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Abstract—Accurate workload forecasting plays a pivotal role 

in the management of cloud computing resources, enabling 

significant enhancement in the performance of the cloud 

platform and effective prevention of resource wastage. However, 

the complexity, variability, and strong time dependencies of 

cloud workloads make prediction difficult. To address the 

challenge of enhancing accuracy in contemporary cloud 

workload prediction, this paper employs empirical and 

quantitative research methods, introducing a cloud workload 

prediction method based on Bayesian-optimized Autoformer, 

termed BO-Autoformer. Initially, the cloud workload data were 

divided according to the time-sliding window to construct a 

continuous feature sequence, which was used as the input of the 

model to construct the Autoformer prediction model. 

Subsequently, to further enhance the model's performance, the 

Bayesian optimization method was employed to identify the 

optimal combination of hyperparameters, resulting in the 

development of the Bayesian optimization-based Autoformer 

cloud workload prediction model. Finally, experiments were 

conducted on a real Google dataset to evaluate the model's 

effectiveness. The findings reveal that, compared to alternative 

models, the proposed prediction model demonstrates superior 

performance on the cloud workload dataset, and can effectively 

improve the prediction accuracy of the cloud workload. 

Keywords—Cloud computing; deep learning; workload 

prediction; Autoformer; Bayesian optimization 

I. INTRODUCTION 

Cloud computing plays a crucial role in promoting public 
availability and openness of computing resources [1], yet the 
low utilization of these resources remains a persistent challenge 
in cloud computing resource management. With the continuous 
expansion of cloud computing infrastructure and the rapid 
increase in the number of users, energy consumption in cloud 
data centers has emerged as a significant issue [2]. The 
utilization of physical hosts is a key factor that substantially 
influences the energy consumption of the entire cloud 
computing system. Resource over-allocation or under-
utilization markedly escalates energy costs within cloud data 
centers. Studies indicate that the current utilization rate of 
various cloud computing resources generally falls below 50%, 
leading to a substantial portion of these resources remaining 
idle [3]. This inefficiency in resource usage not only results in 
considerable wastage of societal resources but also underscores 
the urgent need for implementing effective strategies to 
enhance the efficiency of cloud computing resource utilization. 
Therefore, effective measures must be taken to lower energy 

consumption costs, minimize resource waste, and foster the 
sustainable development of cloud computing. 

An effective approach to enhance the utilization of cloud 
computing resources involves accurate prediction of the 
resource workload. Through an analysis of historical data 
pertaining to the usage of cloud computing resources, it is 
possible to uncover the underlying patterns of load 
fluctuations, thereby forecasting the workload of cloud 
computing resources in the upcoming period [4]. By leveraging 
these predictive insights, cloud service providers can 
proactively adjust resource allocation to meet the diverse needs 
of users while optimizing resource utilization efficiency. 
However, the pursuit of predictive accuracy faces a series of 
challenges. First, workload fluctuations are influenced by 
numerous factors, such as the unpredictability of user behavior, 
sudden business demands, and the dynamic allocation of 
system resources. These factors result in workload patterns that 
are difficult to accurately capture with simple models. Second, 
Cloud workload prediction relies on extensive historical data to 
train predictive models, yet ensuring the integrity, accuracy, 
and consistency of this data is often challenging. Issues such as 
missing values, outliers, and noise are prevalent, which can 
interfere with the model training process and lead to biased 
prediction results. Consequently, traditional prediction models 
often struggle to achieve the desired accuracy when addressing 
the complexity and dynamics of cloud workloads and the 
instability of data quality. To solve this problem, it is 
imperative to explore new predictive technologies and methods 
to enhance the accuracy and reliability of prediction models. 

The Autoformer, a Transformer-based method for time 
series prediction, was introduced by Wu Haixu and colleagues 
from Tsinghua University [5]. It incorporates an 
autocorrelation mechanism to capture temporal dependencies, 
thereby enhancing its predictive accuracy and efficiency. 
Among existing time series forecasting methods, Autoformer 
has garnered widespread attention due to its outstanding 
performance. However, its application in cloud computing 
workload prediction is hindered by challenges in 
hyperparameter tuning and performance fluctuations: 

 Hyperparameter Adjustment Difficulties: The 
performance of the Autoformer depends significantly 
on the appropriate selection and tuning of 
hyperparameters. However, manual adjustment of 
hyperparameters becomes exceedingly challenging and 
time-consuming, particularly in scenarios involving 
voluminous data and multifaceted tasks. 
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 Performance Fluctuation: The performance of the 
Autoformer can fluctuate considerably across different 
tasks and datasets due to the complexity of its structure 
and the diversity of input datasets, thereby constraining 
its broad applicability in cloud computing workload 
prediction. 

This paper proposes a cloud workload prediction method 
that optimizes Autoformer through Bayesian optimization 
technology, which aims to solve the above problems. The main 
contribution of this work can be summarized as follows: 

 The Autoformer model is first applied to the field of 
cloud computing workload prediction, which 
significantly improves the accuracy and efficiency of 
prediction by exploiting its unique self-attention 
mechanism and long sequence processing ability. 

 Bayesian optimization technique is used to optimize the 
combination of hyperparameters of Autoformer. 
Compared with traditional grid search or random search 
methods, Bayesian optimization techniques can more 
effectively explore the hyperparameter space and find 
the combination of hyperparameters that optimizes the 
model performance. 

The application of the Bayesian optimization technique 
enables the Autoformer model to automatically tune 
hyperparameters in the workload prediction task of cloud 
computing. Through automatic tuning, not only the tedious and 
time-consuming manual parameter adjustment is eliminated, 
but also the computational cost in the tuning process is greatly 
reduced. With the help of Bayesian optimization, Autoformer 
can quickly find the best combination of hyperparameters for a 
specific task, thereby improving the accuracy of prediction. 
Furthermore, Bayesian optimization enhances the stability of 
the Autoformer model across various datasets and tasks, 
thereby mitigating performance fluctuations and bolstering the 
reliability of cloud computing systems. Consequently, the 
optimized Autoformer model can deliver more precise and 
dependable prediction outcomes across diverse workload 
scenarios. For cloud computing service providers, this 
technological improvement means that they can allocate 
resources more efficiently, and avoid resource waste or over-
provisioning, thereby reducing costs and improving service 
quality. At the same time, the system operation and 
maintenance personnel can also understand the load of the 
system in advance with the help of the BO-Autoformer model, 
so that they can make timely responses and adjustments, 
reducing the risk of system downtime or performance 
degradation. In addition, the combination of Bayesian 
optimization and the Autoformer model also provides new 
ideas and methods for research in the field of cloud computing 
and machine learning and encourages scholars and engineers in 
related fields to conduct more in-depth research and 
exploration. 

The structure of this paper is as follows: Section II provides 
a review of relevant literature. Section III elucidates the 
foundational principles of the Autoformer model. Section IV 
examines the application of the Autoformer model to workload 
predictions, with an emphasis on Bayesian optimization. 
Section V discusses the results derived from experimental 

evaluations. Section VI concludes the paper with a summary of 
the findings and contributions. 

II. RELATED WORKS 

In recent years, native and overseas scholars have dedicated 
efforts to enhancing the accuracy and reliability of workload 
forecasting for cloud computing resources. The methodologies 
employed in these studies can be broadly categorized into three 
primary groups: traditional regression techniques, machine 
learning approaches, and deep learning strategies. These 
methodologies represent the evolving landscape of research in 
the realm of cloud computing resource load prediction, 
reflecting a progression from conventional statistical methods 
to more sophisticated artificial intelligence models. 

A. Traditional Regression Techniques 

Traditional regression techniques encompass a diverse 
array of methodologies, including Autoregressive[6](AR), 
Moving average[7](MA), Autoregressive moving 
average[8](ARMA), Differential autoregressive moving 
average method[9](ARIMA), Linear regression[10](LR) and 
Exponential smoothing[11](ES), etc. Predominantly grounded 
in the presumption of linear interrelations, these methods 
frequently fall short of capturing the non-linear dynamics of 
workload variations. A significant reliance on the principle of 
stationarity renders them less effective in managing the non-
stationary nature of cloud resource loads. Challenges such as 
the complexity of parameter selection, susceptibility to outliers, 
and the difficulty in addressing seasonality and trends further 
underscore the limitations of traditional regression techniques 
in the context of cloud computing resource load forecasting. 

B. Machine Learning Approaches 

Machine learning approaches primarily comprise Markov 
models [12], Bayesian models [13, 14], Support vector 
regression (SVR) models[15], and traditional Artificial neural 
networks [16](ANN). In comparison to deep learning 
techniques, machine learning methods are somewhat 
constrained in their capacity to navigate complex non-linear 
relationships, exhibit limitations in effective feature extraction, 
and demonstrate inferior generalization performance in 
predictive models. These methods commonly call for a 
substantial amount of training data to obtain good prediction 
performance, and the data mostly rely on heuristic algorithms. 
As such, precise predictions require workload data that exhibits 
clear regularities or patterns, highlighting the dependency of 
machine learning methods on the characteristic structure of the 
data. 

C. Deep Learning Strategies 

Deep learning strategies encompass a variety of models, 
including Recurrent neural network [17](RNN), Long short-
term memory network (LSTM), Gated recurrent 
unit[18](GRU), Convolutional neural network [19](CNN), and 
Deep belief network [20](DBN), etc. To overcome the 
challenges of gradient vanishing and exploding encountered 
during the training of recurrent neural networks, researchers 
proposed the Long Short-Term Memory network (LSTM). By 
introducing a gating mechanism, LSTM can better manage and 
utilize gradient information, thereby enabling the learning of 
more intricate temporal patterns and prolonged dependencies. 
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Guo et al. [21] proposed an enhanced model, N-LSTM, which 
is an extension of LSTM, specifically designed to address the 
challenge of virtual machine workload prediction. This model 
integrates historical VM workload data with request intervals 
across various VM categories, using the resulting dataset as 
input for training, thereby enhancing its ability to accurately 
forecast future VM workload. In an effort to address the 
limitations and challenges present in current research, Xu et 
al.[22] introduced a deep neural network method, referred to as 
esDNN, based on efficient supervised learning for cloud 
workload prediction.  Empirical results indicate that esDNN is 
capable of providing precise and efficient predictions for cloud 
workload. 

Following the advent of the Transformer [23] model in the 
realms of natural language processing and computer vision, a 
multitude of Transformer-based models have been adapted for 
the prediction of time series data [24–26]. The Transformer 
architecture capitalizes on the distinct capabilities of the 
attention mechanism to effectively discern global dependencies 
within sequences, thus offering enhanced performance in 
addressing long-term sequence prediction challenges. 
However, the direct application of the self-attention 
mechanism in these models presents notable challenges in 
accurately discerning time dependencies within complex time 
series patterns. Furthermore, the intrinsic quadratic complexity 
associated with the self-attention mechanism imposes 
limitations on the model's sparsity requirements, thereby 
influencing the efficiency of information utilization. 

In response to these problems, the industry proposed the 
Autoformer model, which emerged as a significant 
advancement in time series prediction, extending the horizon of 
predictability. Empirical research has validated the capability 
of Autoformer to elevate both the accuracy and efficiency of 
predictions. To date, the Autoformer has been successfully 
implemented in various domains, including temperature 
forecasting, water level prediction, traffic flow forecasting, and 
power load forecasting. Theoretically, it can also be applied to 

cloud workload data with time series characteristics to make up 
for deficiencies in actual cloud load data prediction work. 
However, there is a dearth of literature demonstrating its 
application within the cloud computing workload prediction 
sphere. At the same time, traditionally, tuning the 
hyperparameter of Autoformer poses a significant challenge, 
particularly in scenarios involving large-scale datasets and 
complex tasks. Bayesian optimization, as an intelligent 
approach grounded in Bayes' theorem, offers potential 
solutions to a wide range of challenges. By constructing and 
dynamically refining the probability model of the objective 
function, this method adeptly incorporates historical evaluation 
data while efficiently guiding the search process toward a swift 
convergence to the optimal solution [27-28]. Bayesian 
optimization has been successfully applied to hyperparameter 
tuning of multiple predictive models, significantly improving 
model accuracy [29-32]. Consequently, the introduction of a 
Bayesian-optimized Autoformer model into cloud computing 
workload prediction tasks may bring new breakthroughs and 
improvements in this field of research. 

III. AUTOFORMER MODEL PRINCIPLE 

The challenge of predicting cloud workload shares 
similarities with time series prediction, both necessitating the 
input of a historical time window of length I to forecast a future 
time window of length O. In the context of cloud workload 
prediction, long-term forecasting assumes particular 
significance as cloud service providers need to proactively plan 
resource allocation. Addressing the exigency of long-term 
prediction, this paper introduced the Autoformer model, 
depicted in Fig. 1. Leveraging a decomposition architecture 
and autocorrelation mechanism, Autoformer adeptly handles 
intricate temporal patterns, discerns periodicity, and captures 
dependencies within time series data. This approach enhances 
the accuracy and efficiency of cloud load forecasting, enabling 
cloud service providers to adapt adeptly to forthcoming 
demand fluctuations. 

 
Fig. 1. Cloud workload prediction architecture based on Autoformer[5]. 
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The architecture for cloud workload prediction, utilizing 
Autoformer, comprises two distinct sections: the encoder and 
the decoder. The encoder primarily focuses on the load cycle 
term, taking as input the preceding I-time steps. Employing the 
autocorrelation mechanism, the initial input cloud workload 
time series undergoes preliminary sequence decomposition, 
resulting in load trend and load cycle components. These 
components, reflective of long-term trend and periodicity 
respectively, are then transmitted to the decoder, thereby 
dividing the input of the decoder into two parts: load trend item 
and load cycle item. The load cycle item forwarded to the 
decoder undergoes further sequence decomposition, facilitated 
by the autocorrelation mechanism. Meanwhile, the load trend 
item extracts trend information via accumulation operations. 
The decoder comprises multiple decoding layers, each 
acquiring a comprehensive segment of load timing data instead 
of discrete data points. This enables a stepwise sequence 
decomposition process, augmenting the reliability and 
precision of load prediction outcomes. 

A. Deep Decomposition Architecture 

The Autoformer model integrates sequence decomposition 
as a fundamental component of its deep decomposition 
architecture, which is embedded in both the encoder and 
decoder modules. Throughout the prediction process, the 
model iteratively optimizes forecast results while performing 
sequence decomposition. This iterative procedure entails 
meticulous adjustments to comprehensively capture diverse 
trends and periodicities in the data, effectively isolating 
essential features. 

The concept of sequence decomposition is primarily 
derived from conventional time series prediction algorithms, 
such as Arima and Fbprophet. In essence, these traditional 
algorithms approach the decomposition of time series from a 
statistical standpoint and give different physical meanings to 
the decomposed sub-terms, such as trend term, seasonal term, 
residual term, etc. Therefore, the general form of traditional 
time series decomposition is shown in Eq. (1): 

 X(t)=T(t)+S(t)+R(t) 

In Eq. (1), X(t) represents the time series that is subject to 
decomposition, whereas T(t), S(t), and R(t) corresponds to the 
trend term, seasonal term, and residual term, respectively, 
arising from the decomposition process. 

Within the context of cloud computing workload prediction, 
the computation of sequence decomposition within the 
Autoformer model is detailed in Eq. (2) to Eq. (3): 

 Xt=AvgPool(Padding(X)) 

 Xs=X-Xt 

In the aforementioned formula, X denotes the time series of 
cloud load to be decomposed, Xt represents the load trend 
component, whereas Xs signifies the load cycle component. Eq. 
(2) elucidates the specific algorithm for extracting the trend 
item Xt: To maintain the temporal span of the load time series 
unaltered, the fill operation is first applied to X and then 
AvgPool processing is performed. Eq. (3) clarifies that 
Autoformer adopts the simplest additive model and solely 

decomposes two sub-terms: trend term and periodic term. In 
other words, the input load time series X is subtracted from the 
obtained load trend term Xt, and the load cycle term Xs is 
derived using Eq. (2). 

1) Encoder: In the task of cloud computing workload 

prediction, the encoder primarily targets the periodic 

component of the cloud load time series. Through a meticulous 

multi-layer sequence decomposition module, it systematically 

eradicates the trend term from the load time series, ultimately 

extracting the periodic term. This extracted periodic term 

serves as valuable load period information, guiding the decoder 

in its prediction of future load. Taking the l-th coding layer 
l

enX  as an example, assuming there are N coding layers, the 

calculation of the l-th coding layer is as shown in Eq. (4) to Eq. 

(5): 

 ,1 1 1

en , _ ( ( ) )l l l

en enS SD AC X X     

 ,2 ,1 ,1

en , _ ( ( ) )l l l

en enS SD FF S X   

In the above formula, AC stands for AutoCorrelation 
processing, SD represents SeriesDecomp processing, and FF 

denotes FeedForward processing. 1l

enX  signifies the cloud load 

time series input during the initial encoding stage. ,l i

enS ， 

where i ∈ {1,2} denotes the i-th encoded load cycle 

information within the encoding layer. 

2) Decoder: In the task of cloud computing workload 

prediction, the decoder comprises two distinct components. 

The first component is responsible for handling the load trend 

term outputted by the encoder, gradually extracting trend 

information from the predicted latent variable through an 

accumulation operation. The second component focuses on the 

periodic term outputted by the encoder, employing a stacked 

autocorrelation mechanism for dependency mining and 

aggregation of similar subprocesses. Considering the l-th 

decoding layer l

deX  as an example, and assuming a total of M 

decoding layers, the decoding layer primarily operates on the 

input cloud load time series and the encoding layer output. The 

calculation of the l-th decoding layer is detailed in Eq. (6) to 

Eq. (9): 

 ,1 ,1 1 1, ( ( ) )l l l l

de de de deS T SD AC X X    

 
,2 ,2 ,1 ,1, ( ( , ) )l l l N l

de de de en deS T SD AC S X S   

 ,3 ,3 ,2 ,2

de , ( ( ) )l l l l

de de deS T SD FF S S   

 
1 ,1 ,2 ,3

,1 ,2 ,3

l l l l l

de de l de l de l deT T W T W T W T        

In the above formula, AC stands for AutoCorrelation 
processing, SD represents SeriesDecomp processing, and FF 

denotes FeedForward processing. 1l

deX  signifies the cloud load 

time series input during the initial encoding stage. ,l i

deS and ,l i

deT , 

where, i∈{1,2,3} denotes the i-th load cycle information and 
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load trend information decoded in the decoding layer. 
,l iW , 

where, i∈{1,2,3} denotes the weight of the i-th load trend. 

Utilizing the aforementioned progressive decomposition 
architecture, the Autoformer model effectively captures 
periodicity and trend variations within the load time series by 
methodically decomposing latent variables during the process 
of cloud load prediction. By incorporating the autocorrelation 
mechanism and accumulation method, the model is able to 
extract prediction outcomes pertaining to both load cycle item 
and load trend item, subsequently enabling a more precise 
prediction of cloud load time series. This alternating process of 
decomposition and optimization of prediction results mutually 
reinforces each other, offering robust support for enhancing the 
overall performance of the model. 

B. Auto-Correlation Mechanism 

In the context of cloud computing workload prediction, the 
Autoformer model leverages an autocorrelation mechanism to 
effectively capture periodic patterns within cloud load time 
series. Specifically, the autocorrelation module computes the 
autocorrelation coefficient of the load sequence, enabling the 
discovery of periodic dependencies. Furthermore, it employs 
time translation techniques to aggregate similar subload 
sequences, thereby enhancing comprehension of the model and 
prediction accuracy of cloud load dynamics. This approach 
significantly improves the ability of the model to capture 
intricate temporal patterns and make accurate predictions, 
which is crucial for effective resource management in cloud 
computing environments. 

In the practical computation of autocorrelation, the 
Autoformer model employs a fast Fourier transform (FFT) 
technique to efficiently calculate the autocorrelation coefficient. 
Initially, the input load time series Xt undergoes mapping to Q, 
K, and V, followed by conversion into the frequency domain. 
In the frequency domain, the translation similarity can be 
calculated more conveniently, which helps to improve the 
computational efficiency. The specific calculation process is 
shown in Eq. (10) to Eq. (11): 

 
2 2( ) ( ) ( )XX t

i tf i

tt

tf

tS ef F X F X e dt X dtX  





 

 

    

Eq. (10), Xt represents the load time series that exhibits 
periodicity; F denotes the Fourier transform (FFT), while F* 
represents its conjugate operation; The variable f signifies the 
frequency, which is multiplied by 2π to obtain the angular 
frequency; The multiplication of F and F* with the respective 
integration results of the load trend terms facilitates the 
transformation of the time series into the frequency domain. 

 
21( ) ( ( )) ( )XX XX XX

i fR feF S f S f d





    

Eq. (11), RXX(τ)represents the similarity between the 
sequence Xt and its τ delay Xt-τ, this delay similarity can be 
regarded as the confidence of the unnormalized period estimate, 
that is, the confidence R(τ) of the period length τ. F-1 denotes 
the inverse Fourier transform; The variable f represents 
frequency, multiplied by 2π to obtain the angular frequency 
result. Subsequently, an inverse Fourier transform is applied to 

the outcome derived from Eq. (11), leading to the computation 
of the autocorrelation coefficient. This approach effectively 
reduces the computational complexity associated with the 
autocorrelation solution, thereby enhancing the efficiency and 
practicality of the overall analysis. 

IV. WORKLOAD PREDICTION MODEL BASED ON BAYESIAN-

OPTIMIZED AUTOFORMER 

A. Bayesian Optimization Algorithm 

In the context of forecasting cloud computing workload 
based on the Autoformer model, the selection of 
hyperparameters holds a pivotal role in relation to model 
evaluation. The training process necessitates meticulous 
control and adjustment of numerous hyperparameters, ensuring 
that the model performs at its optimal level. This fine-tuning is 
crucial for enhancing the predictive accuracy and overall 
performance of the Autoformer in handling cloud workload 
prediction tasks. 

Bayesian Optimization (BO) stands as a sequential model-
based optimization method designed for black-box function 
optimization tasks. It is employed to optimize unknown 
objective functions efficiently, aiming to expedite the 
discovery of globally optimal solutions with fewer function 
evaluations. As a result, Bayesian optimization finds 
widespread application in hyperparameter tuning for machine 
learning models. The core principle of this approach lies in the 
utilization of the Gaussian Process as a prior model to 
approximate the unknown objective function. Through iterative 
evaluations and modeling of the objective function, Bayesian 
optimization selects the most promising input point for 
subsequent evaluation, guided by the current confidence of the 
model. This selection process, known as the Sampling Strategy 
or Acquisition Function, is crucial in guiding the search toward 
optimal solutions. Eq. (12) presents the mathematical 
formalism underlying this calculation. 

 argmax ( )
X A

X f X



  

In Eq. (12), X* represents the optimal parameter set, A 
denotes the possible set, and f(X) serves as the prior 
distribution model. 

In comparison to grid search and random search, the 
Bayesian optimization algorithm demonstrates the capability of 
attaining satisfactory optimization outcomes with a 
significantly reduced number of iterations. This efficiency is 
particularly advantageous in scenarios where computational 
resources are limited or where rapid convergence is desired. 
The pseudocode of the Bayesian optimization algorithm is 
presented in Table I, providing a concise and structured 
overview of the algorithm's operational steps. 

Firstly, an initial set of candidate solutions is uniformly 
selected within the entire feasible domain, typically comprising 
n0 points. This serves as the starting point for the subsequent 
optimization process. Subsequently, a loop iteration is initiated, 
during which one point is added at each iteration until a total of 
N candidate solutions are obtained. To determine the next point 
to evaluate, the already-found candidate solutions are leveraged 
to establish a Gaussian regression model. This model allows us 
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to estimate the posterior probability of the function value at any 
given point. Based on this posterior probability, an acquisition 
function is formulated, and the point corresponding to the 
maximum value of this function is chosen as the next search 
point. Once the next search point is identified, its function 
value is computed and incorporated into the set of candidate 

solutions. Finally, the algorithm terminates, returning the 
maximum value among the N candidate solutions as the 
optimal solution. This process ensures efficient exploration of 
the search space and convergence towards the globally optimal 
solution.

TABLE I.  PSEUDOCODE OF BAYESIAN OPTIMIZATION ALGORITHM 

Algorithm 1: Bayesian Optimization Algorithm 

Select n0 sampling points and compute the corresponding values of f(x) 

n=n0 

While (n≤N) do 

 Modify the mean and variance of p(f(x)|D) according to the recent Sampling records D={(xi,f(xi)),i=1,…,n} 

 Determine the acquisition function u(x) using the mean and variance of the conditional probability p(f(x)|D) 

 Identify the subsequent sampling point xn+1=argmax u(x) by locating the maximum value of the acquisition function 

 Compute the function's output at the subsequent sampling location: yn=f(xn+1) 

 n=n+1 

End 

Return: argmax(f(x1),…,f(xN)) and the corresponding y 

B. Workload Prediction Model Based on BO-Autoformer 

To enhance the workload prediction model by optimizing 
its hyperparameters, the Bayesian (BO) algorithm is introduced 
for parameter optimization. The process of load prediction 
using the BO-Autoformer prediction model is depicted in Fig. 
2. The BO-Autoformer prediction model utilized comprises 
four components: preprocessing of data, training of the model, 
Bayesian optimization, and model predictions. Collectively, 
these stages form a comprehensive load prediction process. 
The detailed ideas are outlined as follows: 

Step 1: In the workload prediction task, the initial load data 
necessitates rigorous preprocessing. This involves crucial steps 
such as data cleansing, handling missing values, normalization, 
and feature engineering. These processes ensure that the load 
data is rendered suitable for effective training and prediction. 

Step 2: Following data preprocessing, the workload dataset 
is partitioned into distinct training and testing sets. The training 
set is then utilized to train the Autoformer model, a time series 
prediction model grounded in stochastic process theory. The 
Autoformer boasts a deep decomposition architecture and an 
autocorrelation mechanism, enabling it to efficiently leverage 
the periodicity and delay information inherent in the sequence. 

Step 3: Concurrently, during the model training phase, the 
Bayesian optimization algorithm is employed to fine-tune the 
hyperparameters of the Autoformer model. Bayesian 
optimization establishes a Gaussian regression model within 
the parameter space, estimating the posterior probability 
distribution of the objective function. Based on this distribution, 
it selects the most promising parameter point for the next 
iteration. This approach significantly enhances the efficiency of 
the model and accelerates the convergence process. 

 

Fig. 2. Workload prediction flow chart based on BO-Autoformer.
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Step 4: The Autoformer model adjusted by Bayesian 
optimization predicts the test set data. 

V. RESULTS AND DISCUSSION 

A. Experimental Environment Configuration 

The entire combined model is written in Python3.11 and 
implemented based on Pytorch and is finally executed on 
Intel(R) Core(TM) i5-7200U CPU @ 2.50GHz 2.71 GHz. 

B. Dataset and Data Process 

The experiment conducted in this study utilizes the Google 
Cluster Trace dataset, a real-world workload dataset released 
by Google in 2011. This extensive dataset comprises over 40 
million tasks, encompassing workload information from 
approximately 12,500 machines over a span of 29 days. It 
encompasses various attributes such as job ID, task index, 
machine ID, CPU usage, and memory usage. This study 
focuses on CPU usage as the primary load information. The 
original data is sampled every five minutes, resulting in a total 
of 8333 sampling points. 

To ensure the rigor and reliability of the findings, the 
dataset was carefully divided into three distinct subsets: 
training, validation, and testing. Specifically, the initial 4986 
sets of data are designated as the training set, representing 
approximately 60% of the total dataset. This ensures that the 
model is adequately trained on a substantial portion of the 
available data. Subsequently, the following 1668 sets of data 
serve as the validation set, accounting for 20% of the dataset. 
The validation set is utilized to monitor the model's 
performance during training, aiding in hyperparameter tuning 
and preventing overfitting. Finally, the remaining 1679 sets of 
data comprise the testing set, also constituting 20% of the total 
dataset. The testing set enables us to evaluate the model's 
generalization ability on unseen data, providing an unbiased 
assessment of its performance. 

This systematic approach ensures a balanced allocation of 
data for training, validation, and testing, allowing us to 
comprehensively assess the performance of the model and 
ensure its reliability in real-world scenarios. 

1) Missing value process: Given the extensive data sample 

size and high statistical frequency inherent in the Google 

Cluster Trace dataset, it is inevitable that occasionally, specific 

reasons may lead to the omission of individual data points. To 

address this issue, this article employs the linear regression 

fitting interpolation method as a robust approach to fill in the 

missing values. This method ensures that the missing data are 

accurately and reliably estimated, minimizing any potential 

biases or distortions in the subsequent analysis. 

2) Data normalization: Data normalization serves as a 

crucial step in enhancing the training effectiveness of neural 

networks. It significantly accelerates the process of locating 

optimal solutions during training, thereby improving the 

overall performance of the network. This study adopts the 

minimum-maximum normalization method, which effectively 

scales the input values to fall within the range of 0 to 1. This 

normalization approach ensures that the data is appropriately 

scaled, minimizing potential biases and enhancing the 

convergence speed of the training process. 

C. Evaluation Index 

To assess the precision of the proposed model accurately, 
several key evaluation metrics were selected, including Mean 
Square Error (MSE), Root Mean Square Error (RMSE), Mean 
Absolute Error (MAE), and Mean Absolute Percent Error 
(MAPE). These metrics provide comprehensive insights into 
the model's performance. The formulas for each evaluation 
index are as shown in Eq. (13) to Eq. (16): 
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In the aforementioned equations, ˆ
iy and iy , represent the 

predicted load value and the actual load value at time i 
respectively. Additionally, n signifies the total count of test 
samples. It is noteworthy that as these evaluation indicators 
approach zero, the prediction performance of the model 
improves significantly. 

D. Discussion 

The main finding of this study is that the Autoformer model 
was successfully applied to the field of cloud computing 
workload prediction, and the model's hyperparameter 
combination was optimized through Bayesian optimization 
technology. This discovery not only demonstrates the great 
potential of the Autoformer model in the field of cloud 
computing but also proves the effectiveness of Bayesian 
optimization technology in hyperparameter tuning. Through 
this method, the accuracy and efficiency of cloud computing 
workload prediction are improved, and new ideas are provided 
to solve resource management problems in cloud computing. 

The significance of this study is profound, both 
theoretically and practically. At the theoretical level, this study 
combines the Autoformer model and Bayesian optimization 
technology to propose a new cloud computing workload 
prediction method, which enriches the research content in the 
field of cloud computing resource management. At a practical 
level, this approach promises to augment the efficiency and 
precision of cloud computing resource management, leading to 
reduced operational costs and improved service quality. For 
cloud computing service providers, this means being able to 
better respond to workload changes, optimize resource 
allocation, and improve resource utilization. For cloud 
computing users, it means they can obtain a more stable and 
efficient service experience. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

1039 | P a g e  

www.ijacsa.thesai.org 

E. Experimental Results 

1) Artificiality: In the context of cloud workload data 

prediction, a complex network model may often give rise to 

issues such as overfitting, inadequate training, and underfitting. 

Therefore, it is imperative to meticulously address the 

complexity of the network model when selecting 

hyperparameters. In the experiments, we manually adjusted the 

hyperparameters and conducted multiple comparisons of 

prediction results. The selected hyperparameters, as presented 

in Table II, were carefully chosen to balance the model's 

complexity with its predictive capabilities. 

2) Bayesian optimization:  In the Autoformer model, the 

sequence length optimization range was set to [6, 48] with a 

step size of 6, allowing for the exploration of various sequence 

lengths and their impact on model performance. The model 

dimension optimization range encompassed [128, 256, 512, 

1024], permitting the identification of an appropriate balance 

between model complexity and predictive accuracy. 

Additionally, the batch size optimization range was established 

as [12, 24, 32, 48], enabling the investigation of the effect of 

batch size on training efficiency and stability. Furthermore, the 

optimization range for the middle layer dimension of the 

feedforward network was set to [512, 1024, 2048], allowing for 

the exploration of different network depths. The number of 

attention heads was optimized within the range of [1, 8], 

exploring the trade-off between attention granularity and 

computational complexity. Moreover, the encoder and decoder 

layers were optimized over the range of [1, 5], studying the 

impact of model depth on prediction performance. Finally, the 

optimization ranges for the attention factor and regularization 

coefficient were set to [1, 5] and [0.0, 0.5], respectively, 

facilitating the adjustment of model sensitivity and 

generalization ability. 

TABLE II.  HYPERPARAMETER COMBINATIONS DETERMINED BY ARTIFICIALITY 

Hyperparameters Meaning Value 

seq_len The maximum length of the input sequence processed by the model at each time 18 

d_model Model embedding dimension, also known as hidden layer size 128 

batch_size Number of samples processed by the model in each iteration 32 

d_ff Internal Dimensions in Feedforward Neural Networks 1024 

n_heads Number of heads in multi-head self-attention 8 

e_layers Number of encoder layers 3 

d_layers Number of decoder layers 2 

factor Controlling the number of basis functions in the attention mechanism 2 

dropout The probability of dropping at random 0.05 
 

Utilizing the Bayesian optimization algorithm, this paper 
conducted a meticulous hyperparameter search for the 
Autoformer model. Through iterative evaluations of the 
objective function, the algorithm identifies the hyperparameter 
combinations that yield minimal loss, thereby maximizing 
prediction accuracy. The optimal hyperparameters, as 
summarized in Table III, represent the most effective 
configuration for the Autoformer model in terms of balancing 
model complexity, training efficiency, and predictive 
performance. 

As presented in Table III, the hyperparameter values 
obtained following Bayesian optimization are as follows: 
sequence length of 18, model dimension of 512, batch size of 
32, intermediate layer dimension of the feedforward network 
set to 2048, eight attention heads, two encoder layers, one 
decoder layer, an attention factor of 3, and a regularization 
coefficient of 0.05. Through multiple runs, this paper observed 
the convergence speed and computational efficiency of the 
neural network. To ensure the convergence of experimental 
errors, the maximum traversal count was fixed at 10. This 
optimized configuration enables the Autoformer model to 
achieve superior predictive performance while balancing 
computational demands. 

3) Compare and Analysis: Table IV comprehensively 

summarizes the evaluation metrics of the Autoformer model 

before and after the application of Bayesian optimization. 

Employing the optimal hyperparameter combination, the study 

tested the performance of the Autoformer model and conducted 

a comparative analysis between the original Autoformer and 

the BO-Autoformer, using real-world data. Fig. 3 provides a 

visual representation of the improvement achieved result 

through Bayesian optimization. 

As evident from Table IV, the BO-Autoformer model 
exhibits slight improvements in various evaluation metrics 
compared to the original Autoformer. Specifically, the mean 
squared error (MSE) is reduced by 0.82%, the root mean 
squared error (RMSE) is decreased by 0.41%, the mean 
absolute error (MAE) is lowered by 0.55%, and the mean 
absolute percentage error (MAPE) is diminished by 0.59%. 
These results demonstrate the effectiveness of Bayesian 
optimization in enhancing the predictive accuracy of the 
Autoformer model. 

One can clearly observe from Fig. 3 that the predicted value 
obtained by the BO⁃Autoformer model is close to the real 
value, and the load curve value is relatively close. The findings 
indicate that the BO⁃Autoformer model can predict cloud 
workload data better than Autoformer. 
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TABLE III.  HYPERPARAMETER COMBINATIONS DETERMINED BY 

BAYESIAN OPTIMIZATION 

Hyperparameters Parameter adjustment range Value 

seq_len （6,48） 18 

d_model [128, 256, 512, 1024] 512 

batch_size [12, 24, 32, 48] 32 

d_ff [512, 1024, 2048] 2048 

n_heads （1, 8） 8 

e_layers （1, 5） 2 

d_layers （1, 5） 1 

factor （1, 5） 3 

dropout （0.0, 0.5） 0.05 

TABLE IV.  EVALUATION INDICATORS BEFORE AND AFTER BAYESIAN 

OPTIMIZATION 

Model MSE RMSE MAE MAPE 

Autoformer 0.003046 0.055190 0.043399 0.193858 

BO-Autoformer 0.003021 0.054961 0.043159 0.192713 

 
Fig. 3. Comparison of predicted values and actual values before and after 

Bayesian optimization. 

The optimal hyperparameter combinations obtained by 
Bayesian optimization were applied to the four benchmark 

models: DLinear[29]、NLinear[29]、Informer and Reformer, 

and a comprehensive comparison among them. The evaluation 
metrics of the various models are summarized in Table V, 
while the prediction outcomes are graphically presented in Fig. 
4, providing a clear and concise visualization of the 
comparative performance. 

As indicated in Table V, it is evident that the MSE of the 
BO-Autoformer model is reduced to 0.003021, which is more 
stable than the other four methods. In comparison to the 
remaining four approaches, the RMSE has diminished by 
16.50%, 15.44%, 2.33%, and 1.15% respectively, the span of 
the discrepancy between the true and predicted values has 
narrowed, and the prediction will be more reasonable. 
Compared with the other four methods, the model MAE has 

diminished by 16.97%, 15.15%, 0.78%, and 1.24% 
respectively. Combined with the prediction trend, it is apparent 
that the precision of predictions has risen. In relation to the 
other three methodologies, there is a decrease in the MAPE 
value by 16.09%, 11.09%, and 1.78% respectively, and the 
quality of the model has been slightly improved. These 
findings collectively demonstrate the superiority of the BO-
Autoformer model in terms of prediction accuracy and stability. 

TABLE V.  EVALUATION INDICATORS OF BASELINE MODELS 

Model MSE RMSE MAE MAPE 

DLinear 0.004333 0.065825 0.051978 0.229670 

NLinear 0.004225 0.064997 0.050863 0.216753 

Informer 0.003167 0.056272 0.043499 0.184837 

Reformer 0.003091 0.055598 0.043701 0.196201 

BO-Autoformer 0.003021 0.054961 0.043159 0.192713 

 
Fig. 4. Comparison of predicted values and actual values of the baseline 

models. 

As demonstrated in Fig. 4, the fitting curve of the Bayesian 
optimized Autoformer model is closer to the true value than 
other models, and the fitting effect is the best. Consequently, 
the BO-Autoformer model proposed in this study demonstrates 
significantly higher prediction accuracy when compared to 
several alternative models, thereby underscoring its 
effectiveness and reliability in the domain of concern. 

In the scenario where the input sequence spans 18-time 
steps (equating to 90 minutes), the study conducted a 
comparative analysis across various prediction horizons, 
specifically 1-time step (5 minutes), 6-time steps (30 minutes), 
12-time steps (60 minutes), and 18-time steps (90 minutes). 
The comparative outcomes were systematically compiled in 
Table VI, facilitating a comprehensive evaluation against other 
models. 

Table VI clearly illustrates that the MSE and MAE error 
coefficients associated with the 5-minute, 30-minute, 60-
minute, and 90-minute predictions of the BO-Autoformer 
model are predominantly lower than those of other models, 
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thus achieving optimal performance. Therefore, the 
Autoformer model demonstrates notable superiority over other 
models in both short-term and long-term prediction 
capabilities, highlighting its efficacy and reliability across 
various prediction horizons. 

4) Discussion of limitations: Despite the encouraging 

results of this study, several limitations and potential issues 

remain. Firstly, the validation was conducted using only a 

single dataset, which may not fully capture the performance of 

the BO-Autoformer model across diverse scenarios. This 

limitation may cause our evaluation of model performance to 

be overly optimistic or one-sided. Therefore, future research 

should expand the dataset scope to better assess the model's 

generalization ability. Secondly, the Bayesian optimization 

algorithm used to find the optimal hyperparameter combination 

can be computationally intensive, making it unsuitable for 

application scenarios requiring high real-time performance. 

This limitation limits the application of the BO-Autoformer 

model in scenarios such as online learning. Therefore, future 

research should explore more efficient optimization algorithms 

to enhance the training speed and prediction efficiency of the 

model. 

TABLE VI.  EVALUATION INDICATORS OF BASELINE MODELS UNDER DIFFERENT PREDICTION LENGTHS 

Model/prediction 

length 

5min 30min 60min 90min 

MSE MAE MSE MAE MSE MAE MSE MAE 

DLinear 0.004333 0.051978 0.005220 0.056784 0.006236 0.062536 0.006991 0.066337 

NLinear 0.004225 0.050863 0.004734 0.053796 0.004969 0.055146 0.005497 0.057858 

Informer 0.003167 0.043499 0.003730 0.047181 0.003975 0.049355 0.004357 0.051340 

Reformer 0.003091 0.043701 0.003551 0.046383 0.003956 0.049906 0.004659 0.054540 

BO-Autoformer 0. 003021 0.043159 0.003503 0.046312 0.003794 0.048110 0.003965 0.049038 
 

VI. CONCLUSION AND FUTURE WORK 

Given the intricate sequential patterns and complexities 
inherent in cloud workload, accurate prediction of the 
workload holds paramount importance for successful cloud 
computing resource management. To address the prevailing 
challenges of limited prediction accuracy and challenging 
hyperparameter tuning in cloud workload prediction, this paper 
introduces the BO-Autoformer model, a fusion of the 
Autoformer model and Bayesian optimization techniques. 
Through rigorous experimental validation, the BO-Autoformer 
model was found to significantly outperform the traditional 
Autoformer model, achieving a reduction in MSE and MAE by 
0.82% and 0.55% respectively, thereby enhancing prediction 
accuracy. By comparing with 4 baseline models, it is found 
that this model promises extensive application potential in both 
short-term and long-term load prediction. 

 Future research should not only be satisfied with the 
existing prediction accuracy but should continue to explore 
new optimization paths to achieve further improvement in the 
performance of prediction models. In addition, designing a 
reasonable virtual machine consolidation strategy based on the 
prediction results to realize the efficient utilization of cloud 
resources is also an important research direction in the future. 
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