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Abstract—Biomedical condition monitoring devices are 

progressing quickly by incorporating cost-effective and non-

invasive sensors to track vital signs, record medical circumstances, 

and deliver meaningful responses. These sophisticated innovations 

rely on breakthrough technology to provide intelligent platforms 

for health monitoring, quick illness recognition, and precise 

treatment. Biomedical signal processing determines patterns of 

signals and serves as the backbone for reliable applications, 

medical diagnostics, and research. Deep Learning (DL) methods 

have brought significant innovation in biomedical signal 

processing, leading to the transformation of the health sector and 

medical diagnostics. This article covers an entire range of 

technical innovations evolved for DL-based biomedical signal 

processing where different modalities have been considered, 

including Electrocardiography (ECG), Electromyography 

(EMG), and Electroencephalography (EEG). A vast amount of 

biomedical data in various forms is available, and DL concepts are 

required to extract and model this data in order to identify hidden 

complex patterns that can be utilized to improve the diagnosis, 

prognosis, and personalized treatment of diseases in an individual. 

The nature of this developing topic certainly gives rise to a number 

of challenges. First, the application of sensitive and noisy time 

series data requires truly robust models. Second, many inferences 

made at the bedside must have interpretability by design. Third, 

the field will require that processing be performed in real-time if 

used for therapeutic interventions. We systematically evaluate 

these challenges and highlight areas where continued research is 

needed. The general expansion of DL technologies into the 

biomedical domain gives rise to novel concerns about 

accountability and transparency of algorithmic decision-making, 

a subject which we briefly touch upon as well. 
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I. INTRODUCTION 

Changing signals provide critical insights regarding the 
entities that produce them [1]. Advances in technologies such as 
IoT, machine learning, and Wireless Sensor Networks (WSN) 
have significantly enhanced the ability to interpret these signals, 
particularly in fields like biomedicine, where mechanisms 
change over time as their underlying characteristics continually 
evolve [2, 3]. These alterations can be abrupt, where the internal 
properties of the system change gradually over time, or gradual, 
where the internal properties change slowly over time [4]. The 
signals from these systems are also time-varying in nature, and 
their time-varying aspects can unveil the dynamics of these 
systems [5]. Heart rate variations under stress or pitch changes 
of a vocalist during a song, for example, show a time-dependent 
change in the Instantaneous Frequency (IF) of the signal [6]. 

Similarly, fluctuations in the system's response intensity are 
linked to changes in the Instantaneous Amplitude (IA). 
Furthermore, the nature of the vibrations might undergo 
alteration. The integration of these many sources of variability 
results in intricate patterns in the temporal progression of the 
signal. 

Biomedical signals are acquired from different levels of the 
body, such as cellular, organ, and molecular levels. Biomedical 
signal processing comes from many modalities like EEG for 
tracking brain electrical activity, ECG for tracking heart 
electrical activity, EMG for tracking the noise signals of muscle, 
and electroretinogram and electroneurogram for tracking the 
electrical activities of the eye [7]. Biomedical signals are first 
used to diagnose or identify certain physiological and 
pathological conditions. Moreover, these signals are used in the 
healthcare industry to examine biological systems [8]. This 
objective is to remove noise from signals, extract features, 
accurately recognize signal models, reduce dimensionality for 
dysfunctional or crucial functions, and anticipate future 
pathological and functional events by applying AI models. 

Typically, EEG signal processing and interpretation were 
generally carried out using a hierarchical process consisting of 
four main stages. First, a raw EEG signal was pre-processed to 
filter out noise and artifacts to improve the signal quality for 
further analysis. Following pre-processing, useful information 
should be obtained from the processed signal [9]. Mainly, this 
step involves techniques such as time-frequency analysis or 
spectral analysis to determine the features indicative of the 
different patterns of brain activity. After the features had been 
extracted, they were subjected to a feature selection method. 
This step involved selecting fewer extracted features in the next 
steps of the analysis to make the information more 
discriminative and to improve computational complexity. 

Feature selection techniques such as Principal Component 
Analysis (PCA) and wavelet transform were frequently 
employed to identify the most discriminative features for 
classification or diagnosis. Then, the extracted features were 
subjected to diagnostic tests for disease diagnosis or for the 
identification of diverse functional states of the brain [10]. This 
stage usually involved the use of machine learning models and 
statistical tests to identify abnormal EEG patterns or patterns 
indicative of various neurological disorders. To learn complex 
structures present in EEG data and to help in the accurate 
classification or prediction task, machine learning algorithms 
such as Support Vector Machines (SVM), Artificial Neural 
Networks (ANNs) were employed [11]. 
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Classical signal processing methods are widely used in 
biomedical signal analysis, providing robust tools for feature 
extraction, denoising, and signal classification [12]. The 
information obtained using approaches like Fourier transforms, 
wavelet analysis, and statistical methods has also led to more 
insight into many physiological functions and the detection of 
abnormalities. The complexity and time variations of 
biomedical signals, however, pose a serious challenge for 
classical signal processing methods in particular for the non-
linear and nonstationary nature of the signals. 

The emergence of Deep Learning (DL) has revolutionized 
biomedical signal processing by providing the capability to 
automatically learn hierarchical features from raw data with 
little human intervention [13, 14]. DL models, including 
Generative Adversarial Networks (GANs), Recurrent Neural 
Networks (RNNs), and Convolutional Neural Networks 
(CNNs), have achieved remarkable performance in a wide range 
of applications, such as extracting ECG arrhythmias, brain-
computer interface based on EEG signals, and noise suppression 
in EMG signals [15, 16]. The turning point in the DL era 
encourages researchers to gradually shift from expert-designed 
feature engineering to data-driven end-to-end learning, leading 
to more precise, efficient, and flexible analysis of biological 
signals [17]. Table I provides a comparison of our study with 
previous related survey studies. In summary, the main 
contributions of this work are: 

 Presenting a thorough overview of current advancements 
in DL techniques applied to biomedical signal 
processing; 

 Reviewing and analyzing the existing DL architectures 
utilized in processing various biomedical signals; 

 Identifying and discussing the challenges inherent in 
applying DL to biomedical signal analysis, such as noise 
handling, interpretability, and real-time processing 
requirements; 

 Exploring emerging trends, future directions, and 
potential opportunities for interdisciplinary collaboration 
in advancing the field of DL for biomedical signal 
processing. 

The rest of the paper is organized as follows. Section II offers 
a concise overview of biomedical signal processing 
fundamentals and the associated challenges. Section III presents 
an in-depth discussion of DL techniques developed for 
biomedical signal processing. In Section IV, we scrutinize the 
potential opportunities and existing challenges encountered in 
using DL for biomedical signals. Furthermore, in Section V, 
emerging trends and future research directions are presented for 
better comprehension and advanced research in this domain. 
Finally, Section VI provides a conclusion, overviews the 
contribution of DL to the field of biomedical signal processing, 
and hypothesizes future research opportunities. 

TABLE I.  COMPARISON OF OUR STUDY WITH PREVIOUS SURVEYS 

Study Methodology Contribution 

[21] 
Comparative evaluation of feature selection and classification 

techniques for brain-computer interface 

Offers insights into the effectiveness of different methods for feature selection 

and classification in brain-computer interface systems 

[22] Review of DL and ML in big data 

Provides an overview of the evolution, concepts, and integration of DL and 

ML in big data analytics, categorizing and synthesizing their potential 

applications 

[23] Survey of DL in physiological signal analysis 
Conducts a detailed study to comprehend, categorize, and compare key 

parameters of DL approaches in physiological signal analysis, offering 
insights into their applications and performance 

[24] Review of DL techniques for audio signal processing 
Examines DL techniques applied to audio signal processing, identifying key 

models, challenges, and future directions in the field 

[25] Literature survey on ECG signal analysis 
Describes traditional and advanced techniques for ECG signal analysis, 

discussing challenges, limitations, and future research directions in the field 

Our Study 
Reviews current advancements in DL techniques for biomedical 

signal processing, focusing on EEG signals 

Provides a comprehensive overview of DL techniques for EEG signal 

analysis, identifies challenges, and explores future directions for 

interdisciplinary collaboration 
 

II. BACKGROUNDS 

The biomedical signaling modalities incorporate multiple 
physiological signals that reflect the functioning of different 
systems of the human body [18]. The signals are tabulated in 
Table II. ECG, EMG and EEG are some of the most popular 
examples of body signals providing various types of information 
about physiological or pathological processes in the human body 
[19]. ECG signals are the heart's electrical activity over time. 
ECG measures can check for heart rhythm, conduction 
abnormalities, ischemia, infarction, and more. These signals are 
necessary indicators for diagnosing heart failure, myocardial 
infarction, arrhythmias, etc. ECG can also monitor the heart as 
an indicator of infectious disease, trauma, and metabolic 
anomalies that affect the heart in the body. EMG captures 

electrical signals produced when muscles are activated. It is used 
in many medical settings like neurology, orthopedics, sports 
medicine, physical therapy, and other related healthcare 
providers. The EMG signal is smoothly propagated throughout 
the body and can provide valuable information on some of the 
most deadly disorders humans have faced [20]. EEG is an 
electrophysiological monitoring method used to monitor the 
electrical activity of the brain. With EEG, voltage fluctuations 
around the scalp are measured in relation to electrical activity in 
the brain and waves that occur in a variety of forms and 
frequencies. From the determined EEG signals it is possible to 
diagnose neurological problems like epilepsy, tracking 
anesthesia depth during surgery, etc. Additionally, these 
measures can reveal other brain-related illnesses like 
Parkinson's, Alzheimer's, and sleep disorders. 
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TABLE II.  OVERVIEW OF BIOMEDICAL SIGNAL MODALITIES 

Modality Description Clinical applications 

ECG Measures heart's electrical activity over time Detection of arrhythmias, ischemia, myocardial infarction 

EMG Captures electrical activity caused by muscle contractions Diagnosis of neuromuscular disorders, rehabilitation guidance 

EEG Records brain electrical activity 
Diagnosis of epilepsy, monitoring during surgery, studying brain 
disorders 

 

Each biomedical signal type contributes to a different aspect 
of health and disease, thus offering different information [26]. 
ECGs are used to illustrate heart conditions. EMG signals are 
associated with the neuromuscular system, while EEG signals 
may be used to diagnose neurological conditions [27]. Hence, 
each signal type is related to a different medical specialty [28]. 
Moreover, not only is the potential of each signal type in 
isolation vast, but also, by combining the information from 
multiple sources, a comprehensive view of the patient's state can 
be achieved. This, in turn, can personalize the offered treatment. 
Over the years, advances in signal processing technology and 
machine learning algorithms have also greatly increased the 
utility of these signals for the clinician [29]. These technological 
improvements have led to more accurate diagnostics, 
prognostics, and personalized treatment plans. Biomedical 
signal types have the potential to transform and enhance medical 
treatment as the technology improves. 

Advancements in DL, detailed in Table III, have 
revolutionized biomedical signal processing. DL is an instance 
of machine learning that uses ANNs with several layers to 
acquire hierarchical representations of input autonomously. DL 
models have an advantage over typical machine learning 
methods because they can extract important characteristics 
directly from raw data without the need for manually produced 
features [30]. Deep learning models are able to adapt themselves 
to very complex and high-dimensional data, such as biomedical 
signals. DL is currently used for denoising, feature extraction, 
classification, and segmentation of biomedical signals [31]. For 
example, CNNs are highly effective in automatically learning 
spatial and temporal features from biomedical signals such as 
ECGs and EEGs, enabling accurate classification of abnormal 
patterns indicative of various cardiac arrhythmias or 
neurological disorders. Likewise, RNNs can learn temporal 
dependencies in sequence data and are widely used in time-
series prediction and signal segmentation in biomedical signals. 
Moreover, GANs have been exploited for signal augmentation 
and generation thereby increasing the availability of annotated 
data in large amounts for training DL models and their 
generalization. 

TABLE III.  DEEP LEARNING TECHNIQUES FOR BIOMEDICAL SIGNAL 

PROCESSING 

DL technique Description Applications 

CNN 

Learns spatial and 

temporal features from 
signals 

Classification of cardiac 

arrhythmias and 
neurological disorders 

RNN 
Captures temporal patterns 
in sequential data 

Time-series prediction 
and signal segmentation 

GAN 

Augments data and 

improves generalization 
performance 

Signal augmentation and 
data synthesis 

DL in biomedical signal processing is not limited to 
diagnostic applications and can also be expanded to 
personalized medicine, monitoring in real-time, and therapeutic 
interventions. As an example, a recently reported study 
demonstrates the capability of DL models to analyze time-
evolving data streams from wearable sensors to monitor disease 
progressions and recognize critical events in a patient with 
chronic illness such as heart failure or epilepsy [32]. In addition, 
DL-based predictive models can assist clinicians with more 
accurately identifying high-risk patient sub-cohorts that are 
susceptible to specific complications or adverse effects and 
subsequently administer timely and accurate preventive 
measures [33]. Alternatively, DL-based methods have been 
integrated into medical devices and e-health platforms to 
facilitate real-time processing and analysis of biomedical signals 
at the patient's bedside, thereby expediting clinical decision-
making and personalizing the patient care pathway. In 
conclusion, DL technology may greatly advance the field of 
biomedical signal processing by offering a mechanism by which 
a larger amount of useful information can be extracted from 
complex physiological data, in turn potentially improving the 
broader population of patient's health outcomes. 

The use of DL in biomedical signal processing has several 
key strengths that have the potential to transform medical care. 
First, DL models have successfully discovered multiple levels 
of abstraction from raw data without utilizing handcrafted 
feature extraction and selection. This is especially significant in 
biomedical signal processing, as the processed signals are 
usually complex and contain subtle information that could be 
difficult to apprehend with conventional methods. Another 
advantage of deep learning is that it can take full advantage of 
large-scale datasets to extract high-level discriminative features, 
which can be beneficial for more reliable and robust biomedical 
signal classification, detection, localization, and segmentation. 
DL can handle multiple types of signals, such as ECGs, EEGs, 
and EMGs, and can therefore be applied across a wide variety 
of clinical scenarios. Additionally, machine learning allows such 
models to become more accurate as they are given more data to 
learn from, and since it is constantly updated, they can become 
more accurate. 

Yet, DL has not been spared from issues in utilizing it with 
biomedical signals. First, DL models are often regarded as black 
boxes due to their complex architectures and non-linear 
transformations, which may result in hidden representations or 
obscure representations of the underlying decisions performed 
by the model, hence reducing the confidence and interpretability 
of these models in clinical practice as opposed to interpretable 
models like LRA. This might be risky given the higher level of 
trust in transparently interpretable models such as LRA in the 
clinical domain. Second, biomedical signals are inevitably 
noisy, with artifacts and noise as well as intersubject and 
intrasubject variability, which may pose challenges to the 
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generalization of DL models and may further reduce their 
reliability. More broadly, the generalization and reliability of DL 
methods across different patient populations and clinical 
scenarios is an ongoing grave concern. Moreover, for the 
successful utilization of DL in healthcare, several ethical 
considerations, such as algorithmic bias, privacy and security of 
data, development, and use of DL models, must be 
systematically addressed. Developing methods to meet these 
key challenges will require novel approaches based on the 
collaboration of interdisciplinary teams, combined with rigorous 
validation of methods, theory, and algorithms, leading to the 
design of interpretative and reliable learning algorithms aligned 
with the distinctive requirements of biomedical signal 
processing. 

III. DL TECHNIQUES FOR BIOMEDICAL SIGNAL PROCESSING 

In the biomedical signal processing domain, DL algorithms 
exhibit versatility across four primary categories: deep 
supervised, unsupervised, reinforcement learning, and hybrid 

algorithms, each offering unique approaches to tackle distinct 
challenges in signal analysis. As shown in Fig. 1 and 
summarized in Table IV, these categories span a range of 
methods, from supervised models that use labeled data to learn 
predictive rules to unsupervised models that discover patterns in 
data without any supervision and hybrid models that incorporate 
features of both. There can be a plethora of architectures and 
frameworks within every category of biomedical signal 
processing. For example, CNNs are usually used for capturing 
spatial features from ECGs, while RNNs are efficient in 
modeling temporal sequences from EEGs. Furthermore, there 
can be more explorations of NNs that simulate GANs for data 
augmentation and generation, and so on. These models find 
extensive applications in many tasks, such as signal denoising, 
feature extraction, classification, and segmentation, as tabulated 
in Table V, which in turn enhance the diagnostics, monitoring, 
and therapeutics in healthcare. The subsequent sections will 
provide brief explanations for each category, which will include 
methods, tasks, and utility in the emerging area of biomedical 
signal processing. 

 
Fig. 1. DL algorithms in biomedical signal processing. 

TABLE IV.  OVERVIEW OF DEEP LEARNING CATEGORIES FOR BIOMEDICAL SIGNAL PROCESSING 

Deep learning category Description Examples 

Deep supervised learning Utilizes labeled data to train models for accurate predictions DNNs, CNNs, and RNNs 

Deep unsupervised learning Extracts meaningful representations from unlabeled data Autoencoders, RBMs, DBNs, and GANs 

Deep reinforcement learning 
Learns optimal behavior through interaction with the 

environment 
Value-based, policy-based, and model-based methods 

Hybrid deep learning 
Combines elements of different DL architectures for 
enhanced performance 

Combination of CNNs and RNNs and CNNs with attention 
mechanisms 

TABLE V.  EXAMPLES OF DEEP LEARNING MODELS FOR BIOMEDICAL SIGNAL PROCESSING 

Deep learning model Description Applications 

DNN Models complex relationships within high-dimensional data Signal classification and prediction tasks 

CNN Captures spatial dependencies in signals Image-based tasks (ECG, EEG) and signal classification 

RNN Models temporal dynamics and sequential dependencies Time-series forecasting and sequential pattern recognition 

Autoencoders Learns compact representations of input data Dimensionality reduction and anomaly detection 

GAN Generates realistic samples from a given distribution Data augmentation and synthesis 

 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

1102 | P a g e  

www.ijacsa.thesai.org 

A. Deep Supervised Learning 

Deep supervised learning-based models represent a 
cornerstone in biomedical signal processing, leveraging labeled 
training datasets to learn discriminative features and make 
accurate predictions. These models operate by iteratively 
adjusting network parameters, often referred to as weights, to 
minimize a predefined loss function, effectively optimizing the 
model's performance. Among the supervised DL category, three 
pivotal architectures have emerged as particularly effective for 
processing biomedical signals: DNNs, CNNs, and RNNs, as 
depicted in Fig. 2. DNNs offer a robust framework for modeling 
complex relationships within high-dimensional data, making 
them well-suited for tasks such as signal classification and 
prediction. CNNs excel in capturing spatial dependencies in 
signals, enabling precise feature extraction from images or 
sequential data, such as ECGs and EEGs. Meanwhile, RNNs 
specialize in modeling temporal dynamics and sequential 
dependencies, which is crucial for tasks like time-series 
forecasting and sequential pattern recognition, particularly in 
signals with temporal structures like EEGs and EMGs. These 
deep supervised learning models constitute foundational tools in 
biomedical signal processing, facilitating accurate diagnosis, 
prognosis, and personalized treatment strategies for a wide range 
of medical conditions. 

B. Deep Unsupervised Learning 

Deep unsupervised learning models have emerged as a 
prominent branch within the realm of DL, offering compelling 
solutions for tasks requiring minimal labeled data. These 
models, as depicted in Fig. 3, encompass a variety of 
architectures designed to extract meaningful representations 
from unlabeled datasets, thereby enabling effective feature 
learning and data-driven insights. One prevalent category of 
deep unsupervised models is autoencoders, which aim to learn a 
compact representation of input data by encoding it into a lower-

dimensional latent space and then reconstructing the original 
data from this representation. 

Restricted Boltzmann machines (RBMs) provide another 
powerful framework for unsupervised feature learning, 
leveraging energy-based probabilistic models to capture 
complex dependencies in data. Deep Belief Networks (DBNs) 
extend upon RBMs by stacking multiple layers of generative 
models, facilitating hierarchical representation learning. 
Moreover, GANs have garnered significant attention for their 
ability to generate realistic samples from a given distribution by 
training a generator network to produce data that is 
indistinguishable from authentic samples while simultaneously 
training a discriminator network to distinguish between actual 
and generated samples. These diverse deep unsupervised 
learning models offer versatile solutions for tasks such as data 
augmentation, dimensionality reduction, and anomaly detection 
in biomedical signal processing, thereby expanding the 
repertoire of techniques available to researchers and 
practitioners in the field. 

C. Deep Reinforcement Learning 

Reinforcement learning (RL) emerges as a transformative 
paradigm within the domain of biomedical signal processing, 
offering a dynamic framework for decision-making in complex 
environments to maximize cumulative rewards [34]. Unlike 
conventional supervised learning methods, RL operates in 
interactive settings, enabling agents to autonomously learn 
optimal behavior through iterative exploration and exploitation 
of the environment. In the context of biomedical signal 
processing, RL finds applications in adaptive treatment 
strategies, optimal medical device settings, and personalized 
healthcare interventions. Particularly pertinent is RL's capability 
to facilitate agent learning in environments where 
comprehensive prior knowledge is lacking or limited. 

 
(a) 

 
(b) 

 
(c) 

Fig. 2. Deep supervised learning architectures in biomedical signal processing: RNN (a), DNN (b), CNN (c). 
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(a) 

 
(b) 

 
(c) 

 
(d) 

Fig. 3. Deep unsupervised learning architectures in biomedical signal processing: GAN (a), DBNN (b), RBM (c), auto-encoder (d). 

At the core of RL lies the iterative interaction between an 
agent and its environment. The agent perceives the current state, 
selects actions based on its policy, and receives feedback in the 
form of rewards, indicating the efficacy of the chosen actions in 
transitioning to new states. This feedback loop enables the agent 
to refine its decision-making strategy over time, with the aim of 
maximizing cumulative rewards. Notably, RL does not 
necessitate detailed mathematical models of the underlying 
system for optimal control. Instead, the agent treats the 
biomedical signal processing environment as a black box and 
optimizes its policy through continuous interaction and 
adaptation. 

By leveraging RL techniques, biomedical signal processing 
agents can autonomously learn to navigate complex decision 
spaces, optimizing treatment regimens and medical device 
settings to enhance patient outcomes. Despite challenges related 
to scalability in large-scale networks, RL remains a powerful 
and versatile approach for learning optimal behavior in 
biomedical signal processing environments, offering promising 
avenues for innovation and advancement in healthcare delivery. 

Deep Reinforcement Learning (DRL) harnesses the 
capabilities of deep neural networks to enhance learning 
efficiency and algorithm performance, as depicted in Fig. 4. By 
leveraging deep neural networks, DRL enables the agent to learn 
and adapt its decision-making policy within the environment 
effectively. The deep neural network serves as a fundamental 
component of the agent, maintaining an internal representation 
of the policy that dictates the agent's actions based on the 
observed state of the environment. This integration of deep 
neural networks facilitates rapid learning and improved 

performance, which is crucial for real-time decision-making and 
adaptive control in biomedical signal processing applications. 

 
Fig. 4. Deep reinforcement learning in biomedical signal processing. 

DRL methodologies in biomedical signal processing can be 
broadly categorized into three main approaches: value-based, 
policy-based, and model-based methods. Value-based methods 
focus on estimating the value or expected return of different 
actions in a given state, allowing the agent to select actions that 
maximize long-term rewards. Policy-based methods, on the 
other hand, directly parameterize the agent's policy and learn to 
optimize it through gradient-based methods without explicitly 
estimating the value function. Model-based methods incorporate 
a learned model of the environmental dynamics to guide 
decision-making, enabling the agent to plan and anticipate the 
consequences of its actions. Each of these DRL methods offers 
unique advantages and trade-offs, depending on the specific 
requirements and characteristics of the biomedical signal 
processing task at hand. Overall, DRL holds significant promise 
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for advancing the field of biomedical signal processing, offering 
efficient and adaptive solutions for a wide range of clinical 
applications. 

D. Hybrid DL 

DL models exhibit a spectrum of strengths and weaknesses 
concerning hyperparameter tuning and data exploration, as 
highlighted in previous research. These weaknesses may impede 
their efficacy across various applications. However, each DL 
model possesses unique characteristics that render it efficient for 
specific tasks. To address these shortcomings and leverage the 
strengths of individual DL models, hybrid DL models have been 
proposed. These hybrids combine elements of different DL 
architectures to mitigate weaknesses and enhance performance 
for specific applications. 

Among these hybrid models, CNNs and RNNs stand out as 
widely utilized and versatile frameworks with high applicability 
and potentiality. CNNs excel in extracting spatial features from 
data, making them particularly suited for tasks involving images 
or sequential data, such as ECGs and EEGs. On the other hand, 
RNNs specialize in capturing temporal dependencies in 
sequential data, making them practical for time-series analysis 
and sequential pattern recognition, essential in fields like speech 
recognition and natural language processing. By combining the 
strengths of CNNs and RNNs, hybrid DL models can tackle a 
broader range of challenges and offer more robust solutions in 
biomedical signal processing and other domains. However, the 
selection and design of hybrid models depend on the specific 
requirements and characteristics of the application, highlighting 
the importance of tailored approaches in leveraging the full 
potential of DL in real-world scenarios. 

IV. DISCUSSION 

In classification tasks, assessing the performance of DL 
models necessitates the utilization of various metrics to 
accurately evaluate their effectiveness in classifying data. These 
metrics offer insights into different facets of the model's 
performance and aid in determining its efficacy in data 
classification [35]. Commonly employed metrics for evaluating 
DL models in classification tasks encompass accuracy, 
precision, recall, F1-score, area under the receiver operating 
characteristics curve, false alarm ratio, and misdetection ratio 
[36]. 

Accuracy: This metric is primarily utilized in classification 
problems to quantify the correct predictions made by a DL 
model. It is calculated as depicted in Eq. (1), where 𝑇𝑃 represents 
true positives, 𝑇𝑁 denotes true negatives, 𝐹𝑃 signifies false 
positives, and 𝐹𝑁 indicates false negatives. 

𝐴 =
𝑇𝑁 + 𝑇𝑃

𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁 + 𝑇𝑃
× 100 (1) 

Precision: Precision pertains to the ratio of true positives to 
the total number of positive predictions, encompassing both true 

positive and false positive instances. It can be expressed 
mathematically by Eq. (2). 

𝑃 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
× 100 (2) 

Recall (detection rate): This metric evaluates the proportion 
of positive samples correctly classified relative to the total 
number of positive samples. It is quantified according to Eq. 
(3), thereby indicating the model’s proficiency in classifying 
positive samples, among others. 

𝑅 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
× 100 (3) 

F1-Score: Derived from the precision and recall of the test, 
the F1-Score integrates both metrics to provide a balanced 
measure of a model's performance as follows. 

𝐹 =
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
× 100 (4) 

Area under the receiver operating characteristics curve 
(AUC): AUC is a pivotal metric in classification problems, 
offering insights into the model's performance. The Receiver 
Operating Characteristic (ROC) curve illustrates the trade-off 
between sensitivity and specificity in DL models. The AUC 
value, ranging from 0 to 1, signifies the model's discriminative 
ability, with higher values indicative of superior performance. It 
is computed using Eq. (5), where x represents the varying AUC 
parameter. 

𝐴𝑈𝐶 = ∫
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
((

𝐹𝑃
𝐹𝑃 + 𝑇𝑁

)
−1

(𝑥)) 𝑑𝑥

1

𝑥=0

 (5) 

False alarm ratio: Also known as the false positive rate, this 
metric quantifies the likelihood of a false alarm being triggered, 
wherein a positive result is generated when the actual value is 
negative. It can be calculated by Eq. (6). 

𝐹𝐴𝑅 =
𝐹𝑃

𝑇𝑁 + 𝐹𝑃
× 100 (6) 

Misdetection ratio: This metric signifies the percentage of 
misclassified samples, highlighting instances where the model 
fails to detect the correct class. It is expressed as the percentage 
of samples that remain undetected, as demonstrated in Eq. (7). 

𝑀𝑅 =
𝐹𝑁

𝑇𝑃 + 𝐹𝑁
× 100 (7) 

In the domain of biomedical signal processing, learning 
strategies encompass a range of techniques tailored to address 
the unique challenges and requirements of analyzing 
physiological data. These strategies comprise online learning, 
federated learning, and transfer learning, each offering distinct 
advantages and applications in biomedical signal analysis, as 
summarized in Table VI. 
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TABLE VI.  LEARNING STRATEGIES IN BIOMEDICAL SIGNAL PROCESSING 

Learning Strategy Description Advantages Applications 

Online Learning 

Involves continuously updating DL model parameters as new 

data becomes available, facilitating real-time adaptation to 
changing signal patterns and dynamic monitoring and 

interventions for patients. 

Real-time adaptation, 

dynamic monitoring, 
responsiveness to evolving 

patterns 

Dynamic monitoring of patient 

health, adaptive interventions, real-

time decision-making in healthcare 

Transfer Learning 

Leverages knowledge from training on one dataset to improve 
performance on related but different datasets, allowing DL 

models trained on one type of physiological data to be 

adapted and applied to similar tasks with different data 
modalities. 

Utilization of existing 

knowledge, enhanced 

generalization and efficiency 

Generalization across different data 

modalities, adaptation to new tasks 

with limited labeled data 

Federated Learning 

Enables DL models to be trained over distributed data sources 

while maintaining data privacy, facilitating collaborative 
model training using data from multiple healthcare 

institutions without compromising patient privacy. 

Data privacy preservation, 

scalability, reduced 

computational burden 

Collaborative model training across 

multiple healthcare institutions, 
robust and generalizable model 

development 
 

Online learning involves continuously updating the DL 
model's parameters as new data becomes available. In 
biomedical signal processing, online learning enables real-time 
adaptation to changing signal patterns, facilitating dynamic 
monitoring and adaptive interventions for patients [37]. The 
purpose of online learning in biomedical signal processing is to 
optimize the accuracy and adaptability of prediction models by 
leveraging prior predictions [38]. Contrary to offline or batch 
machine learning strategies, which necessitate the entire training 
dataset to be available for training, online learning models 
operate dynamically, continuously updating their parameters 
with each new data instance in a sequential stream. This real-
time updating process enables online learning models to adapt 
to evolving patterns and dynamics within biomedical signals 
swiftly, facilitating dynamic monitoring and responsive 
interventions for patients. 

By iteratively refining their predictive capabilities based on 
incoming data, online learning models can effectively capture 
temporal dependencies and subtle changes in signal 
characteristics, enhancing their ability to provide accurate and 
timely predictions in clinical settings [39]. Furthermore, the 
sequential nature of online learning aligns well with the 
streaming nature of many biomedical signal data sources, 
enabling seamless integration and analysis of continuous 
streams of physiological data. Thus, online learning serves as a 
valuable approach in biomedical signal processing, enabling 
efficient model adaptation and real-time decision-making in 
healthcare applications. Through this continual learning process, 
the online model endeavors to optimize its predictive accuracy 
and adaptability, ultimately achieving better performance in 
classifying or predicting outcomes in real-world applications. 

Transfer learning leverages knowledge gained from training 
on one dataset to improve performance on a related but different 
dataset [40]. In the context of biomedical signal processing, 
transfer learning allows DL models trained on one type of 
physiological data (e.g., ECG signals) to be adapted and applied 
to similar tasks with different data modalities (e.g., EEG 
signals), thereby enhancing model generalization and efficiency. 
Training DL models from scratch demands substantial 
computational resources, memory allocation, and abundant 
labeled datasets. However, in specific scenarios, the availability 
of vast annotated datasets is not always feasible or practical. 
This limitation poses a significant challenge, particularly in 
domains such as biomedical signal processing, where data 
acquisition and annotation can be resource-intensive and time-

consuming. As a result, researchers often encounter constraints 
when attempting to develop robust DL models for analyzing 
biomedical signals. The scarcity of labeled datasets presents a 
bottleneck in traditional DL approaches, hindering the model's 
ability to generalize effectively to unseen data and limiting its 
performance in real-world applications. 

Moreover, the computational and memory requirements for 
training large-scale DL models exacerbate these challenges, 
making it difficult to deploy them in resource-constrained 
environments. Alternative strategies such as transfer learning, 
semi-supervised learning, and unsupervised learning have 
emerged as promising approaches in biomedical signal 
processing to address these limitations [41]. These strategies 
leverage existing knowledge from pre-trained models or exploit 
unlabeled data to enhance model performance without the need 
for extensive labeled datasets. By leveraging transfer learning, 
for instance, researchers can adapt pre-trained models on related 
tasks or domains to biomedical signal processing tasks, thereby 
reducing the dependency on large annotated datasets while still 
achieving competitive performance. Similarly, semi-supervised 
and unsupervised learning techniques enable the utilization of 
unlabeled data to augment the training process, facilitating the 
discovery of underlying patterns and structures within 
biomedical signals. In transfer learning, a pre-trained neural 
network, typically trained on an extensive dataset for a related 
task, serves as the basis for learning new tasks or domains with 
limited labeled data. 

Federated learning enables DL models to be trained over 
distributed data sources while maintaining data privacy. In 
biomedical signal processing, federated learning facilitates 
collaborative model training using data from multiple healthcare 
institutions, enabling the development of robust and 
generalizable models without compromising patient privacy 
[42]. In conventional centralized DL systems, collected data is 
typically kept on local devices. Centralized DL involves storing 
user records on a central server and utilizing them for both 
training and testing functions. However, this centralized 
approach is not without its limitations. One significant drawback 
is the requirement for high computational power, as all data 
processing and model training tasks are performed on the central 
server. This can lead to scalability issues, mainly when dealing 
with large datasets or complex DL models, requiring substantial 
computational resources to achieve acceptable performance. 

Furthermore, centralized DL systems may raise concerns 
regarding security and privacy. Centralizing sensitive user data 
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on a single server increases potential vulnerabilities and 
unethical access, compromising user privacy and 
confidentiality. Moreover, compliance with data protection 
regulations, such as GDPR or HIPAA, becomes more 
challenging in centralized systems due to the centralized storage 
and processing of user data. To address these shortcomings, 
decentralized approaches, such as federated learning, have 
emerged as promising alternatives. Federated learning enables 
model training to be performed locally on user devices, with 
only model updates aggregated on a central server. This 
distributed method maintains data confidentiality by keeping 
user data on local devices, reducing the risk of data exposure, 
and enhancing security. Additionally, federated learning reduces 
the computational burden on the central server, making it more 
scalable and efficient for training DL models on decentralized 
data sources. 

V. FUTURE DIRECTIONS AND OPPORTUNITIES 

The area of DL for biomedical signal processing has great 
potential to improve healthcare delivery, enhance patient 
satisfaction, and enable discoveries in the future. Some 
important issues to concentrate on and possible paths to 
investigate include: 

 Interdisciplinary collaboration: Facilitating 
interdisciplinary cooperation between DL scientists and 
healthcare, biological, or signal processing experts can 
produce new solutions specifically fitting the 
requirements of biomedical signal processing. By 
combining knowledge from multiple domains, 
researchers can increase their understanding of complex 
biological processes. This will result in more 
generalizable methods for disease diagnosis, health 
monitoring, and personalized treatment. 

 Integration of multi-modal data: Since biomedical data 
includes a variety of modalities, such as ECG, EEG, 
EMG, and medical imaging, the integration of these 
multi-modality signals may offer a unique prospect to 
exploit interdependencies and improve diagnostic 
reliability. DL models can agilely harmonize and pool 
the diverse modalities to discover vital information, 
which could, in turn, unravel the mysteries behind 
diverse biological underpinnings. 

 Real-time monitoring and intervention: Recent 
developments in DL algorithms and advances in 
hardware acceleration technologies make the vision of 
deploying real-time monitoring systems for continuous 
health monitoring and early detection of anomalies 
possible. Such systems have the potential to allow for 
timely intervention and personalized care plans that all 
combine into improved care outcomes and reduced 
healthcare costs. 

 Explainable AI and interpretability: Improving the 
comprehensibility of deep learning models is essential 
for establishing confidence among physicians and 
healthcare practitioners. Future research should prioritize 
the development of explainable AI approaches that 
provide insights into the decision-making process of DL 
models. This will allow doctors to comprehend and 

evaluate model predictions within the framework of 
clinical practice. 

 Continuous learning and adaptation: Implementing 
mechanisms for constant learning and adaptation within 
DL models can enhance their ability to respond 
dynamically to evolving patient conditions and 
healthcare requirements. By incorporating feedback 
loops and reinforcement learning techniques, models can 
continually update and refine their predictions based on 
new data, enabling proactive interventions and 
personalized healthcare management. 

 Remote monitoring and telehealth: The proliferation of 
wearable devices and remote monitoring technologies 
presents opportunities for leveraging DL in telehealth 
applications. DL models can analyze data from wearable 
sensors and remote monitoring devices to monitor 
patient health remotely, detect early warning signs of 
deterioration, and facilitate virtual consultations with 
healthcare providers, particularly in underserved or 
remote areas. 

 Patient stratification and precision medicine: DL models 
may give valuable support to patient stratification and 
precision medicine by discovering natural clusters of 
patients with shared attributes in terms of clinical and 
biological characteristics and by predicting the response 
to treatment on an individual basis. This patient-specific 
guidance would allow for the personalization of 
treatment strategies, thus allowing for maximization of 
therapeutic benefit while minimizing collateral toxicity, 
with the ultimate goal of enhancing patient satisfaction. 

 Standardization and benchmarking: In this context, 
standardization of pre-processing enforces the core 
virtues of reproducibility, comparability, and reliability 
across studies. This goal can be achieved by sharing 
standardized datasets, assessment protocols, and 
benchmarks through community-wide efforts to benefit 
progress and translational efficacy. 

 Domain-specific architectures: Designing domain-
specific deep learning architectures based on the unique 
features of biomedical signal data works in alleviating 
the model performance and interpretability. For instance, 
using architecture like RNNs with attention mechanisms 
in the time-series data or CNNs specifically tailored for 
medical imaging data instead of raw architectures better 
captures the complex temporal and spatial patterns 
existing far more robustly in biomedical signals. 

 Multi-task learning: Multi-task learning paradigms, 
where DL models are trained to accomplish multiple 
related tasks concurrently by sharing a common input 
representation, may enable better knowledge transfer 
across tasks. For example, in biomedical signal 
processing, multi-task learning may allow models to 
predict multiple clinical outcomes or physiological 
parameters at the same time, allowing knowledge to 
propagate between tasks and hence improving the 
model's generalization capability. 
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 Resource-constrained environments: Techniques in deep 
learning can be extended to address the needs of 
resource-constrained environments, for instance, those 
involving low-power devices or the healthcare 
infrastructure of many developing countries. Therefore, 
in order to make these cutting-edge healthcare 
technologies available worldwide, we need more 
research on lightweight and efficient DL models, data 
compression, and edge computing so that these can be 
deployed to resource-constrained settings without 
compromising on performance and accuracy. 

 Integration with Electronic Health Records (EHRs): 
Integrating DL models with EHRs can help clinicians 
glean meaningful knowledge from the wealth of clinical 
data, allowing for predictive analytics, disease 
surveillance, and decision support. Leveraging data 
fields of EHRs, DL models can assist with improving 
clinical decision-making, streamlining administrative 
tasks, and increasing healthcare operational efficiency. 

VI. CONCLUSION 

In this survey, we thoroughly reviewed the DL-based signal 
processing methods for the processing of biological signals. We 
covered a wide variety of DL-based models, including deep 
supervised, deep unsupervised, DRL, and hybrid models. All of 
these models have unique advantages, characteristics, and 
applications in biological signal processing. We discussed the 
drawbacks of conventional signal processing methods and 
motivated using DL models in biological signal processing, 
which can learn intrinsic features and automatic optimization 
independently. We then provided a brief introduction of each 
biological signal (e.g., ECG, EEG, and EMG) and presented a 
brief review of their clinical significance. We then put the 
problem in context by explaining the relevance of signal 
processing in the healthcare diagnostics and monitoring domain. 
We also discussed related works and the limitations of using DL 
with biological signals. The primary challenges to using DL in 
this context are the need for labeled data, heavy computational 
requirements, and the non-intuitive nature of the DL model. We 
also discussed some potential future works and emerging trends 
that are likely to drive this field, such as the need for 
collaborative and interdisciplinary investigations, multi-modal 
data integration, and the ethical concerns of DL for healthcare. 
We showed the possible ways the DL model could be used for 
real-time monitoring, telemedicine, and precision medicine, as 
well as the importance of standardization, benchmark databases, 
and ethical guidelines to ensure sustainable advances. In 
addition, we discussed the potential of DL to address global 
health crises and healthcare disparities, seeing the exciting 
possibilities of DL to reshape healthcare and individual health. 
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