
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1021 | P a g e

www.ijacsa.thesai.org

Modified Artificial Bee Colony Algorithm for Load

Balancing in Cloud Computing Environments

Qian LI*, Xue WANG

College of Electrical Information-School of Changchun, Guanghua University, Changchun 130000, China

Abstract—Task scheduling in cloud computing is a complex

optimization problem influenced by the ever-changing user

requirements and the different architectures of cloud systems.

Efficiently distributing workloads across Virtual Machines (VMs)

is critical to mitigate the negative consequences of inadequate and

excessive workloads, such as higher power consumption and

possible machine malfunctions. This paper presents a novel

method for dynamic load balancing using a Modified Artificial Bee

Colony (MABC) algorithm. The ABC algorithm has exceptional

competence in solving complex nonlinear optimization problems

based on bee colonies' foraging behavior. Nevertheless, the

traditional version of the ABC algorithm cannot effectively use

resources, resulting in a rapid decline in population diversity and

an ineffective spread of knowledge about the best solution between

generations. To address these limitations, this study integrates a

genetic model into the algorithm, enhancing population diversity

through crossover and mutation operators. The developed

algorithm is compared with the prevailing algorithms to confirm

its effectiveness. The results of the proposed MABC algorithm for

the load balancing method are compared with the current ones,

and it is observed that this algorithm is more beneficial in terms of

cost and energy as well as resource utilization.

Keywords—Resource utilization; cloud computing; task

scheduling; Artificial Bee Colony; genetic algorithm

I. INTRODUCTION

Cloud computing is a recently emerged computing paradigm
that provides a wide variety of services using the resources of
hardware and software systems available in the data centers
through the Internet [1]. These services are pay-as-you-go,
meaning users can acquire computing resources, storage,
applications, and services on demand. Opting for cloud services
presents many benefits to the users, including scalability, global
accessibility, reliability, flexibility, and reduced costs for
businesses. It permits organizations to quickly extend and
reduce their IT infrastructure; thus, resources can be delivered
and regained at a minimum cost [2].

A. Context

Cloud computing services are offered in three primary ways:
Infrastructure as a Service (IaaS), Platform as a Service (PaaS),
and Software as a Service (SaaS), with four deployment
strategies: private, public, community, and hybrid [3]. SaaS
enables consumers to effortlessly utilize cloud providers'
programs without the requirement to acquire, install, and
manage the software on their servers. This solution eliminates
the need to manage the cloud infrastructure and platform used
by the software [4]. PaaS allows consumers to utilize
computational assets and applications via the Internet without
requiring them to handle the underlying infrastructure

personally [5]. Instances of this platform category encompass
GoGrid, Aptana, EMC Atmos, and Amazon Elastic Cloud.
These platforms enable customers to acquire the necessary
technologies without incurring real hardware and software costs.
IaaS provides many capabilities, offerings, and assets for
developing an on-demand virtual computing framework [6].
Such suppliers include Google Base, IBM, Savvis, Rackspace,
and Amazon Web Services.

Third-party vendors offer public cloud services over the
Internet. The term "public cloud" does not imply that a user's
data is accessible or useable by the general public. Public cloud
services often provide consumers with an access control method
[7]. Private clouds are defined as data and process management
for a company and are protected from external network
bandwidth constraints, security concerns, or legislative
provisions in cloud-based data sharing. Private cloud services
improve security and operational resilience by limiting user
access and networks while having unmodified infrastructure
control for providers and users [8].

In the community cloud, various organizations share and
manage cloud computing infrastructure for a special interest
group, specific security needs, or a similar mission [9]. From a
security perspective, this type of cloud is better than a public
cloud, as it allows the community to maintain its security
environment and apply additional requirements. This allows
each member to share resources and store them and use
applications without sharing the same physical environment. A
hybrid cloud is a cloud service model that includes two or more
public, private, and community clouds connected to one another
by standard or private technology. This method gives cloud
users more power over their data and application use while
remaining independent entities [10].

B. Problem Statement

The cost savings associated with cloud services are attracting
small and medium-sized businesses. Cloud service suppliers
provide services to clients on a rental basis. Providing cloud
services to users is extremely complex, as users can access
virtual cloud resources easily. Computing resources are made
available to customers via Virtual Machines (VMs) running on
physical machines in the cloud. Virtual machines resemble
physical computers in terms of capability [11]. As a guest
program, a VM mimics the functionality of a physical machine.
Optimizing server usage is achieved by dynamically allocating
resources based on application requirements [12]. This approach
operates dynamically to distribute non-preemptive workloads
evenly. Load balancing is a challenging optimization issue in
cloud computing that falls under Non-Polynomial-Hard (NP-

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1022 | P a g e

www.ijacsa.thesai.org

Hard) problems [13]. Therefore, researchers have devoted more
attention to load balancing, which is found to improve system
performance.

Load balancing facilitates the equitable distribution of
workloads across available resources. The objective is to ensure
uninterrupted operation in the event of a service component
failure by managing the allocation and maintenance of
application instances and optimizing resource usage [14].
Furthermore, load balancing aims to minimize task reaction time
and enhance resource allocation, enhancing system performance
while reducing expenses [15]. Moreover, load balancing aims to
enhance the scalability and adaptability of applications that may
expand in magnitude in the future. It also prioritizes tasks that
demand immediate execution above other tasks [16]. To
improve data center efficiency and reduce system reaction time,
it is imperative to distribute the workloads evenly among
physical hosts in the cloud environment, thereby enhancing
throughput. Given several physical hosts in a data center, it is
crucial to implement load balancing by migrating VMs across
these hosts [17]. This is essential for ensuring the delivery of
resilient and high-performing services. It is important to
prioritize fault tolerance to provide dependable services for load
balancing during the migration of VMs.

C. Motivation

Traditionally, load balancing has been accomplished
through static and dynamic load balancing strategies [18]. The
present status of the system has no effect on static load balancing
strategies. Prior knowledge of the system is necessary. During
the compilation phase, static load balancing techniques allocate
tasks to processors before the commencement of program
execution. The scheduling approach relies on preexisting
knowledge about node characteristics and capabilities, including
execution time, CPU resources, memory, and storage capacity,
which are assumed to be known throughout the compilation
process. These algorithms are suitable for stable situations with
little load fluctuations but cannot adjust to load changes while in
operation. In contrast, dynamic approaches consider the
system's status and present situation, enabling them to handle
varying load circumstances effectively. These solutions employ
dynamic procedures to manage users' requests efficiently. While
dynamic approaches provide superior performance than static
approaches, formulating an algorithm for a dynamic cloud
environment poses significant challenges [19].

The cloud platform efficiently manages task scheduling and
allocates substantial virtual resources, no matter the duration
needed [20]. Therefore, the cloud platform's effectiveness
depends entirely on the selected technique for scheduling task
resources. Furthermore, it is vital to have a streamlined and
productive approach to assigning cloud resources to fulfill users'
incoming tasks. Also, the user's tasks must be promptly,
efficiently, and dependably processed [21]. Efficient load
balancing and minimal resource usage are essential for
executing user operations in the cloud computing environment.
Nevertheless, the complex structure of the cloud environment
and the stringent demands for managing the task scheduling
process provide significant challenges in developing and
carrying out optimization models [22].

Furthermore, the cloud task scheduling process is highly
uncertain because of multiple factors triggering the
unpredictable cloud environment, including network
connectivity [23], resource usage [24], peak network demands
[25], and web service performance inherent to service models of
the cloud [26]. Artificial intelligence and machine learning
techniques offer intelligent and adaptive solutions by analyzing
patterns and predicting future demands, leading to proactive
load management [27, 28]. Inspired by natural processes, meta-
heuristic algorithms excel at solving complex, nonlinear
optimization problems by offering robust and scalable solutions
[29]. Their ability to explore and exploit the search space
effectively helps achieve balanced load distribution across
virtual machines. Integrating these technologies enhances the
performance and resilience of cloud systems, enabling them to
meet dynamic user demands while minimizing operational costs
and resource waste [30].

D. Contribution

This study presents a new method for scheduling tasks in
cloud computing using the Artificial Bee Colony (ABC)
algorithm. The traditional ABC algorithm is well-suited for
exploration but tends to ignore exploitation due to its intrinsic
operating strategy. In the conventional ABC algorithm, the
solutions produced in each generation are acquired by random
search, resulting in the algorithm's inherent vulnerability to
exploitation. Furthermore, the method fails to properly exploit
the rich information in the best solution during execution.
Moreover, the utilization of random neighborhood search results
in a fast decline in population variety, rendering the algorithm
susceptible to early convergence and trapped in local
optimization. To solve these drawbacks, the ABC algorithm is
enhanced by implementing two modifications.

The neighborhood search operator incorporates the location
information of the global optimal solution to assist the bee
colony in finding food. This approach effectively utilizes the
information from the previous generation's optimal solution and
improves the accuracy of the algorithm's exploitability search.
Furthermore, to solve the issue of insufficient population
variety, the algorithm integrates a genetic model that enhances
population diversity by employing crossover and mutation
operators. These two enhancements successfully reconcile the
conflict between the ABC algorithm's research and application,
strengthening the method's optimization accuracy and speed.
The efficacy of the enhanced ABC method is validated by a set
of commonly employed numerical functions. In summary, the
study made the following contributions:

 Enhanced ABC algorithm for task scheduling: A novel
approach is introduced for task scheduling in cloud
computing, leveraging the ABC algorithm. Two crucial
adjustments are suggested to overcome the shortcomings
of the classic ABC algorithm in terms of exploitation.

 Improved exploitation through global neighborhood
search: The study integrates a global neighborhood
search operator to improve exploitation. By using the
location information of the global optimal solution, this
modification helps the bee colony to find food
efficiently. This ensures better utilization of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1023 | P a g e

www.ijacsa.thesai.org

information from the previous generation's optimal
solution and improves exploitability search accuracy.

 A genetic model for population diversity: To tackle the
issue of insufficient population variety and potential
premature convergence, a genetic model is integrated
into the algorithm. This model introduces crossover and
mutation operators, enhancing population diversity.
These additions successfully balance the conflict
between the algorithm's research and practical
application, leading to improved optimization accuracy
and speed.

The rest of the paper is organized as follows. Section II
provides a comprehensive review of the existing literature and
identifies gaps and limitations of current approaches. Section III
precisely formulates the task scheduling problem. The proposed
task scheduling technique is discussed in Section IV. Section V
examines the theoretical underpinnings and practical
implications of the proposed algorithm for load balancing.
Section VI presents the empirical evaluation of the proposed
method and compares its performance with existing methods.
Section VII concludes the study by summarizing the main
contributions, highlighting results, and suggesting possible
avenues for future research in Section VIII.

II. RELATED WORK

This section offers an overview of the current body of
literature about task scheduling in cloud computing. Our
objective is to uncover fundamental insights, techniques, and
advancements by analyzing various algorithms developed to
tackle particular challenges in cloud settings.

Wei [31] suggested an approach for optimizing task
scheduling in cloud infrastructure using a modified version of
the Ant Colony Optimization (ACO) algorithm. The scheduling
model utilizes an improved ACO algorithm to prevent the
optimization strategy from being stuck in local optimization
under cloud computing task scheduling principles. The task
scheduling satisfaction function is created by integrating the
three objectives of minimizing waiting time, optimizing
resource load distribution, and lowering task completion cost to
identify the most efficient task scheduling solution. Ultimately,
introducing the reward and punishment coefficient enhances the
optimization of the pheromone update rules in the ACO
algorithm, resulting in an accelerated solution speed.
Furthermore, the volatility coefficient is dynamically updated to
improve the overall performance of this method. According to
the test findings, the suggested algorithm outperforms previous
approaches regarding convergence speed, completion time, load
balancing, and consumption of virtual machine resources.

Abualigah and Diabat [32] presented a novel hybrid Antlion
optimization algorithm that combines elite-based differential
evolution to address multi-objective task scheduling challenges
in cloud computing environments. The challenge is multi-
objective since it requires minimizing the makespan and
maximizing resource consumption simultaneously. The Antlion
optimization algorithm is enhanced by including elite-based
differential expansion as a local search approach to increase its
capacity to explore the search space and prevent being stuck in
suboptimal solutions. Two tests were conducted using the

CloudSim toolbox, one on synthetic datasets and the other on
actual trace datasets. The findings indicated that the suggested
algorithm exhibited a more rapid convergence rate than
alternative methods, rendering it well-suited for extensive
planning scenarios.

Ben Alla, et al. [33] proposed a novel approach to
prioritizing customer demands and supplier resources. They
introduced a highly effective method for scheduling tasks called
MCPTS, which involves adjusting the priority depending on
four task factors: duration, delay, deadline, and burst time. The
MCPTS structure has three components: task priority, task
queue priority, and resource priority. A new strategy is
suggested to assess and establish task priorities, utilizing an
integrated Multi-criteria Decision-Making (MCDM) technique
known as ELECTRE III and a metaheuristic algorithm named
Differential Evolution. Furthermore, a unique dynamic priority
queuing algorithm derived from the queuing model is presented.
Moreover, the allocation of resources is dynamically modified
according to the task priority model to establish an effective and
adaptable connection between resource and task categories. The
experimental findings demonstrate the superiority of the
MCPTS algorithm in comparison to other current algorithms.
Furthermore, it shows the efficacy of the suggested approach in
delivering commendable system performance, fulfilling user
demands and QoS prerequisites, enhancing load distribution,
and optimizing resource usage.

Malti, et al. [34] offer a highly effective task scheduling
method that leverages flower pollination behavior. This
algorithm incorporates the Pareto optimality principle and the
TOPSIS approach to enhance the quality of the solutions
achieved. Both single and multi-objective optimization
variations are analyzed. In the second scenario, three
optimization criteria are considered: decreasing the duration or
schedule length, reducing the execution cost, and optimizing the
overall dependability of task distribution. The study examined
several test bench situations and Quality of Service (QoS)
measures. The acquired findings validate the advantages of the
suggested method.

Mangalampalli, et al. [35] proposed a Multi-Objective Task
Scheduling Gray Wolf Optimization (MOTSGWO). This
algorithm is capable of making scheduling decisions in real-time
by considering the current state of cloud resources and future
workload demands. Moreover, the suggested method distributes
resources according to the end users' financial constraints and
the tasks' importance. The MOTSGWO technique is applied
using the Cloudsim toolbox, and the workload is created by
building datasets with various task densities and workload
patterns. The comprehensive studies demonstrate that the
suggested MOTSGWO strategy surpasses previous baseline
strategies and enhances the crucial metrics.

Saravanan, et al. [36] proposed the enhanced Wild Horse
Optimization (IWHO) algorithm to tackle the issues of lengthy
scheduling time, excessive cost consumption, and high use of
virtual machines. Initially, a model for scheduling and
distributing cloud computing tasks is constructed, considering
the primary aspects of time, cost, and virtual machines. To
enhance the local search capability and minimize premature
convergence, the IWHO algorithm employs the inertia weight

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1024 | P a g e

www.ijacsa.thesai.org

technique to effectively identify the ideal individual. The IWHO
method is augmented with the Levy-Flight algorithm to
optimize task scheduling in cloud computing. The effectiveness
of the proposed hybrid algorithm is verified, and the outcomes
are assessed utilizing several methodologies. The simulation
results demonstrated that the suggested approach surpassed
others in various scenarios.

Behera and Sobhanayak [37] suggested a hybrid approach
that integrates the GWO algorithm with the Genetic Algorithm
(GA). GWO-GA optimizes multi-objective task scheduling in
cloud computing by minimizing processing time, energy usage,
and cost. The enhancements to GWO-GA involve incorporating
the crossover and mutation operator from the genetic algorithm.
Moreover, the accelerated convergence of the GA-based GWO
method is a benefit when dealing with extensive planning
problems. The suggested algorithm performs better than existing
GWO, GA, and PSO algorithms in terms of makespan, cost, and
energy usage. It achieves reductions of 19%, 21%, and 15%
correspondingly, compared to each of these approaches. In
addition, it leads to energy conservation rates of 17%, 19%, and
23% when compared to GWO, GA, and PSO, respectively.
Simultaneously, it reduces the total design expenditure by 13%,
17%, and 22%, respectively. The findings illustrate the efficacy
of the suggested approach in addressing the task scheduling
issue in cloud computing settings.

Pabitha, et al. [38] proposed the Chameleon and Remora
Search Optimization (CRSO) algorithm to enhance the
scheduling procedure by investigating the influence of MIPS
and network bandwidth on virtual machine performance.
Furthermore, the study considers the uncertainty aspects of task

completion rates, distribution of loads, cost, and makespan
concurrently during the scheduling process. The formulation of
an optimization model with multiple objectives for cloud task
scheduling involves the integration of the advantages of
Chameleon Search Algorithm (CSA) and Remora Search
Optimization Algorithm (RSOA) utilizing a greedy technique to
mimic the actual process of cloud computing task scheduling.
Simulation findings confirm that the proposed CRSOA
technique substantially decreases the time required for task
completion and efficiently manages the workload distribution
across the available virtual machines, surpassing other
competing algorithms.

III. PROBLEM DEFINITION

The assignment of incoming jobs to free VMs located in
cloud data centers is a major problem. This scenario involves a
collection of uniform and diverse tools where individual servers
run many virtual machines. Virtualization enables users to
utilize virtual environments' flexible computing resources. The
data center broker controls the scheduling system, supervising
the allocation and monitoring of user tasks. Fig. 1 depicts the
schematic layout of the scheduling procedure. Initially, cloud
users enter tasks kept in the Task Manager module. This module
monitors the arrival of tasks and provides relevant information
to the corresponding individuals. These task submissions are
transmitted to the cloud scheduling system by the task manager.
A number of jobs are allocated to VMs according to the MABC
algorithm. The cloud information repository is used to gather
details about VMs and tasks.

Fig. 1. Scheduling process.

Several data centers are involved in the public cloud system
paradigm in order to meet resource demands. Consider a
collection of data centers (𝑑𝑐1, 𝑑𝑐2, … , 𝑑𝑐𝑝). A data center

comprises several Physical Hosts (PHs). For instance, the data
center dcr includes k PHs labeled (𝑃𝐻𝑟1, 𝑃𝐻𝑟2, … , 𝑃𝐻𝑟𝑘). Each
PH possesses distinct characteristics, including the
computational capability of a processor determined by the
number of cores measured in Millions of Instructions Per
Second (MIPS). Each PH is equipped with bandwidth, memory,
storage capacity, and a VM Manager (VMM). The VMM

installed on PHs has a vital function in keeping track of all VMs
located on that specific physical host. It guarantees the effective
distribution and usage of resources for the virtual machines
operating on the host. Each PH inside a data center can handle a
specific number of VMs, represented as (𝑉𝑀1, 𝑉𝑀2, … , 𝑉𝑀𝑚).
Each VM possesses its own distinct settings, outlined as follows:

 Number of cores: This parameter defines the VM's
capacity for handling several tasks simultaneously while
simultaneously processing.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1025 | P a g e

www.ijacsa.thesai.org

 Processing power: This is expressed in MIPS, which
denotes the computational capacity for processing
commands and performing tasks.

 Storage: The allocated capability for storing data and
files particular to virtual machines.

 Main memory: Designated for the storage of data and the
execution of applications within the virtual machine.

Furthermore, each VM is associated with an hourly rate
representing the expense incurred for utilizing that specific VM
for every utilization. Virtual machine configurations and the
time spent using them determine how much users are billed for
resources. Within the realm of cloud computing, individuals or
organizations utilizing cloud services may effortlessly forward
their individual requests to the service supplier for processing
with no extensive knowledge of its underpinnings. These
assignments include distinct criteria regarding the duration of
the job and the assets needed. Users enter a set of n jobs labeled
(𝑡1, 𝑡2, … , 𝑡𝑛). Tasks are given a distinct duration (li), quantified
in Millions of Instructions (MI). The process starts with
determining the duration of the ith job on the jth virtual machine,
outlined in Eq. (1).

𝐸𝑇(𝑙𝑖 , 𝑣𝑚𝑗) =
𝑙𝑖

𝑡𝑜𝑡𝑎𝑙𝑀𝐼𝑃𝑆(𝑣𝑚𝑗)
 (1)

The scheduler evaluates the VM's energy usage during task
execution and the cost of processing tasks within the VM. The
primary goal is to lower the total costs associated with task
completion by finding the VM with the most favorable costs that
meets the individual criteria for the task. Due to the varying
processing capabilities of multiple VMs, the execution time and
cost of performing a specific function on distinct VMs are
inconsistent. As a result, a problem with multiple objectives
develops, which seeks to reduce the time it takes to complete a
task, the amount of energy used, and the cost incurred while
maximizing resource efficiency. Thus, this study aims to tackle
the complex challenge of solving the multi-objective scheduling
issue using the suggested MABC algorithm.

Cloud computing services are delivered on a two-actor
model, encompassing cloud service suppliers and consumers.
Service suppliers provide clients with resources to accomplish
jobs. Cloud users place a high premium on application
efficiency, preferring rapid and efficient computation
capabilities. In contrast, cloud service suppliers focus on
optimizing resource utilization to achieve optimal financial
returns. The purposes may be categorized into client demands,
which include the cost of execution and the duration of the
schedule, and supplier demands, which encompass energy
consumption and resource utilization. Within the cloud
computing domain, execution cost signifies the total expenditure
accrued during the operation of a given application. It serves as
a quantifiable indicator to evaluate financial outlays. However,
it is important to specify the costs associated with the assets
used. Clients seek to decrease both expenses and schedule
duration. The computation of expenses associated with the
execution can be summarized as follows:

𝐸𝐶 = ∑ 𝐸𝑇𝑗 × 𝑝𝑟𝑖𝑐𝑒𝑗
𝑚
𝑗=1 (2)

𝐸𝑇𝑗 denotes the length of time that the jth VM is allocated for

executing a task, following the completion of the final task. The
schedule length is crucial for assessing the quality of scheduling
and is determined by the longest time it takes for any task to be
completed, either among all submitted tasks or by the time the
final processing virtual machine is complete. The scheduler's
efficiency can be accurately assessed using this essential
measure. A shorter schedule length indicates an improved
scheduling procedure in which tasks are distributed optimally to
appropriate resources. In contrast, a longer schedule length
signifies a less efficient scheduling method. Eq. (3) can
determine the value of the schedule length.

𝑆𝐿 = max⁡(∑ 𝐸𝑇(𝑙𝑖 , 𝑣𝑚𝑗)𝑥𝑖𝑗
𝑛
𝑖=1)∀𝑣𝑚𝑗 (3)

Eq. (3) represents the allocation decision variable, 𝑥𝑖𝑗 , which

indicates whether task i is assigned to the jth VM. The variable
is binary, with a value of 1 indicating that task i is assigned to
VM j, and 0 stating otherwise. Maximizing resource efficiency
is crucial for cloud service providers. Their main goal is to
maximize the utilization of resources in order to enhance
profitability. Providers attempt to optimize their usage given the
constraints of limited resources. Eq. (4) clearly describes how to
calculate the average resource utilization.

𝑎𝑣𝑒𝑟𝑎𝑔𝑒⁡𝑅𝑈 =
∑ 𝐸𝑇𝑖
𝑚
𝑖=1

𝑂1
 (4)

The variable O1 in Eq. (4) denotes the minimum schedule
length, which serves as a measure of the desired service quality.
In this situation, efficient use of resources implies the optimal
exploitation of available VMs to handle tasks. Data center
energy usage involves several components, including CPU,
network interfaces, and storage devices. Out of all these
resources, the CPU is generally the most power-intensive. When
evaluating the energy usage of a VM, it is divided into two
categories: energy consumption during times of idle and energy
consumption during active phases. The overall energy usage
takes into account both the idle and active modes of the VM.
The energy spent during periods of idle is approximately 60%
of the energy consumed by a fully functional VM. The
remaining 40% represents the energy consumed by the VM
during active calculations. This energy expenditure is dependent
on the processing speed of the VM, calculated by Eq. (5).

𝐸𝐶 = 10−8 × (𝑣𝑚𝑖𝑚𝑖𝑝𝑠
)2

𝐽

𝑀𝐼
𝑎𝑛𝑑⁡𝐼𝐸𝑖 = 0.6 × 𝐸𝐶𝑖(5)

𝐸𝐶𝑖 denotes the energy consumed when the VM is in an
active state 𝐼𝐸𝑖 represents the energy consumed when the VM is
idle. The model's energy usage can be defined according to Eq.
(6).

𝑇𝐸𝑖 = 𝐼𝐸𝑖 + 𝐸𝐶𝑖 (6)

IV. MODIFIED ABC ALGORITHM FOR TASK SCHEDULING

The ABC algorithm applies a kind of bionic
intelligence inspired by honey bee foraging behavior. In this
algorithm, food source position indicates a potential
optimization solution, while nectar quality indicates the quantity
of nectar [39]. An optimization problem is addressed by three
types of bees: worker, onlooker, and scout. Employed bees are
equal to food sources. So, each worker bee has access to a food
source around the hive. An onlooker bee continuously watches

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1026 | P a g e

www.ijacsa.thesai.org

and selects food resources under the activities of employed bees.
A scout bee uncovers new sources of food not found by
employed bees by searching randomly. Fig. 2 illustrates how the
ABC algorithm finds an optimal solution for the optimization
problem. Initially, nectar sources are produced in a random
manner using Eq. (7).

𝑥𝑖,𝑗 = 𝑥𝑗
𝑚𝑖𝑛 + 𝑟𝑎𝑛𝑑(0,1). (𝑥𝑗

𝑚𝑎𝑥 − 𝑥𝑗
𝑚𝑖𝑛) (7)

Fig. 2. Workflow of ABC algorithm.

where, 𝑥𝑖,𝑗 ⁡ ∈ [𝑥𝑗
𝑚𝑎𝑥 , 𝑥𝑗

𝑚𝑖𝑛]⁡ denotes the jth dimension

boundary of the optimization problem, and 𝑟𝑎𝑛𝑑(0, 1) is a
random number ranging from 0 to 1. The ABC optimization
process consists of three separate stages: the employed bee
stage, the onlooker bee stage, and the scout bee stage.

The employed bees have the ability to scan the whole
optimization problem space for new sources of nectar. Eq. (8)
updates the position of the nectar source simultaneously.

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜙𝑖,𝑗 . (𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) (8)

where, 𝑥𝑖 represents the initial nectar source, 𝑣𝑖 reflects a
recently discovered nectar source, 𝜙𝑖,𝑗𝜖[−1,1] is a random

number chosen uniformly, 𝑥𝑘 is a nectar source taken randomly
from the population, and 𝑥𝑘 is not equal to 𝑥𝑖. It should be noted
that 𝑗 is a dimension that is chosen without any specific criteria,
and 𝑥𝑖 and 𝑣𝑖 vary simply in this particular dimension. If the
amount of nectar in 𝑣𝑖 is more than that in 𝑥𝑖 , then 𝑣𝑖 will
replace 𝑥𝑖 in the subsequent round. Alternatively, 𝑥𝑖 stays
unaltered.

ffigOnlooker bees will select optimal nectar sources for
exploitation depending on the quantity of nectar available, using
information provided by employed bees. Additionally, it
explores new nectar sources by employing the solution search
equation given in Eq. (8). The fitness value of an individual is
determined by the quantity of nectar from the nectar supply. This
is estimated using the Eq. (9).

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 {

1

1+𝑓(𝑋𝑖)
⁡⁡⁡⁡⁡𝑓(𝑋𝑖) ≥ 0

1 + |𝑓(𝑋𝑖)|⁡⁡⁡𝑓(𝑋𝑖) < 0
 (9)

Where 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 refers to the fitness value of the nectar
source, and (⋅) indicates the objective function value. A higher
quantity of nectar in a nectar source increases the likelihood of

onlooker bees choosing that source. The probability of selection
is computed using the Eq. (10).

𝑝𝑖 =
𝑓(𝑋𝑖)

∑ 𝑓(𝑋𝑖)
𝑆𝑁
𝑗=1

 (10)

After determining the probability of selecting each nectar
source, the onlooker bees will employ the roulette method. If the
nectar supply linked to the employed bees is not refreshed over
a specified threshold 𝑙𝑖𝑚𝑖𝑡, we assume that the nectar source has
been exhausted. In this scenario, a novel nectar source is
introduced at random using Eq. (7) to substitute 𝑋𝑖.

The conventional ABC algorithm fails to fully exploit the
location details of the optimal solution in each iteration, a
valuable piece of information. This study introduces a global
neighborhood search operator (as given in Eq. (11)). With this
operator, the bee colony locates food sources using the
positional data from the global optimal solution, XGbestj. By using
this approach, the honey source XGbest,j can be fully exploited and
utilized. Furthermore, exploring the vicinity of the optimal
solution accelerates the convergence of the algorithm. The
variable β is given a random number from 0 to 1.

𝑁𝑒𝑤𝑋𝑖,𝑗 = 𝑋𝑖,𝑗 + 𝜙𝑖,𝑗(𝑋𝐺𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑘,𝑗) + 𝛽(𝑋𝐺𝑏𝑒𝑠𝑡,𝑗 − 𝑋𝑖,𝑗) (11)

While the current generation's optimal solution information
is incorporated into the neighborhood search operator, the
random neighborhood search approach remains unchanged. Eq.
(11) facilitates algorithm convergence and enhances
exploitation capabilities. Nevertheless, it may lead to local
optimization by steering the colony towards local extremes. In
order to address this constraint and enhance the algorithm's
ability to consistently generate new viable solutions, a genetic
model is utilized. Each iteration retains half of the ideal solution.
Afterward, the preserved solutions undergo recombination
according to Eq. (12). Ultimately, the new solution passes the
mutation and crossover procedures, as shown in Fig. 3. By
employing this evolutionary process, the search range expands,
and the variety of viable solutions is enhanced to avoid local
optimization.

𝑋𝑖,𝑗 = 𝑋𝑘1,𝑗 + 𝛾(𝑋𝑘2,𝑗 − 𝑋𝑘3,𝑗) (12)

Fig. 3. An illustration of mutations and crossovers.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1027 | P a g e

www.ijacsa.thesai.org

Three solutions, Xk1, Xk2, and Xk3, are chosen from the
preserved feasible solutions through random probability
selection. 𝛾 is a randomly generated number within the range [0,
1], and j denotes the position of an array element in the plane
array.

V. DISCUSSION

This section examines the theoretical underpinnings and
practical implications of the MABC algorithm for load
balancing in cloud computing environments. The MABC
algorithm enhances the ABC algorithm by solving its main
limitations, specifically the lack of exploitation capability and
rapid loss of population diversity. The traditional ABC
algorithm is augmented by including a mechanism for retaining
optimal solution information within the neighborhood search
operator. By modifying the algorithm, best practices are
preserved and utilized effectively in subsequent iterations.
Furthermore, the incorporation of a genetic evolution
mechanism fosters a balance between exploratory and
exploitative behaviors within the scheduling process.

Among the primary advantages of the MABC algorithm is
its ability to balance load across VMs in a cloud computing
environment. MABC algorithm adapts to dynamic workloads
and varying user demands by maintaining a diverse population
and effectively utilizing optimal solution information. The result
is more efficient resource utilization, reduced energy
consumption, and a shorter time to complete tasks. The
modifications to the ABC algorithm result in faster convergence
rates, making the MABC algorithm well-suited to real-time load
balancing applications. While the MABC algorithm
demonstrates significant improvements over traditional
methods, potential limitations must be acknowledged. The
higher complexity due to the retention of optimal solutions and
the genetic evolution mechanism may lead to additional
computational overhead. This could impact the algorithm's
performance under resource-constrained environments.
Furthermore, the effectiveness of the MABC algorithm depends
on the proper tuning of its parameters. Inappropriate parameter
settings may produce suboptimal performance or excessive
computational costs.

VI. SIMULATION RESULTS

In this section, the suggested algorithm is benchmarked
against recent swarm-based algorithms (GA, Harris Hawks
Optimizer (HHO), ACO, and traditional ABC). Simulations
were conducted with the CloudSim 3.0.3 simulator on a
Windows 10 laptop powered by 16 GB of RAM. Table I outlines
the specifications of the virtual cloud computing environment.
Table II provides a summary of the VM parameters involved in
the experiment. The synthetic workload is created using an even
distribution, guaranteeing an equal spread of tasks in different
dimensions. The assessment examines the High-Performance
Computing Centre (HPC2N) workload, which is commonly
acknowledged as a benchmark for evaluating the performance
of distributed systems.

Results of resource utilization for the different methods,
including MABC, ABC, GA, HHO, and ACO, using the
HPC2N real-word dataset are illustrated in Fig. 4 and 5. Fig. 4
compares different load balancing algorithms applied to 40
VMs. The MABC algorithm demonstrates superior resource
utilization across all task quantities. This is because MABC
considers resource usage when scheduling tasks, ensuring tasks
are allocated to the most appropriate VMs. VMs are thus utilized
more efficiently, resulting in enhanced overall performance and
reduced idle times compared to ABC, GA, HHO, and ACO. Fig.
5 shows the resource utilization of different algorithms when 80
VMs are used. Similar to the results for 40 VMs, the MABC
algorithm consistently outperforms the others. This performance
is due to MABC’s advanced scheduling mechanism, which
dynamically adjusts to the available resources, thereby
maximizing VM efficiency and minimizing resource wastage.

TABLE I. DATACENTER AND HOST CONFIGURATIONS

Cloud component Feature Value

Host Storage 2 TB

RAM F GB

Bandwidth 5 GB

Datacenter User count 1

 Host count 2

 Datacenter count 1 2

TABLE II. VMS CONFIGURATIONS

Characteristic Value

VM count 20-100

MIPS 500-1000

Bandwidth 0.5 Gb/S

VMM Xen

Size 100 MB

Fig. 6 compares the energy consumption of various load
balancing algorithms under HPC2N workloads with 40 VMs.
The energy conservation performance of each algorithm is
evaluated as task counts increase. Traditional algorithms such as
ABC, ACO, GA, and HHO exhibit linear rises in energy
consumption with increasing task counts, but the MABC
algorithm shows a more gradual rise. Under varying workloads,
MABC conserves energy efficiently, which makes it a suitable
solution for energy-efficient cloud task scheduling. Fig. 7
compares the energy consumption of different load balancing
algorithms when applied to 80 VMs. Similar to Fig. 6, the energy
consumption patterns of various algorithms are analyzed under
a variety of task counts. According to the results, MABC is more
effective than traditional algorithms at conserving energy and
optimizing resource allocation compared to traditional
algorithms. Fig. 8 illustrates the energy consumption across
different load balancing algorithms when applied to a synthetic
workload with 120 VMs.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1028 | P a g e

www.ijacsa.thesai.org

Fig. 4. Resource utilization for HPC2N tasks involving 40 virtual machines.

Fig. 5. Resource utilization for HPC2N task involving 80 virtual machines.

Fig. 6. Energy consumption for HPC2N tasks involving 40 virtual machines.

Fig. 9 to 11 offer a comparative evaluation of various
algorithms concerning execution costs. This analysis
encompasses both synthetic and HPC2N workloads,
highlighting the potential impact of task duration and VM
selection on execution costs. The results indicate that MABC

outperforms the traditional ABC algorithm across varying task
numbers for synthetic and HPC2N workloads. As shown in Fig.
9 to Fig. 11, MABC demonstrates its cost-effectiveness by
consistently reducing execution costs across a variety of
scenarios. When applied to real-world tasks ranging from 250 to
2000 units, MABC exhibits an average cost reduction of 11% to
43% compared to the ABC algorithm. This advantage extends
to synthetic workloads as well, with MABC achieving average
cost reductions of 9% to 60% for tasks between 500 and 2000
units. These findings highlight MABC's ability to optimize
resource utilization and minimize execution costs across diverse
task types and workloads.

Fig. 7. Energy consumption for HPC2N tasks involving 80 virtual machines.

Fig. 8. Energy consumption for synthetic tasks involving 120 virtual

machines.

Table III shows numerical functions used to prove the
efficiency of the MABC algorithm. An array of benchmark
functions is provided, with tests f1-f4 covering unimodal and
tests f5-f7 covering multimodal continuous functions. The
range of values for the parameters and the lowest possible
numerical function value are listed in Table IV. The genetic,
GABC, ABC, and MABC algorithms are employed for
optimizing seven numerical functions. The algorithm was
executed autonomously 20 times. The algorithm's benefits and
drawbacks were assessed by utilizing statistical measures such

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1029 | P a g e

www.ijacsa.thesai.org

as the average and standard deviation. A performance analysis
of algorithms with 30 dimensions and 3000 iterations is
presented in Table IV. This table reveals that the MABC
algorithm outperforms other algorithms in terms of both the
average and standard deviation of its results.

Fig. 9. Execution cost for HPC2N tasks involving 40 virtual machines.

Fig. 10. Execution cost for HPC2N tasks involving 80 virtual machines.

Fig. 11. Execution cost for synthetic tasks involving 120 virtual machines.

TABLE III. NUMERICAL FUNCTIONS

Function Expression Range
Minimum

value

Exponential

𝑓1(𝑥)

= exp⁡(0.5 ×∑ 𝑥𝑖
𝐷

𝑖=1
)

[−10,10]𝐷 0

SumSquare 𝑓2(𝑥) =∑ 𝑖𝑥𝑖
2

𝐷

𝑖=1
 [−10,10]𝐷 0

Elliptic

𝑓3(𝑥)

=∑ (106)𝑖−1/𝐷−1𝑥𝑖
2

𝐷

𝑖=1

[−100,100]𝐷 0

Sphere 𝑓4(𝑥) =∑ 𝑥𝑖
2

𝐷

𝑖=1
 [−100,100]𝐷 0

Himmelblau

𝑓5(𝑥)
= 1

/𝐷∑ [𝑥𝑖
4 − 16𝑥𝑖

2
𝐷

𝑖=1

+ 5𝑥𝑖]

[−5,5]𝐷 -78.33

Rastrigin

𝑓6(𝑥)

=∑ [𝑥𝑖
2

𝐷

𝑖=1

− 10 cos(2𝜋𝑥𝑖) + 10]

[−5.11,5.11]𝐷 0

Rosenbrock

𝑓7(𝑥)

=∑ [100(𝑥𝑖+1
𝐷−1

𝑖=1

− 𝑥𝑖
2)2 − (𝑥𝑖 − 1)2]

[−5,10]𝐷 0

TABLE IV. ALGORITHMS COMPARISON

Function MABC GA GABC ABC

𝑓1
Mean 0 0 7.18e-23 7.18e-21

Std 0 0 7.07e-23 7.21e-21

𝑓2
Mean 3.57e-20 8.11e-11 5.253-15 7.33e-15

Std 6.92e-20 7.81e-11 6.18e-15 8.19e-15

𝑓3
Mean 4.98e-20 4.47e-12 4.19e-16 4.53e-8

Std 1.21e-20 5.77e-12 4.25e-16 4.83e-8

𝑓4
Mean 3.73e-23 1.23e-13 5.12e-16 2.42e-15

Std 4.16e-23 1.63e-13 4.35e-17 3.2e-15

𝑓5
Mean -78.332 -78.332 -78.332 -78.332

Std 0 1.097e-14 3.13e-15 0

𝑓6
Mean 0 0 0 1.35e-13

Std 0 0 0 198e-13

𝑓7
Mean 1.92e-07 4.15e-05 9.71e-02 4.75e-01

Std 2.11e-07 5.01e-05 1.01e-01 5.81e-01

VII. CONCLUSION

The process of task scheduling within cloud computing
paradigms presents a multi-objective optimization challenge.
The dynamic context and varying tasks also pose a challenge to
finding an equilibrium between QoS requirements, energy
consumption, and resource utilization. This paper proposed
MABC algorithm for task scheduling. The proposed
modification to the ABC algorithm leverages the intelligent
foraging behavior of bee colonies to enhance its competence in
solving complex nonlinear optimization problems. The
traditional ABC algorithm, while effective, faces limitations in
resource utilization, leading to a rapid decline in population
diversity and inadequate dissemination of optimal solution

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1030 | P a g e

www.ijacsa.thesai.org

knowledge across generations. The introduced modifications to
the ABC algorithm effectively addressed these limitations. By
retaining optimal solution information within the neighborhood
search function and incorporating a genetic evolution process,
the MABC algorithm achieved a more balanced exploration-
exploitation trade-off, enriching population diversity.
Comparative analysis of the MABC algorithm versus
established scheduling techniques demonstrated its efficacy in
producing a trifecta of desirable outcomes: lower execution
costs, diminished energy consumption, and improved resource
utilization.

VIII. FUTURE WORK

Future research will prioritize task scheduling difficulties
that closely resemble real-world cloud computing settings. This
also involves taking into account the priority constraint
connections among tasks. Moreover, when considering the
situation objectively, cost emerges as a significant determinant
impacting work scheduling in real-life situations. Users seeking
to optimize task completion time must allocate more money
toward getting cloud computing services. Hence, we aim to
devise a task scheduling algorithm that achieves a harmonious
equilibrium among three pivotal factors: job completion time,
cost, and load distribution. By developing innovative
approaches that prioritize both efficiency and cost-effectiveness,
we aim to improve cloud computing systems' efficiency and
flexibility in real-world applications. Additionally, we envisage
investigating the integration of emerging technologies, such as
machine learning and edge computing, to further optimize task
scheduling processes and adapt to evolving user demands and
system dynamics. Through these future research endeavors, we
aim to make a substantial contribution to the ongoing evolution
of cloud computing technologies. This pursuit seeks to address
the dynamic challenges confronting both cloud service providers
and their consumers.

ACKNOWLEDGMENT

This work was supported by project of Jilin Provincial
Department of Education Scientific Research Technology. (No.
JJKH20231459KJ).

REFERENCES

[1] H. N. Alshareef, "Current Development, Challenges, and Future Trends in
Cloud Computing: A Survey," International Journal of Advanced
Computer Science and Applications, vol. 14, no. 3, 2023.

[2] B. Guha, S. Moore, and J. M. Huyghe, "Conceptualizing data-driven
closed loop production systems for lean manufacturing of complex
biomedical devices—a cyber-physical system approach," Journal of
Engineering and Applied Science, vol. 70, no. 1, p. 50, 2023.

[3] B. Pourghebleh, A. A. Anvigh, A. R. Ramtin, and B. Mohammadi, "The
importance of nature-inspired meta-heuristic algorithms for solving
virtual machine consolidation problem in cloud environments," Cluster
Computing, pp. 1-24, 2021.

[4] M. Saleem, M. Warsi, and S. Islam, "Secure information processing for
multimedia forensics using zero-trust security model for large scale data
analytics in SaaS cloud computing environment," Journal of Information
Security and Applications, vol. 72, p. 103389, 2023.

[5] U. Gupta and R. Sharma, "Comparison of Different Cloud Computing
Platforms for Data Analytics," in Doctoral Symposium on Computational
Intelligence, 2023: Springer, pp. 67-78.

[6] A. K. Samha, "Strategies for efficient resource management in federated
cloud environments supporting Infrastructure as a Service (IaaS)," Journal
of Engineering Research, 2023.

[7] L. Pons et al., "Cloud white: Detecting and estimating qos degradation of
latency-critical workloads in the public cloud," Future Generation
Computer Systems, vol. 138, pp. 13-25, 2023.

[8] S. Ahmadi, "Security And Privacy Challenges in Cloud-Based Data
Warehousing: A Comprehensive Review," International Journal of
Computer Science Trends and Technology (IJCST)–Volume, vol. 11,
2023.

[9] U. M. Ismail and S. Islam, "A unified framework for cloud security
transparency and audit," Journal of Information Security and
Applications, vol. 54, p. 102594, 2020.

[10] V. Hayyolalam, B. Pourghebleh, A. A. P. Kazem, and A. Ghaffari,
"Exploring the state-of-the-art service composition approaches in cloud
manufacturing systems to enhance upcoming techniques," The
International Journal of Advanced Manufacturing Technology, vol. 105,
no. 1-4, pp. 471-498, 2019.

[11] G. Tricomi, G. Merlino, A. Panarello, and A. Puliafito, "Optimal selection
techniques for Cloud service providers," IEEE Access, vol. 8, pp. 203591-
203618, 2020.

[12] Y. Sun, J. Li, X. Fu, H. Wang, and H. Li, "Application research based on
improved genetic algorithm in cloud task scheduling," Journal of
Intelligent & Fuzzy Systems, vol. 38, no. 1, pp. 239-246, 2020.

[13] K. J. Naik, "An Adaptive Push-Pull for Disseminating Dynamic Workload
and Virtual Machine Live Migration in Cloud Computing," International
Journal of Grid and High Performance Computing (IJGHPC), vol. 14, no.
1, pp. 1-25, 2022.

[14] D. A. Shafiq, N. Jhanjhi, and A. Abdullah, "Load balancing techniques in
cloud computing environment: A review," Journal of King Saud
University-Computer and Information Sciences, vol. 34, no. 7, pp. 3910-
3933, 2022.

[15] S. K. Mishra, B. Sahoo, and P. P. Parida, "Load balancing in cloud
computing: a big picture," Journal of King Saud University-Computer and
Information Sciences, vol. 32, no. 2, pp. 149-158, 2020.

[16] B. Pourghebleh and V. Hayyolalam, "A comprehensive and systematic
review of the load balancing mechanisms in the Internet of Things,"
Cluster Computing, pp. 1-21, 2019.

[17] F. Hasan, M. Imran, M. Shahid, F. Ahmad, and M. Sajid, "Load balancing
strategy for workflow tasks using stochastic fractal search (SFS) in Cloud
Computing," Procedia Computer Science, vol. 215, pp. 815-823, 2022.

[18] V. Mohammadian, N. Jafari Navimipour, M. Hosseinzadeh, and A.
Darwesh, "Comprehensive and systematic study on the fault tolerance
architectures in the cloud computing," Journal of Circuits, Systems and
Computers, 2020.

[19] M. Hamdan et al., "A comprehensive survey of load balancing techniques
in software-defined network," Journal of Network and Computer
Applications, vol. 174, p. 102856, 2021.

[20] W. Lin, C. Liang, J. Z. Wang, and R. Buyya, "Bandwidth‐aware divisible
task scheduling for cloud computing," Software: Practice and Experience,
vol. 44, no. 2, pp. 163-174, 2014.

[21] Y. Yu and Y. Su, "Cloud task scheduling algorithm based on three queues
and dynamic priority," in 2019 IEEE International Conference on Power,
Intelligent Computing and Systems (ICPICS), 2019: IEEE, pp. 278-282.

[22] S. Mangalampalli et al., "Fault-Tolerant Trust-Based Task Scheduling
Algorithm Using Harris Hawks Optimization in Cloud Computing,"
Sensors, vol. 23, no. 18, p. 8009, 2023.

[23] W. Anupong et al., "Deep learning algorithms were used to generate
photovoltaic renewable energy in saline water analysis via an oxidation
process," Water Reuse, vol. 13, no. 1, pp. 68-81, 2023.

[24] S. P. Rajput et al., "Using machine learning architecture to optimize and
model the treatment process for saline water level analysis," Water Reuse,
vol. 13, no. 1, pp. 51-67, 2023.

[25] S. Chekuri et al., "Integrated digital library system for long documents
and their elements," in 2023 ACM/IEEE Joint Conference on Digital
Libraries (JCDL), 2023: IEEE, pp. 13-24.

[26] Y. Kumar, S. Kaul, and Y.-C. Hu, "Machine learning for energy-resource
allocation, workflow scheduling and live migration in cloud computing:
State-of-the-art survey," Sustainable Computing: Informatics and
Systems, vol. 36, p. 100780, 2022.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1031 | P a g e

www.ijacsa.thesai.org

[27] M. Hajihosseinlou, A. Maghsoudi, and R. Ghezelbash, "A comprehensive
evaluation of OPTICS, GMM and K-means clustering methodologies for
geochemical anomaly detection connected with sample catchment
basins," Geochemistry, p. 126094, 2024.

[28] K. Xu, J. Lyu, and S. Manoochehri, "In situ process monitoring using
acoustic emission and laser scanning techniques based on machine
learning models," Journal of Manufacturing Processes, vol. 84, pp. 357-
374, 2022.

[29] P. Gholami and H. Seferoglu, "DIGEST: Fast and Communication
Efficient Decentralized Learning with Local Updates," IEEE Transactions
on Machine Learning in Communications and Networking, 2024.

[30] S. R. Abdul Samad et al., "Analysis of the performance impact of fine-
tuned machine learning model for phishing URL detection," Electronics,
vol. 12, no. 7, p. 1642, 2023.

[31] X. Wei, "Task scheduling optimization strategy using improved ant colony
optimization algorithm in cloud computing," Journal of Ambient
Intelligence and Humanized Computing, pp. 1-12, 2020.

[32] L. Abualigah and A. Diabat, "A novel hybrid antlion optimization
algorithm for multi-objective task scheduling problems in cloud
computing environments," Cluster Computing, vol. 24, pp. 205-223,
2021.

[33] H. Ben Alla, S. Ben Alla, A. Ezzati, and A. Touhafi, "A novel multiclass
priority algorithm for task scheduling in cloud computing," The Journal
of Supercomputing, vol. 77, no. 10, pp. 11514-11555, 2021.

[34] A. N. Malti, M. Hakem, and B. Benmammar, "Multi‐objective task
scheduling in cloud computing," Concurrency and Computation: Practice
and Experience, vol. 34, no. 25, p. e7252, 2022.

[35] S. Mangalampalli, G. R. Karri, and M. Kumar, "Multi objective task
scheduling algorithm in cloud computing using grey wolf optimization,"
Cluster Computing, vol. 26, no. 6, pp. 3803-3822, 2023.

[36] G. Saravanan, S. Neelakandan, P. Ezhumalai, and S. Maurya, "Improved
wild horse optimization with levy flight algorithm for effective task
scheduling in cloud computing," Journal of Cloud Computing, vol. 12, no.
1, p. 24, 2023.

[37] I. Behera and S. Sobhanayak, "Task scheduling optimization in
heterogeneous cloud computing environments: A hybrid GA-GWO
approach," Journal of Parallel and Distributed Computing, vol. 183, p.
104766, 2024.

[38] P. Pabitha, K. Nivitha, C. Gunavathi, and B. Panjavarnam, "A chameleon
and remora search optimization algorithm for handling task scheduling
uncertainty problem in cloud computing," Sustainable Computing:
Informatics and Systems, vol. 41, p. 100944, 2024.

[39] N. Rahnema and F. S. Gharehchopogh, "An improved artificial bee colony
algorithm based on whale optimization algorithm for data clustering,"
Multimedia Tools and Applications, vol. 79, no. 43-44, pp. 32169-32194,
2020.

