
units. These findings highlight MABC's ability to optimize 
resource utilization and minimize execution costs across diverse 
task types and workloads. 

 

Fig. 7. Energy consumption for HPC2N tasks involving 80 virtual machines. 

 
Fig. 8. Energy consumption for synthetic tasks involving 120 virtual 

machines. 

Table III shows numerical functions used to prove the 
efficiency of the MABC algorithm. An array of benchmark 
functions is provided, with tests f1-f4 covering unimodal and 
tests f5-f7 covering multimodal continuous functions. The 
range of values for the parameters and the lowest possible 
numerical function value are listed in Table IV. The genetic, 
GABC, ABC, and MABC algorithms are employed for 
optimizing seven numerical functions. The algorithm was 
executed autonomously 20 times. The algorithm's benefits and 
drawbacks were assessed by utilizing statistical measures such 
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as the average and standard deviation. A performance analysis 
of algorithms with 30 dimensions and 3000 iterations is 
presented in Table IV. This table reveals that the MABC 
algorithm outperforms other algorithms in terms of both the 
average and standard deviation of its results. 

 
Fig. 9. Execution cost for HPC2N tasks involving 40 virtual machines. 

 
Fig. 10. Execution cost for HPC2N tasks involving 80 virtual machines. 

 
Fig. 11. Execution cost for synthetic tasks involving 120 virtual machines. 

TABLE III.  NUMERICAL FUNCTIONS 

Function Expression Range 
Minimum 

value 

Exponential 

𝑓1(𝑥)

= exp⁡(0.5 ×∑ 𝑥𝑖
𝐷

𝑖=1
) 

[−10,10]𝐷 0 

SumSquare 𝑓2(𝑥) =∑ 𝑖𝑥𝑖
2

𝐷

𝑖=1
 [−10,10]𝐷 0 

Elliptic 

𝑓3(𝑥)

=∑ (106)𝑖−1/𝐷−1𝑥𝑖
2

𝐷

𝑖=1
 

[−100,100]𝐷 0 

Sphere 𝑓4(𝑥) =∑ 𝑥𝑖
2

𝐷

𝑖=1
 [−100,100]𝐷 0 

Himmelblau 

𝑓5(𝑥)
= 1

/𝐷∑ [𝑥𝑖
4 − 16𝑥𝑖

2
𝐷

𝑖=1

+ 5𝑥𝑖] 

[−5,5]𝐷 -78.33 

Rastrigin 

𝑓6(𝑥)

=∑ [𝑥𝑖
2

𝐷

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10] 

[−5.11,5.11]𝐷 0 

Rosenbrock 

𝑓7(𝑥)

=∑ [100(𝑥𝑖+1
𝐷−1

𝑖=1

− 𝑥𝑖
2)2 − (𝑥𝑖 − 1)2] 

[−5,10]𝐷 0 

TABLE IV.  ALGORITHMS COMPARISON 

Function  MABC GA GABC ABC 

𝑓1 
Mean 0 0 7.18e-23 7.18e-21 

Std 0 0 7.07e-23 7.21e-21 

𝑓2 
Mean 3.57e-20 8.11e-11 5.253-15 7.33e-15 

Std 6.92e-20 7.81e-11 6.18e-15 8.19e-15 

𝑓3 
Mean 4.98e-20 4.47e-12 4.19e-16 4.53e-8 

Std 1.21e-20 5.77e-12 4.25e-16 4.83e-8 

𝑓4 
Mean 3.73e-23 1.23e-13 5.12e-16 2.42e-15 

Std 4.16e-23 1.63e-13 4.35e-17 3.2e-15 

𝑓5 
Mean -78.332 -78.332 -78.332 -78.332 

Std 0 1.097e-14 3.13e-15 0 

𝑓6 
Mean 0 0 0 1.35e-13 

Std 0 0 0 198e-13 

𝑓7 
Mean 1.92e-07 4.15e-05 9.71e-02 4.75e-01 

Std 2.11e-07 5.01e-05 1.01e-01 5.81e-01 

VII. CONCLUSION 

The process of task scheduling within cloud computing 
paradigms presents a multi-objective optimization challenge. 
The dynamic context and varying tasks also pose a challenge to 
finding an equilibrium between QoS requirements, energy 
consumption, and resource utilization. This paper proposed 
MABC algorithm for task scheduling. The proposed 
modification to the ABC algorithm leverages the intelligent 
foraging behavior of bee colonies to enhance its competence in 
solving complex nonlinear optimization problems. The 
traditional ABC algorithm, while effective, faces limitations in 
resource utilization, leading to a rapid decline in population 
diversity and inadequate dissemination of optimal solution 
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knowledge across generations. The introduced modifications to 
the ABC algorithm effectively addressed these limitations. By 
retaining optimal solution information within the neighborhood 
search function and incorporating a genetic evolution process, 
the MABC algorithm achieved a more balanced exploration-
exploitation trade-off, enriching population diversity. 
Comparative analysis of the MABC algorithm versus 
established scheduling techniques demonstrated its efficacy in 
producing a trifecta of desirable outcomes: lower execution 
costs, diminished energy consumption, and improved resource 
utilization.  

VIII. FUTURE WORK 

Future research will prioritize task scheduling difficulties 
that closely resemble real-world cloud computing settings. This 
also involves taking into account the priority constraint 
connections among tasks. Moreover, when considering the 
situation objectively, cost emerges as a significant determinant 
impacting work scheduling in real-life situations. Users seeking 
to optimize task completion time must allocate more money 
toward getting cloud computing services. Hence, we aim to 
devise a task scheduling algorithm that achieves a harmonious 
equilibrium among three pivotal factors: job completion time, 
cost, and load distribution. By developing innovative 
approaches that prioritize both efficiency and cost-effectiveness, 
we aim to improve cloud computing systems' efficiency and 
flexibility in real-world applications. Additionally, we envisage 
investigating the integration of emerging technologies, such as 
machine learning and edge computing, to further optimize task 
scheduling processes and adapt to evolving user demands and 
system dynamics. Through these future research endeavors, we 
aim to make a substantial contribution to the ongoing evolution 
of cloud computing technologies. This pursuit seeks to address 
the dynamic challenges confronting both cloud service providers 
and their consumers. 
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