
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1032 | P a g e

www.ijacsa.thesai.org

Cloud Workload Prediction Based on Bayesian-

Optimized Autoformer

Biying Zhang, Yuling Huang, Zuoqiang Du*, Zhimin Qiu

School of Computer and Information Engineering, Harbin University of Commerce, Harbin 150028, China

Abstract—Accurate workload forecasting plays a pivotal role

in the management of cloud computing resources, enabling

significant enhancement in the performance of the cloud

platform and effective prevention of resource wastage. However,

the complexity, variability, and strong time dependencies of

cloud workloads make prediction difficult. To address the

challenge of enhancing accuracy in contemporary cloud

workload prediction, this paper employs empirical and

quantitative research methods, introducing a cloud workload

prediction method based on Bayesian-optimized Autoformer,

termed BO-Autoformer. Initially, the cloud workload data were

divided according to the time-sliding window to construct a

continuous feature sequence, which was used as the input of the

model to construct the Autoformer prediction model.

Subsequently, to further enhance the model's performance, the

Bayesian optimization method was employed to identify the

optimal combination of hyperparameters, resulting in the

development of the Bayesian optimization-based Autoformer

cloud workload prediction model. Finally, experiments were

conducted on a real Google dataset to evaluate the model's

effectiveness. The findings reveal that, compared to alternative

models, the proposed prediction model demonstrates superior

performance on the cloud workload dataset, and can effectively

improve the prediction accuracy of the cloud workload.

Keywords—Cloud computing; deep learning; workload

prediction; Autoformer; Bayesian optimization

I. INTRODUCTION

Cloud computing plays a crucial role in promoting public
availability and openness of computing resources [1], yet the
low utilization of these resources remains a persistent challenge
in cloud computing resource management. With the continuous
expansion of cloud computing infrastructure and the rapid
increase in the number of users, energy consumption in cloud
data centers has emerged as a significant issue [2]. The
utilization of physical hosts is a key factor that substantially
influences the energy consumption of the entire cloud
computing system. Resource over-allocation or under-
utilization markedly escalates energy costs within cloud data
centers. Studies indicate that the current utilization rate of
various cloud computing resources generally falls below 50%,
leading to a substantial portion of these resources remaining
idle [3]. This inefficiency in resource usage not only results in
considerable wastage of societal resources but also underscores
the urgent need for implementing effective strategies to
enhance the efficiency of cloud computing resource utilization.
Therefore, effective measures must be taken to lower energy

consumption costs, minimize resource waste, and foster the
sustainable development of cloud computing.

An effective approach to enhance the utilization of cloud
computing resources involves accurate prediction of the
resource workload. Through an analysis of historical data
pertaining to the usage of cloud computing resources, it is
possible to uncover the underlying patterns of load
fluctuations, thereby forecasting the workload of cloud
computing resources in the upcoming period [4]. By leveraging
these predictive insights, cloud service providers can
proactively adjust resource allocation to meet the diverse needs
of users while optimizing resource utilization efficiency.
However, the pursuit of predictive accuracy faces a series of
challenges. First, workload fluctuations are influenced by
numerous factors, such as the unpredictability of user behavior,
sudden business demands, and the dynamic allocation of
system resources. These factors result in workload patterns that
are difficult to accurately capture with simple models. Second,
Cloud workload prediction relies on extensive historical data to
train predictive models, yet ensuring the integrity, accuracy,
and consistency of this data is often challenging. Issues such as
missing values, outliers, and noise are prevalent, which can
interfere with the model training process and lead to biased
prediction results. Consequently, traditional prediction models
often struggle to achieve the desired accuracy when addressing
the complexity and dynamics of cloud workloads and the
instability of data quality. To solve this problem, it is
imperative to explore new predictive technologies and methods
to enhance the accuracy and reliability of prediction models.

The Autoformer, a Transformer-based method for time
series prediction, was introduced by Wu Haixu and colleagues
from Tsinghua University [5]. It incorporates an
autocorrelation mechanism to capture temporal dependencies,
thereby enhancing its predictive accuracy and efficiency.
Among existing time series forecasting methods, Autoformer
has garnered widespread attention due to its outstanding
performance. However, its application in cloud computing
workload prediction is hindered by challenges in
hyperparameter tuning and performance fluctuations:

 Hyperparameter Adjustment Difficulties: The
performance of the Autoformer depends significantly
on the appropriate selection and tuning of
hyperparameters. However, manual adjustment of
hyperparameters becomes exceedingly challenging and
time-consuming, particularly in scenarios involving
voluminous data and multifaceted tasks.

*Corresponding Author
Fund Project: Science and Research Project of Harbin University of

Commerce [grant no. 2019DS032]

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1033 | P a g e

www.ijacsa.thesai.org

 Performance Fluctuation: The performance of the
Autoformer can fluctuate considerably across different
tasks and datasets due to the complexity of its structure
and the diversity of input datasets, thereby constraining
its broad applicability in cloud computing workload
prediction.

This paper proposes a cloud workload prediction method
that optimizes Autoformer through Bayesian optimization
technology, which aims to solve the above problems. The main
contribution of this work can be summarized as follows:

 The Autoformer model is first applied to the field of
cloud computing workload prediction, which
significantly improves the accuracy and efficiency of
prediction by exploiting its unique self-attention
mechanism and long sequence processing ability.

 Bayesian optimization technique is used to optimize the
combination of hyperparameters of Autoformer.
Compared with traditional grid search or random search
methods, Bayesian optimization techniques can more
effectively explore the hyperparameter space and find
the combination of hyperparameters that optimizes the
model performance.

The application of the Bayesian optimization technique
enables the Autoformer model to automatically tune
hyperparameters in the workload prediction task of cloud
computing. Through automatic tuning, not only the tedious and
time-consuming manual parameter adjustment is eliminated,
but also the computational cost in the tuning process is greatly
reduced. With the help of Bayesian optimization, Autoformer
can quickly find the best combination of hyperparameters for a
specific task, thereby improving the accuracy of prediction.
Furthermore, Bayesian optimization enhances the stability of
the Autoformer model across various datasets and tasks,
thereby mitigating performance fluctuations and bolstering the
reliability of cloud computing systems. Consequently, the
optimized Autoformer model can deliver more precise and
dependable prediction outcomes across diverse workload
scenarios. For cloud computing service providers, this
technological improvement means that they can allocate
resources more efficiently, and avoid resource waste or over-
provisioning, thereby reducing costs and improving service
quality. At the same time, the system operation and
maintenance personnel can also understand the load of the
system in advance with the help of the BO-Autoformer model,
so that they can make timely responses and adjustments,
reducing the risk of system downtime or performance
degradation. In addition, the combination of Bayesian
optimization and the Autoformer model also provides new
ideas and methods for research in the field of cloud computing
and machine learning and encourages scholars and engineers in
related fields to conduct more in-depth research and
exploration.

The structure of this paper is as follows: Section II provides
a review of relevant literature. Section III elucidates the
foundational principles of the Autoformer model. Section IV
examines the application of the Autoformer model to workload
predictions, with an emphasis on Bayesian optimization.
Section V discusses the results derived from experimental

evaluations. Section VI concludes the paper with a summary of
the findings and contributions.

II. RELATED WORKS

In recent years, native and overseas scholars have dedicated
efforts to enhancing the accuracy and reliability of workload
forecasting for cloud computing resources. The methodologies
employed in these studies can be broadly categorized into three
primary groups: traditional regression techniques, machine
learning approaches, and deep learning strategies. These
methodologies represent the evolving landscape of research in
the realm of cloud computing resource load prediction,
reflecting a progression from conventional statistical methods
to more sophisticated artificial intelligence models.

A. Traditional Regression Techniques

Traditional regression techniques encompass a diverse
array of methodologies, including Autoregressive[6](AR),
Moving average[7](MA), Autoregressive moving
average[8](ARMA), Differential autoregressive moving
average method[9](ARIMA), Linear regression[10](LR) and
Exponential smoothing[11](ES), etc. Predominantly grounded
in the presumption of linear interrelations, these methods
frequently fall short of capturing the non-linear dynamics of
workload variations. A significant reliance on the principle of
stationarity renders them less effective in managing the non-
stationary nature of cloud resource loads. Challenges such as
the complexity of parameter selection, susceptibility to outliers,
and the difficulty in addressing seasonality and trends further
underscore the limitations of traditional regression techniques
in the context of cloud computing resource load forecasting.

B. Machine Learning Approaches

Machine learning approaches primarily comprise Markov
models [12], Bayesian models [13, 14], Support vector
regression (SVR) models[15], and traditional Artificial neural
networks [16](ANN). In comparison to deep learning
techniques, machine learning methods are somewhat
constrained in their capacity to navigate complex non-linear
relationships, exhibit limitations in effective feature extraction,
and demonstrate inferior generalization performance in
predictive models. These methods commonly call for a
substantial amount of training data to obtain good prediction
performance, and the data mostly rely on heuristic algorithms.
As such, precise predictions require workload data that exhibits
clear regularities or patterns, highlighting the dependency of
machine learning methods on the characteristic structure of the
data.

C. Deep Learning Strategies

Deep learning strategies encompass a variety of models,
including Recurrent neural network [17](RNN), Long short-
term memory network (LSTM), Gated recurrent
unit[18](GRU), Convolutional neural network [19](CNN), and
Deep belief network [20](DBN), etc. To overcome the
challenges of gradient vanishing and exploding encountered
during the training of recurrent neural networks, researchers
proposed the Long Short-Term Memory network (LSTM). By
introducing a gating mechanism, LSTM can better manage and
utilize gradient information, thereby enabling the learning of
more intricate temporal patterns and prolonged dependencies.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1034 | P a g e

www.ijacsa.thesai.org

Guo et al. [21] proposed an enhanced model, N-LSTM, which
is an extension of LSTM, specifically designed to address the
challenge of virtual machine workload prediction. This model
integrates historical VM workload data with request intervals
across various VM categories, using the resulting dataset as
input for training, thereby enhancing its ability to accurately
forecast future VM workload. In an effort to address the
limitations and challenges present in current research, Xu et
al.[22] introduced a deep neural network method, referred to as
esDNN, based on efficient supervised learning for cloud
workload prediction. Empirical results indicate that esDNN is
capable of providing precise and efficient predictions for cloud
workload.

Following the advent of the Transformer [23] model in the
realms of natural language processing and computer vision, a
multitude of Transformer-based models have been adapted for
the prediction of time series data [24–26]. The Transformer
architecture capitalizes on the distinct capabilities of the
attention mechanism to effectively discern global dependencies
within sequences, thus offering enhanced performance in
addressing long-term sequence prediction challenges.
However, the direct application of the self-attention
mechanism in these models presents notable challenges in
accurately discerning time dependencies within complex time
series patterns. Furthermore, the intrinsic quadratic complexity
associated with the self-attention mechanism imposes
limitations on the model's sparsity requirements, thereby
influencing the efficiency of information utilization.

In response to these problems, the industry proposed the
Autoformer model, which emerged as a significant
advancement in time series prediction, extending the horizon of
predictability. Empirical research has validated the capability
of Autoformer to elevate both the accuracy and efficiency of
predictions. To date, the Autoformer has been successfully
implemented in various domains, including temperature
forecasting, water level prediction, traffic flow forecasting, and
power load forecasting. Theoretically, it can also be applied to

cloud workload data with time series characteristics to make up
for deficiencies in actual cloud load data prediction work.
However, there is a dearth of literature demonstrating its
application within the cloud computing workload prediction
sphere. At the same time, traditionally, tuning the
hyperparameter of Autoformer poses a significant challenge,
particularly in scenarios involving large-scale datasets and
complex tasks. Bayesian optimization, as an intelligent
approach grounded in Bayes' theorem, offers potential
solutions to a wide range of challenges. By constructing and
dynamically refining the probability model of the objective
function, this method adeptly incorporates historical evaluation
data while efficiently guiding the search process toward a swift
convergence to the optimal solution [27-28]. Bayesian
optimization has been successfully applied to hyperparameter
tuning of multiple predictive models, significantly improving
model accuracy [29-32]. Consequently, the introduction of a
Bayesian-optimized Autoformer model into cloud computing
workload prediction tasks may bring new breakthroughs and
improvements in this field of research.

III. AUTOFORMER MODEL PRINCIPLE

The challenge of predicting cloud workload shares
similarities with time series prediction, both necessitating the
input of a historical time window of length I to forecast a future
time window of length O. In the context of cloud workload
prediction, long-term forecasting assumes particular
significance as cloud service providers need to proactively plan
resource allocation. Addressing the exigency of long-term
prediction, this paper introduced the Autoformer model,
depicted in Fig. 1. Leveraging a decomposition architecture
and autocorrelation mechanism, Autoformer adeptly handles
intricate temporal patterns, discerns periodicity, and captures
dependencies within time series data. This approach enhances
the accuracy and efficiency of cloud load forecasting, enabling
cloud service providers to adapt adeptly to forthcoming
demand fluctuations.

Fig. 1. Cloud workload prediction architecture based on Autoformer[5].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1035 | P a g e

www.ijacsa.thesai.org

The architecture for cloud workload prediction, utilizing
Autoformer, comprises two distinct sections: the encoder and
the decoder. The encoder primarily focuses on the load cycle
term, taking as input the preceding I-time steps. Employing the
autocorrelation mechanism, the initial input cloud workload
time series undergoes preliminary sequence decomposition,
resulting in load trend and load cycle components. These
components, reflective of long-term trend and periodicity
respectively, are then transmitted to the decoder, thereby
dividing the input of the decoder into two parts: load trend item
and load cycle item. The load cycle item forwarded to the
decoder undergoes further sequence decomposition, facilitated
by the autocorrelation mechanism. Meanwhile, the load trend
item extracts trend information via accumulation operations.
The decoder comprises multiple decoding layers, each
acquiring a comprehensive segment of load timing data instead
of discrete data points. This enables a stepwise sequence
decomposition process, augmenting the reliability and
precision of load prediction outcomes.

A. Deep Decomposition Architecture

The Autoformer model integrates sequence decomposition
as a fundamental component of its deep decomposition
architecture, which is embedded in both the encoder and
decoder modules. Throughout the prediction process, the
model iteratively optimizes forecast results while performing
sequence decomposition. This iterative procedure entails
meticulous adjustments to comprehensively capture diverse
trends and periodicities in the data, effectively isolating
essential features.

The concept of sequence decomposition is primarily
derived from conventional time series prediction algorithms,
such as Arima and Fbprophet. In essence, these traditional
algorithms approach the decomposition of time series from a
statistical standpoint and give different physical meanings to
the decomposed sub-terms, such as trend term, seasonal term,
residual term, etc. Therefore, the general form of traditional
time series decomposition is shown in Eq. (1):

 X(t)=T(t)+S(t)+R(t)

In Eq. (1), X(t) represents the time series that is subject to
decomposition, whereas T(t), S(t), and R(t) corresponds to the
trend term, seasonal term, and residual term, respectively,
arising from the decomposition process.

Within the context of cloud computing workload prediction,
the computation of sequence decomposition within the
Autoformer model is detailed in Eq. (2) to Eq. (3):

 Xt=AvgPool(Padding(X))

 Xs=X-Xt

In the aforementioned formula, X denotes the time series of
cloud load to be decomposed, Xt represents the load trend
component, whereas Xs signifies the load cycle component. Eq.
(2) elucidates the specific algorithm for extracting the trend
item Xt: To maintain the temporal span of the load time series
unaltered, the fill operation is first applied to X and then
AvgPool processing is performed. Eq. (3) clarifies that
Autoformer adopts the simplest additive model and solely

decomposes two sub-terms: trend term and periodic term. In
other words, the input load time series X is subtracted from the
obtained load trend term Xt, and the load cycle term Xs is
derived using Eq. (2).

1) Encoder: In the task of cloud computing workload

prediction, the encoder primarily targets the periodic

component of the cloud load time series. Through a meticulous

multi-layer sequence decomposition module, it systematically

eradicates the trend term from the load time series, ultimately

extracting the periodic term. This extracted periodic term

serves as valuable load period information, guiding the decoder

in its prediction of future load. Taking the l-th coding layer
l

enX as an example, assuming there are N coding layers, the

calculation of the l-th coding layer is as shown in Eq. (4) to Eq.

(5):

 ,1 1 1

en , _ (())l l l

en enS SD AC X X

 ,2 ,1 ,1

en , _ (())l l l

en enS SD FF S X

In the above formula, AC stands for AutoCorrelation
processing, SD represents SeriesDecomp processing, and FF

denotes FeedForward processing. 1l

enX signifies the cloud load

time series input during the initial encoding stage. ,l i

enS ，

where i ∈ {1,2} denotes the i-th encoded load cycle

information within the encoding layer.

2) Decoder: In the task of cloud computing workload

prediction, the decoder comprises two distinct components.

The first component is responsible for handling the load trend

term outputted by the encoder, gradually extracting trend

information from the predicted latent variable through an

accumulation operation. The second component focuses on the

periodic term outputted by the encoder, employing a stacked

autocorrelation mechanism for dependency mining and

aggregation of similar subprocesses. Considering the l-th

decoding layer l

deX as an example, and assuming a total of M

decoding layers, the decoding layer primarily operates on the

input cloud load time series and the encoding layer output. The

calculation of the l-th decoding layer is detailed in Eq. (6) to

Eq. (9):

 ,1 ,1 1 1, (())l l l l

de de de deS T SD AC X X

,2 ,2 ,1 ,1, ((,))l l l N l

de de de en deS T SD AC S X S

 ,3 ,3 ,2 ,2

de , (())l l l l

de de deS T SD FF S S

1 ,1 ,2 ,3

,1 ,2 ,3

l l l l l

de de l de l de l deT T W T W T W T

In the above formula, AC stands for AutoCorrelation
processing, SD represents SeriesDecomp processing, and FF

denotes FeedForward processing. 1l

deX signifies the cloud load

time series input during the initial encoding stage. ,l i

deS and ,l i

deT ,

where, i∈{1,2,3} denotes the i-th load cycle information and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1036 | P a g e

www.ijacsa.thesai.org

load trend information decoded in the decoding layer.
,l iW ,

where, i∈{1,2,3} denotes the weight of the i-th load trend.

Utilizing the aforementioned progressive decomposition
architecture, the Autoformer model effectively captures
periodicity and trend variations within the load time series by
methodically decomposing latent variables during the process
of cloud load prediction. By incorporating the autocorrelation
mechanism and accumulation method, the model is able to
extract prediction outcomes pertaining to both load cycle item
and load trend item, subsequently enabling a more precise
prediction of cloud load time series. This alternating process of
decomposition and optimization of prediction results mutually
reinforces each other, offering robust support for enhancing the
overall performance of the model.

B. Auto-Correlation Mechanism

In the context of cloud computing workload prediction, the
Autoformer model leverages an autocorrelation mechanism to
effectively capture periodic patterns within cloud load time
series. Specifically, the autocorrelation module computes the
autocorrelation coefficient of the load sequence, enabling the
discovery of periodic dependencies. Furthermore, it employs
time translation techniques to aggregate similar subload
sequences, thereby enhancing comprehension of the model and
prediction accuracy of cloud load dynamics. This approach
significantly improves the ability of the model to capture
intricate temporal patterns and make accurate predictions,
which is crucial for effective resource management in cloud
computing environments.

In the practical computation of autocorrelation, the
Autoformer model employs a fast Fourier transform (FFT)
technique to efficiently calculate the autocorrelation coefficient.
Initially, the input load time series Xt undergoes mapping to Q,
K, and V, followed by conversion into the frequency domain.
In the frequency domain, the translation similarity can be
calculated more conveniently, which helps to improve the
computational efficiency. The specific calculation process is
shown in Eq. (10) to Eq. (11):

2 2() () ()XX t

i tf i

tt

tf

tS ef F X F X e dt X dtX

Eq. (10), Xt represents the load time series that exhibits
periodicity; F denotes the Fourier transform (FFT), while F*
represents its conjugate operation; The variable f signifies the
frequency, which is multiplied by 2π to obtain the angular
frequency; The multiplication of F and F* with the respective
integration results of the load trend terms facilitates the
transformation of the time series into the frequency domain.

21() (()) ()XX XX XX

i fR feF S f S f d

Eq. (11), RXX(τ)represents the similarity between the
sequence Xt and its τ delay Xt-τ, this delay similarity can be
regarded as the confidence of the unnormalized period estimate,
that is, the confidence R(τ) of the period length τ. F-1 denotes
the inverse Fourier transform; The variable f represents
frequency, multiplied by 2π to obtain the angular frequency
result. Subsequently, an inverse Fourier transform is applied to

the outcome derived from Eq. (11), leading to the computation
of the autocorrelation coefficient. This approach effectively
reduces the computational complexity associated with the
autocorrelation solution, thereby enhancing the efficiency and
practicality of the overall analysis.

IV. WORKLOAD PREDICTION MODEL BASED ON BAYESIAN-

OPTIMIZED AUTOFORMER

A. Bayesian Optimization Algorithm

In the context of forecasting cloud computing workload
based on the Autoformer model, the selection of
hyperparameters holds a pivotal role in relation to model
evaluation. The training process necessitates meticulous
control and adjustment of numerous hyperparameters, ensuring
that the model performs at its optimal level. This fine-tuning is
crucial for enhancing the predictive accuracy and overall
performance of the Autoformer in handling cloud workload
prediction tasks.

Bayesian Optimization (BO) stands as a sequential model-
based optimization method designed for black-box function
optimization tasks. It is employed to optimize unknown
objective functions efficiently, aiming to expedite the
discovery of globally optimal solutions with fewer function
evaluations. As a result, Bayesian optimization finds
widespread application in hyperparameter tuning for machine
learning models. The core principle of this approach lies in the
utilization of the Gaussian Process as a prior model to
approximate the unknown objective function. Through iterative
evaluations and modeling of the objective function, Bayesian
optimization selects the most promising input point for
subsequent evaluation, guided by the current confidence of the
model. This selection process, known as the Sampling Strategy
or Acquisition Function, is crucial in guiding the search toward
optimal solutions. Eq. (12) presents the mathematical
formalism underlying this calculation.

 argmax ()
X A

X f X

In Eq. (12), X* represents the optimal parameter set, A
denotes the possible set, and f(X) serves as the prior
distribution model.

In comparison to grid search and random search, the
Bayesian optimization algorithm demonstrates the capability of
attaining satisfactory optimization outcomes with a
significantly reduced number of iterations. This efficiency is
particularly advantageous in scenarios where computational
resources are limited or where rapid convergence is desired.
The pseudocode of the Bayesian optimization algorithm is
presented in Table I, providing a concise and structured
overview of the algorithm's operational steps.

Firstly, an initial set of candidate solutions is uniformly
selected within the entire feasible domain, typically comprising
n0 points. This serves as the starting point for the subsequent
optimization process. Subsequently, a loop iteration is initiated,
during which one point is added at each iteration until a total of
N candidate solutions are obtained. To determine the next point
to evaluate, the already-found candidate solutions are leveraged
to establish a Gaussian regression model. This model allows us

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1037 | P a g e

www.ijacsa.thesai.org

to estimate the posterior probability of the function value at any
given point. Based on this posterior probability, an acquisition
function is formulated, and the point corresponding to the
maximum value of this function is chosen as the next search
point. Once the next search point is identified, its function
value is computed and incorporated into the set of candidate

solutions. Finally, the algorithm terminates, returning the
maximum value among the N candidate solutions as the
optimal solution. This process ensures efficient exploration of
the search space and convergence towards the globally optimal
solution.

TABLE I. PSEUDOCODE OF BAYESIAN OPTIMIZATION ALGORITHM

Algorithm 1: Bayesian Optimization Algorithm

Select n0 sampling points and compute the corresponding values of f(x)

n=n0

While (n≤N) do

 Modify the mean and variance of p(f(x)|D) according to the recent Sampling records D={(xi,f(xi)),i=1,…,n}

 Determine the acquisition function u(x) using the mean and variance of the conditional probability p(f(x)|D)

 Identify the subsequent sampling point xn+1=argmax u(x) by locating the maximum value of the acquisition function

 Compute the function's output at the subsequent sampling location: yn=f(xn+1)

 n=n+1

End

Return: argmax(f(x1),…,f(xN)) and the corresponding y

B. Workload Prediction Model Based on BO-Autoformer

To enhance the workload prediction model by optimizing
its hyperparameters, the Bayesian (BO) algorithm is introduced
for parameter optimization. The process of load prediction
using the BO-Autoformer prediction model is depicted in Fig.
2. The BO-Autoformer prediction model utilized comprises
four components: preprocessing of data, training of the model,
Bayesian optimization, and model predictions. Collectively,
these stages form a comprehensive load prediction process.
The detailed ideas are outlined as follows:

Step 1: In the workload prediction task, the initial load data
necessitates rigorous preprocessing. This involves crucial steps
such as data cleansing, handling missing values, normalization,
and feature engineering. These processes ensure that the load
data is rendered suitable for effective training and prediction.

Step 2: Following data preprocessing, the workload dataset
is partitioned into distinct training and testing sets. The training
set is then utilized to train the Autoformer model, a time series
prediction model grounded in stochastic process theory. The
Autoformer boasts a deep decomposition architecture and an
autocorrelation mechanism, enabling it to efficiently leverage
the periodicity and delay information inherent in the sequence.

Step 3: Concurrently, during the model training phase, the
Bayesian optimization algorithm is employed to fine-tune the
hyperparameters of the Autoformer model. Bayesian
optimization establishes a Gaussian regression model within
the parameter space, estimating the posterior probability
distribution of the objective function. Based on this distribution,
it selects the most promising parameter point for the next
iteration. This approach significantly enhances the efficiency of
the model and accelerates the convergence process.

Fig. 2. Workload prediction flow chart based on BO-Autoformer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1038 | P a g e

www.ijacsa.thesai.org

Step 4: The Autoformer model adjusted by Bayesian
optimization predicts the test set data.

V. RESULTS AND DISCUSSION

A. Experimental Environment Configuration

The entire combined model is written in Python3.11 and
implemented based on Pytorch and is finally executed on
Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.71 GHz.

B. Dataset and Data Process

The experiment conducted in this study utilizes the Google
Cluster Trace dataset, a real-world workload dataset released
by Google in 2011. This extensive dataset comprises over 40
million tasks, encompassing workload information from
approximately 12,500 machines over a span of 29 days. It
encompasses various attributes such as job ID, task index,
machine ID, CPU usage, and memory usage. This study
focuses on CPU usage as the primary load information. The
original data is sampled every five minutes, resulting in a total
of 8333 sampling points.

To ensure the rigor and reliability of the findings, the
dataset was carefully divided into three distinct subsets:
training, validation, and testing. Specifically, the initial 4986
sets of data are designated as the training set, representing
approximately 60% of the total dataset. This ensures that the
model is adequately trained on a substantial portion of the
available data. Subsequently, the following 1668 sets of data
serve as the validation set, accounting for 20% of the dataset.
The validation set is utilized to monitor the model's
performance during training, aiding in hyperparameter tuning
and preventing overfitting. Finally, the remaining 1679 sets of
data comprise the testing set, also constituting 20% of the total
dataset. The testing set enables us to evaluate the model's
generalization ability on unseen data, providing an unbiased
assessment of its performance.

This systematic approach ensures a balanced allocation of
data for training, validation, and testing, allowing us to
comprehensively assess the performance of the model and
ensure its reliability in real-world scenarios.

1) Missing value process: Given the extensive data sample

size and high statistical frequency inherent in the Google

Cluster Trace dataset, it is inevitable that occasionally, specific

reasons may lead to the omission of individual data points. To

address this issue, this article employs the linear regression

fitting interpolation method as a robust approach to fill in the

missing values. This method ensures that the missing data are

accurately and reliably estimated, minimizing any potential

biases or distortions in the subsequent analysis.

2) Data normalization: Data normalization serves as a

crucial step in enhancing the training effectiveness of neural

networks. It significantly accelerates the process of locating

optimal solutions during training, thereby improving the

overall performance of the network. This study adopts the

minimum-maximum normalization method, which effectively

scales the input values to fall within the range of 0 to 1. This

normalization approach ensures that the data is appropriately

scaled, minimizing potential biases and enhancing the

convergence speed of the training process.

C. Evaluation Index

To assess the precision of the proposed model accurately,
several key evaluation metrics were selected, including Mean
Square Error (MSE), Root Mean Square Error (RMSE), Mean
Absolute Error (MAE), and Mean Absolute Percent Error
(MAPE). These metrics provide comprehensive insights into
the model's performance. The formulas for each evaluation
index are as shown in Eq. (13) to Eq. (16):

2

1

1
ˆ()

n

i

E i iMSe y y
n

2

1

1
ˆ()

n

i iR

i

MSEe y y
n

1

1
ˆ| |

n

i iM

i

AEe y y
n

1

ˆ1
| | 100%

n
i i

PE

i

A

i

Me
y y

n y

In the aforementioned equations, ˆ
iy and iy , represent the

predicted load value and the actual load value at time i
respectively. Additionally, n signifies the total count of test
samples. It is noteworthy that as these evaluation indicators
approach zero, the prediction performance of the model
improves significantly.

D. Discussion

The main finding of this study is that the Autoformer model
was successfully applied to the field of cloud computing
workload prediction, and the model's hyperparameter
combination was optimized through Bayesian optimization
technology. This discovery not only demonstrates the great
potential of the Autoformer model in the field of cloud
computing but also proves the effectiveness of Bayesian
optimization technology in hyperparameter tuning. Through
this method, the accuracy and efficiency of cloud computing
workload prediction are improved, and new ideas are provided
to solve resource management problems in cloud computing.

The significance of this study is profound, both
theoretically and practically. At the theoretical level, this study
combines the Autoformer model and Bayesian optimization
technology to propose a new cloud computing workload
prediction method, which enriches the research content in the
field of cloud computing resource management. At a practical
level, this approach promises to augment the efficiency and
precision of cloud computing resource management, leading to
reduced operational costs and improved service quality. For
cloud computing service providers, this means being able to
better respond to workload changes, optimize resource
allocation, and improve resource utilization. For cloud
computing users, it means they can obtain a more stable and
efficient service experience.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1039 | P a g e

www.ijacsa.thesai.org

E. Experimental Results

1) Artificiality: In the context of cloud workload data

prediction, a complex network model may often give rise to

issues such as overfitting, inadequate training, and underfitting.

Therefore, it is imperative to meticulously address the

complexity of the network model when selecting

hyperparameters. In the experiments, we manually adjusted the

hyperparameters and conducted multiple comparisons of

prediction results. The selected hyperparameters, as presented

in Table II, were carefully chosen to balance the model's

complexity with its predictive capabilities.

2) Bayesian optimization: In the Autoformer model, the

sequence length optimization range was set to [6, 48] with a

step size of 6, allowing for the exploration of various sequence

lengths and their impact on model performance. The model

dimension optimization range encompassed [128, 256, 512,

1024], permitting the identification of an appropriate balance

between model complexity and predictive accuracy.

Additionally, the batch size optimization range was established

as [12, 24, 32, 48], enabling the investigation of the effect of

batch size on training efficiency and stability. Furthermore, the

optimization range for the middle layer dimension of the

feedforward network was set to [512, 1024, 2048], allowing for

the exploration of different network depths. The number of

attention heads was optimized within the range of [1, 8],

exploring the trade-off between attention granularity and

computational complexity. Moreover, the encoder and decoder

layers were optimized over the range of [1, 5], studying the

impact of model depth on prediction performance. Finally, the

optimization ranges for the attention factor and regularization

coefficient were set to [1, 5] and [0.0, 0.5], respectively,

facilitating the adjustment of model sensitivity and

generalization ability.

TABLE II. HYPERPARAMETER COMBINATIONS DETERMINED BY ARTIFICIALITY

Hyperparameters Meaning Value

seq_len The maximum length of the input sequence processed by the model at each time 18

d_model Model embedding dimension, also known as hidden layer size 128

batch_size Number of samples processed by the model in each iteration 32

d_ff Internal Dimensions in Feedforward Neural Networks 1024

n_heads Number of heads in multi-head self-attention 8

e_layers Number of encoder layers 3

d_layers Number of decoder layers 2

factor Controlling the number of basis functions in the attention mechanism 2

dropout The probability of dropping at random 0.05

Utilizing the Bayesian optimization algorithm, this paper
conducted a meticulous hyperparameter search for the
Autoformer model. Through iterative evaluations of the
objective function, the algorithm identifies the hyperparameter
combinations that yield minimal loss, thereby maximizing
prediction accuracy. The optimal hyperparameters, as
summarized in Table III, represent the most effective
configuration for the Autoformer model in terms of balancing
model complexity, training efficiency, and predictive
performance.

As presented in Table III, the hyperparameter values
obtained following Bayesian optimization are as follows:
sequence length of 18, model dimension of 512, batch size of
32, intermediate layer dimension of the feedforward network
set to 2048, eight attention heads, two encoder layers, one
decoder layer, an attention factor of 3, and a regularization
coefficient of 0.05. Through multiple runs, this paper observed
the convergence speed and computational efficiency of the
neural network. To ensure the convergence of experimental
errors, the maximum traversal count was fixed at 10. This
optimized configuration enables the Autoformer model to
achieve superior predictive performance while balancing
computational demands.

3) Compare and Analysis: Table IV comprehensively

summarizes the evaluation metrics of the Autoformer model

before and after the application of Bayesian optimization.

Employing the optimal hyperparameter combination, the study

tested the performance of the Autoformer model and conducted

a comparative analysis between the original Autoformer and

the BO-Autoformer, using real-world data. Fig. 3 provides a

visual representation of the improvement achieved result

through Bayesian optimization.

As evident from Table IV, the BO-Autoformer model
exhibits slight improvements in various evaluation metrics
compared to the original Autoformer. Specifically, the mean
squared error (MSE) is reduced by 0.82%, the root mean
squared error (RMSE) is decreased by 0.41%, the mean
absolute error (MAE) is lowered by 0.55%, and the mean
absolute percentage error (MAPE) is diminished by 0.59%.
These results demonstrate the effectiveness of Bayesian
optimization in enhancing the predictive accuracy of the
Autoformer model.

One can clearly observe from Fig. 3 that the predicted value
obtained by the BO⁃Autoformer model is close to the real
value, and the load curve value is relatively close. The findings
indicate that the BO⁃Autoformer model can predict cloud
workload data better than Autoformer.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1040 | P a g e

www.ijacsa.thesai.org

TABLE III. HYPERPARAMETER COMBINATIONS DETERMINED BY

BAYESIAN OPTIMIZATION

Hyperparameters Parameter adjustment range Value

seq_len （6,48） 18

d_model [128, 256, 512, 1024] 512

batch_size [12, 24, 32, 48] 32

d_ff [512, 1024, 2048] 2048

n_heads （1, 8） 8

e_layers （1, 5） 2

d_layers （1, 5） 1

factor （1, 5） 3

dropout （0.0, 0.5） 0.05

TABLE IV. EVALUATION INDICATORS BEFORE AND AFTER BAYESIAN

OPTIMIZATION

Model MSE RMSE MAE MAPE

Autoformer 0.003046 0.055190 0.043399 0.193858

BO-Autoformer 0.003021 0.054961 0.043159 0.192713

Fig. 3. Comparison of predicted values and actual values before and after

Bayesian optimization.

The optimal hyperparameter combinations obtained by
Bayesian optimization were applied to the four benchmark

models: DLinear[29]、NLinear[29]、Informer and Reformer,

and a comprehensive comparison among them. The evaluation
metrics of the various models are summarized in Table V,
while the prediction outcomes are graphically presented in Fig.
4, providing a clear and concise visualization of the
comparative performance.

As indicated in Table V, it is evident that the MSE of the
BO-Autoformer model is reduced to 0.003021, which is more
stable than the other four methods. In comparison to the
remaining four approaches, the RMSE has diminished by
16.50%, 15.44%, 2.33%, and 1.15% respectively, the span of
the discrepancy between the true and predicted values has
narrowed, and the prediction will be more reasonable.
Compared with the other four methods, the model MAE has

diminished by 16.97%, 15.15%, 0.78%, and 1.24%
respectively. Combined with the prediction trend, it is apparent
that the precision of predictions has risen. In relation to the
other three methodologies, there is a decrease in the MAPE
value by 16.09%, 11.09%, and 1.78% respectively, and the
quality of the model has been slightly improved. These
findings collectively demonstrate the superiority of the BO-
Autoformer model in terms of prediction accuracy and stability.

TABLE V. EVALUATION INDICATORS OF BASELINE MODELS

Model MSE RMSE MAE MAPE

DLinear 0.004333 0.065825 0.051978 0.229670

NLinear 0.004225 0.064997 0.050863 0.216753

Informer 0.003167 0.056272 0.043499 0.184837

Reformer 0.003091 0.055598 0.043701 0.196201

BO-Autoformer 0.003021 0.054961 0.043159 0.192713

Fig. 4. Comparison of predicted values and actual values of the baseline

models.

As demonstrated in Fig. 4, the fitting curve of the Bayesian
optimized Autoformer model is closer to the true value than
other models, and the fitting effect is the best. Consequently,
the BO-Autoformer model proposed in this study demonstrates
significantly higher prediction accuracy when compared to
several alternative models, thereby underscoring its
effectiveness and reliability in the domain of concern.

In the scenario where the input sequence spans 18-time
steps (equating to 90 minutes), the study conducted a
comparative analysis across various prediction horizons,
specifically 1-time step (5 minutes), 6-time steps (30 minutes),
12-time steps (60 minutes), and 18-time steps (90 minutes).
The comparative outcomes were systematically compiled in
Table VI, facilitating a comprehensive evaluation against other
models.

Table VI clearly illustrates that the MSE and MAE error
coefficients associated with the 5-minute, 30-minute, 60-
minute, and 90-minute predictions of the BO-Autoformer
model are predominantly lower than those of other models,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1041 | P a g e

www.ijacsa.thesai.org

thus achieving optimal performance. Therefore, the
Autoformer model demonstrates notable superiority over other
models in both short-term and long-term prediction
capabilities, highlighting its efficacy and reliability across
various prediction horizons.

4) Discussion of limitations: Despite the encouraging

results of this study, several limitations and potential issues

remain. Firstly, the validation was conducted using only a

single dataset, which may not fully capture the performance of

the BO-Autoformer model across diverse scenarios. This

limitation may cause our evaluation of model performance to

be overly optimistic or one-sided. Therefore, future research

should expand the dataset scope to better assess the model's

generalization ability. Secondly, the Bayesian optimization

algorithm used to find the optimal hyperparameter combination

can be computationally intensive, making it unsuitable for

application scenarios requiring high real-time performance.

This limitation limits the application of the BO-Autoformer

model in scenarios such as online learning. Therefore, future

research should explore more efficient optimization algorithms

to enhance the training speed and prediction efficiency of the

model.

TABLE VI. EVALUATION INDICATORS OF BASELINE MODELS UNDER DIFFERENT PREDICTION LENGTHS

Model/prediction

length

5min 30min 60min 90min

MSE MAE MSE MAE MSE MAE MSE MAE

DLinear 0.004333 0.051978 0.005220 0.056784 0.006236 0.062536 0.006991 0.066337

NLinear 0.004225 0.050863 0.004734 0.053796 0.004969 0.055146 0.005497 0.057858

Informer 0.003167 0.043499 0.003730 0.047181 0.003975 0.049355 0.004357 0.051340

Reformer 0.003091 0.043701 0.003551 0.046383 0.003956 0.049906 0.004659 0.054540

BO-Autoformer 0. 003021 0.043159 0.003503 0.046312 0.003794 0.048110 0.003965 0.049038

VI. CONCLUSION AND FUTURE WORK

Given the intricate sequential patterns and complexities
inherent in cloud workload, accurate prediction of the
workload holds paramount importance for successful cloud
computing resource management. To address the prevailing
challenges of limited prediction accuracy and challenging
hyperparameter tuning in cloud workload prediction, this paper
introduces the BO-Autoformer model, a fusion of the
Autoformer model and Bayesian optimization techniques.
Through rigorous experimental validation, the BO-Autoformer
model was found to significantly outperform the traditional
Autoformer model, achieving a reduction in MSE and MAE by
0.82% and 0.55% respectively, thereby enhancing prediction
accuracy. By comparing with 4 baseline models, it is found
that this model promises extensive application potential in both
short-term and long-term load prediction.

 Future research should not only be satisfied with the
existing prediction accuracy but should continue to explore
new optimization paths to achieve further improvement in the
performance of prediction models. In addition, designing a
reasonable virtual machine consolidation strategy based on the
prediction results to realize the efficient utilization of cloud
resources is also an important research direction in the future.

ACKNOWLEDGMENT

This work was supported by the Science and Research
Project of Harbin University of Commerce (2019DS032).

REFERENCES

[1] Arianyan E, Taheri H, Sharifian S. Novel heuristics for consolidation of
virtual machines in cloud data centers using multi-criteria resource
management solutions[J]. The Journal of Supercomputing, 2016, 72(2):
688-717.

[2] Rong H, Zhang H, Xiao S, et al. Optimizing energy consumption for
data centers[J]. Renewable and Sustainable Energy Reviews, 2016, 58:
674-691.

[3] Uddin M, Shah A, Alsaqour R, et al. Measuring Efficiency of Tier Level
Data Centers to Implement Green Energy Efficient Data Centers[J].
2013.

[4] Avgerinou M, Bertoldi P, Castellazzi L. Trends in Data Centre Energy
Consumption under the European Code of Conduct for Data Centre
Energy Efficiency[J]. Energies, 2017, 10(10): 1470.

[5] Wu H, Xu J, Wang J, et al. Autoformer: Decomposition Transformers
with Auto-Correlation for Long-Term Series Forecasting[J]. 35th
Conference on Neural Information Processing Systems, 2021.

[6] Yazhou Hu, Bo Deng, Fuyang Peng, et al. Workload prediction for
cloud computing elasticity mechanism[C]//2016 IEEE International
Conference on Cloud Computing and Big Data Analysis (ICCCBDA).
Chengdu, China: IEEE, 2016: 244-249.

[7] Jiang Y, Perng C shing, Li T, et al. ASAP: A Self-Adaptive Prediction
System for Instant Cloud Resource Demand Provisioning[C]//2011
IEEE 11th International Conference on Data Mining. Vancouver, BC,
Canada: IEEE, 2011: 1104-1109.

[8] Tirado J M, Higuero D, Isaila F, et al. Predictive Data Grouping and
Placement for Cloud-Based Elastic Server Infrastructures[C]//2011 11th
IEEE/ACM International Symposium on Cluster, Cloud and Grid
Computing. Newport Beach, CA, USA: IEEE, 2011: 285-294.

[9] Aditya Satrio C B, Darmawan W, Nadia B U, et al. Time series analysis
and forecasting of coronavirus disease in Indonesia using ARIMA model
and PROPHET[J]. Procedia Computer Science, 2021, 179: 524-532.

[10] Tang X, Liao X, Zheng J, et al. Energy efficient job scheduling with
workload prediction on cloud data center[J]. Cluster Computing, 2018,
21(3): 1581-1593.

[11] Xie Y, Jin M, Zou Z, et al. Real-Time Prediction of Docker Container
Resource Load Based on a Hybrid Model of ARIMA and Triple
Exponential Smoothing[J]. IEEE Transactions on Cloud Computing,
2020, 10(2): 1386-1401.

[12] Melhem S B, Agarwal A, Goel N, et al. Markov Prediction Model for
Host Load Detection and VM Placement in Live Migration[J]. IEEE
Access, 2018, 6: 7190-7205.

[13] Huang P, Ye D, Fan Z, et al. Discriminative Model for Google Host
Load Prediction with Rich Feature Set[C]//2015 15th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing.
Shenzhen, China: IEEE, 2015: 1193-1196.

[14] Rossi A, Visentin A, Prestwich S, et al. Uncertainty-Aware Workload
Prediction in Cloud Computing[M]. arXiv, 2023[2023-11-02].
http://arxiv.org/abs/2303.13525.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

1042 | P a g e

www.ijacsa.thesai.org

[15] Liu C, Liu C, Shang Y, et al. An adaptive prediction approach based on
workload pattern discrimination in the cloud[J]. Journal of Network and
Computer Applications, 2017, 80: 35-44.

[16] Borkowski M, Schulte S, Hochreiner C. Predicting cloud resource
utilization[C]//Proceedings of the 9th International Conference on Utility
and Cloud Computing. Shanghai China: ACM, 2016: 37-42.

[17] Duggan M, Mason K, Duggan J, et al. Predicting host CPU utilization in
cloud computing using recurrent neural networks[C]//2017 12th
International Conference for Internet Technology and Secured
Transactions (ICITST). Cambridge: IEEE, 2017: 67-72.

[18] Guo Y, Yao W. Applying gated recurrent units pproaches for workload
prediction[C]//NOMS 2018 - 2018 IEEE/IFIP Network Operations and
Management Symposium. Taipei: IEEE, 2018: 1-6.

[19] Golshani E, Ashtiani M. Proactive auto-scaling for cloud environments
using temporal convolutional neural networks[J]. Journal of Parallel and
Distributed Computing, 2021, 154: 119-141.

[20] Qiu F, Zhang B, Guo J. A deep learning approach for VM workload
prediction in the cloud[C]//2016 17th IEEE/ACIS International
Conference on Software Engineering, Artificial Intelligence,
Networking and Parallel/Distributed Computing (SNPD). Shanghai,
China: IEEE, 2016: 319-324.

[21] Guo W, Ge W, Lu X, et al. Short-Term Load Forecasting of Virtual
Machines Based on Improved Neural Network[J]. IEEE Access, 2019,
7: 121037-121045.

[22] Xu M, Song C, Wu H, et al. esDNN: Deep Neural Network Based
Multivariate Workload Prediction in Cloud Computing Environments[J].
ACM Transactions on Internet Technology, 2022, 22(3): 1-24.

[23] Vaswani A, Shazeer N, Parmar N, et al. Attention is All you Need[J].
31st Conference on Neural Information Processing Systems, 2017.

[24] Li S, Jin X, Xuan Y, et al. Enhancing the Locality and Breaking the
Memory Bottleneck of Transformer on Time Series Forecasting[M].
arXiv, 2020[2023-11-11]. http://arxiv.org/abs/1907.00235.

[25] Kitaev N, Kaiser Ł, Levskaya A. Reformer: The Efficient
Transformer[M]. arXiv, 2020[2023-11-11].
http://arxiv.org/abs/2001.04451.

[26] Zhou H, Zhang S, Peng J, et al. Informer: Beyond Efficient Transformer
for Long Sequence Time-Series Forecasting[J]. Proceedings of the
AAAI Conference on Artificial Intelligence, 2021, 35(12): 11106-
11115.

[27] Snoek J, Larochelle H, Adams R P. Practical Bayesian Optimization of
Machine Learning Algorithms[J]. 2012.

[28] Wu J, Chen X Y, Zhang H, et al. Hyperparameter Optimization for
Machine Learning Models Based on Bayesian Optimization[J]. 2019,
17(1).

[29] Cho H, Kim Y, Lee E, et al. Basic Enhancement Strategies When Using
Bayesian Optimization for Hyperparameter Tuning of Deep Neural
Networks[J]. IEEE Access, 2020, 8: 52588-52608.

[30] Abbasimehr H, Paki R. Prediction of COVID-19 confirmed cases
combining deep learning methods and Bayesian optimization[J]. Chaos,
Solitons & Fractals, 2021, 142: 110511.

[31] Jin X B, Zheng W Z, Kong J L, et al. Deep-Learning Forecasting
Method for Electric Power Load via Attention-Based Encoder-Decoder
with Bayesian Optimization[J]. Energies, 2021, 14(6): 1596.

[32] Zeng A, Chen M, Zhang L, et al. Are Transformers Effective for Time
Series Forecasting?[J]. Proceedings of the AAAI Conference on
Artificial Intelligence, 2023, 37(9): 11121-11128.

