
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

1143 | P a g e  

www.ijacsa.thesai.org 

Exploring Enhanced Object Detection and 

Classification Methods for Alstroemeria Genus 

Morado 

Yaru Huang*, Yangxu Wang 

Department of Network technology, Guangzhou Institute of Software Engineering, Conghua Guangdong, China 

 

 
Abstract—As an important ornamental plant, the automatic 

detection and classification of the maturity of Alstroemeria 

Genus Morado flowers hold significant importance in precision 

agriculture. However, this task faces numerous challenges due to 

the diversity of morphological characteristics, complex growth 

environments, and factors such as occlusion and lighting 

variations. Currently, this field is relatively unexplored, 

necessitating innovative methods to overcome existing 

difficulties. To fill this research gap, this study developed a deep 

learning-based object detection framework, the Alstroemeria 

Genus Morado Network (AGMNet), specifically optimized for 

the detection and classification of Alstroemeria Genus Morado 

flowers. This convolutional neural network utilizes multi-scale 

feature fusion techniques and spatial attention mechanisms, 

along with a dual-path detection structure, significantly 

enhancing its capability for automatic maturity classification and 

detection of flowers. Notably, AGMNet addresses the issue of 

class imbalance in its design and employs advanced data 

augmentation techniques to enhance the model's generalization 

ability. In comparative experiments on the morado_5may 

dataset, AGMNet demonstrated superior performance in 

Precision, Recall, and F1-score, with a 3.8% improvement in the 

mAP metric over the latest YOLOv9 model, showcasing stronger 

generalization capabilities. AGMNet is expected to play a more 

significant role in enhancing agricultural production efficiency 

and automation levels. 
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I. INTRODUCTION 

In modern agricultural production, the importance of 
precision agriculture technology is increasingly highlighted, 
with object detection and classification becoming one of the 
key technologies. Alstroemeria Genus Morado, as a flower 
with unique morphological characteristics and ornamental 
value, is crucial for determining the optimal harvest time based 
on flower maturity. In South America, particularly in Chile and 
Brazil, there is a high diversity of species [1] [2]. Despite the 
economic and ecological value of Alstroemeria Genus Morado, 
research on the automated detection and classification of its 
flowers is still insufficient. Traditional manual detection 
methods are not only inefficient but also costly, with accuracy 
and consistency of classification results being difficult to 
guarantee, making them unsuitable for large-scale production 
needs. Fortunately, with the development of computer vision 
and deep learning technologies, automated object detection and 

classification offer new possibilities for addressing this issue 
[3]. Through object detection and classification technology, 
these species can be more accurately identified and assessed, 
providing support for the study and conservation of 
biodiversity. 

In recent years, the rise of deep learning technology has 
brought new breakthroughs in the field of object detection and 
classification [4] [5], capable of automatically learning feature 
representations from a large amount of data, thereby reducing 
the reliance on manual feature extraction. By constructing deep 
neural network models and training them with large-scale 
annotated data, deep learning models can automatically learn 
and extract feature representations of objects, achieving 
efficient object detection and classification. In the field of deep 
learning object detection, there are mainly two types of 
methods. The first category is two-stage object detection 
algorithms, such as Region-based Convolutional Neural 
Network (R-CNN) [6], Faster R-CNN [7], and Spatial Pyramid 
Pooling Network (SPP-Net) [8]. These algorithms typically 
have higher detection accuracy but are slower in detection 
speed due to their two-stage nature. In contrast, the second 
category is single-stage object detection algorithms, which 
have faster detection speeds, such as the You Only Look Once 
(YOLO) series [9] and CenterNet [10], although they may 
make slight sacrifices in accuracy. Since detection speed is 
highly required in most tasks, single-stage algorithms have 
more advantages in practical applications. 

However, despite the significant achievements of deep 
learning in general object detection, there are still many 
challenges when dealing with flower varieties with specific 
morphological characteristics and growth environments. 
Especially for flower varieties with unique shapes and growth 
characteristics, such as Alstroemeria Genus Morado, the 
diversity of morphological characteristics, complex growth 
environments, and potential interference factors such as 
occlusion and lighting changes still pose generalization 
challenges in detecting Alstroemeria flowers, making existing 
research insufficient. The study by Stan Zwinkels & Ted de 
Vries Lentsch on the detection of mature Alstroemeria Genus 
Morado flowers [11] demonstrated the feasibility of this 
detection method by creating an experimental dataset and 
designing a detection algorithm, achieving an F1-score of over 
0.75 in experiments. In addition, the study of Alstroemeria 
pollen morphology [12] provided a foundation for later 
researchers to understand its morphological characteristics, 
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which is helpful in developing more accurate detection 
algorithms. Aros et al. [13] discussed the seed characteristics 
and evaluation of pre-germination treatment of Alstroemeria. 

To fill this research gap, there is an urgent need to develop 
an efficient and accurate object detection and classification 
method suitable for Alstroemeria Genus Morado. This study 
proposes a new deep learning-based object detection 
framework, specifically optimized for the detection of 
Alstroemeria Genus Morado flowers. A series of innovative 
technologies have been used to enhance detection performance 
and accuracy. The key design of the Encoder strengthens the 
representation of image features, and the spatial attention 
mechanism enhances the focus on important areas of the 
image. At the same time, a dual-path detection structure, 
combined with the main detection neck and auxiliary branch, 
enhances the detection capability for targets of different sizes 
through multi-scale feature fusion technology. In particular, the 
introduction of the SPPELAN module [14] and the DySample 
layer [15] allows AGMNet to expand the size of the feature 
map and fuse it with the feature maps in the Encoder, capturing 
context information at different levels and achieving deep, 
multi-scale feature extraction of the image. Finally, the Detect 
layer synthesizes these advanced features to output accurate 
detection results, making AGMNet perform well in object 
detection tasks in agricultural scenarios. At the same time, this 
comprehensive classification method enables more accurate 
judgment of flower maturity. To fully evaluate the performance 
of the model, this study selected the morado_5may dataset [16] 
for experiments, verified the effectiveness of the proposed 
method, and compared it with existing technologies, 
successfully overcoming the challenges brought about by the 
diverse morphological characteristics, complex growth 
environments, and potential interference factors such as 
occlusion and lighting changes of Alstroemeria Genus Morado. 
The experimental results show that the proposed AGMNet 
performs excellently in both performance and efficiency, 
superior to other computer vision methods, and has sufficient 
generalization. 

This paper aims to address some key issues and make the 
following contributions as follows: 

 Proposing an efficient and accurate deep learning 
framework for object detection and classification 
methods suitable for Alstroemeria Genus Morado. 

 Developing a comprehensive classification method 
capable of accurately judging the maturity of flowers. 

 Validating the effectiveness of the proposed method 
through a series of experiments and comparing it with 
existing technologies. At the same time, providing a 
reference for the detection and classification of other 
plant species. 

The rest of this paper is organized as follows: Section II 
introduces the model design in detail. Section III provides 
experimental details and results. Section IV discusses and 
analyzes the research results in depth. Section V summarizes 
the paper and proposes future research directions. 

II. MATERIALS AND METHODS 

This section provides a detailed description of the dataset 
utilized in the study and an explanation of the AGMNet 
model's design principles, structural features, and optimization 
techniques, while emphasizing the innovative elements of the 
design. 

A. Datasets 

To verify the proposed method, the study conducted 
validation on the publicly available morado_5may dataset [16], 
which is a dataset for object detection tasks. It was 
photographed and released by Delft University of Technology 
and Hoogenboom Alstroemeria in the greenhouse of 
Hoogenboom Alstroemeria company around 12 PM on May 5, 
2021. The images of the dataset were taken with an iPhone 8, 
using a 12-megapixel camera, with a pixel resolution of 4,032 
× 3,024, taken from an overhead perspective about 1.5 meters 
above the flower bed. The entire dataset consists of 414 images 
and 5,439 labeled objects, belonging to two different 
categories, including raw and ripe, with all images in the 
dataset having bounding box annotation labels. It should be 
noted that there is no predefined training and testing split 
within the dataset. A random selection method was used to 
divide the 414 images into training and testing sets in an 
approximate 8:2 ratio, which were then stored in corresponding 
folders, constituting the morado_5may dataset used in this 
research. Detailed information about the dataset is shown in 
Table I. 

TABLE I.  DETAILED INFORMATION OF THE DATASET 

Dataset Image 
Label 

Total Raw Ripe 

Total 414 5,439 4,679 760 

Training 324 4,191 3,655 536 

Test 90 1,248 1,024 224 

Further, to objectively assess the model's classification 
capabilities, it is essential to understand the rules for category 
division within the dataset. The maturity classification of each 
flower is based on factors such as color, color uniformity, size, 
and the number of buds. If a flower has several buds that have 
begun to open, the buds are relatively large, and the color is 
bright purple, then it is considered ripe. These guidelines are 
established to help others identify incorrectly classified 
flowers. The complete buds are bright purple, with no yellow 
parts in the middle. A flower contains multiple buds that have 
begun to open. The buds of this flower are larger than those of 
other flowers. Classification example images are shown in Fig. 
1. 

It is worth noting that this dataset is challenging. Firstly, 
the issue of class imbalance is prominent because the number 
of immature raw flowers in the images far exceeds that of ripe 
flowers, leading to a model that may be biased towards 
predicting the more common category. Secondly, the stems and 
leaves of the flowers have a high color similarity, and the 
flowers at the lower positions are easily occluded by leaves, 
making the recognition and classification of the flowers more 
difficult. In addition, the imaging morphology of Alstroemeria 
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flowers is highly variable, and the uncommon flowering forms 
bring a test to the model's generalization capabilities. In Fig. 2, 
these challenges are depicted. 

 

Fig. 1. Classification example images of the morado_5may dataset. 

 
Fig. 2. The six main challenges of the morado_5may dataset. 

In summary, by validating on the morado_5may dataset, 
the universality and effectiveness of the proposed method can 
be comprehensively evaluated. 

B. Model Construction 

When applying neural networks in the agricultural field, 
there are many factors to consider, mainly from external factors 
in the field. To address these challenges, an innovative deep 

learning-based object detection model, the Alstroemeria Genus 
Morado Network (AGMNet), was proposed in this study. The 
overall network structure is primarily composed of three parts: 
the Encoder, the Decoder, and the Head network. It also 
employs a dual-path detection structure [14] to mitigate the 
issue of information loss due to network depth. The model 
structure is depicted in Fig. 3, and the subsequent sections will 
detail their configuration. 

 
Fig. 3. Architecture of AGMNet. 

1) Encoder Design Details: In the architecture of 

AGMNet, the Encoder serves as the main body of the model, 

responsible for extracting deep features of the image. Given an 

input image 𝐼 ∈ 𝑅𝐻×𝑊×3, the Silence module, located at the 

forefront of the network structure, does not perform 

substantial operations. It is designed to retain the original 

image features to provide them to the main and auxiliary 

detection Decoders in the Neck for object detection. 

Subsequently, to reduce the spatial dimensions of the feature 

maps and increase the number of channels, multiple 

convolutional layers with a kernel size of 3×3 and a stride of 2 

are used, halving the spatial dimensions of the image while 

increasing the feature depth. This convolution operation can 

be defined as Eq. (1): 

 𝑋𝑜𝑢𝑡 = 𝜎(∑ (𝑋𝑖𝑛 ∗ 𝑊𝑖 + 𝑏𝑖)
𝑁
𝑖=1 ) 

where, σ  represents the activation function, ∗ denotes the 
convolution operation, 𝑊  is the convolution kernel, 𝑏  is the 
bias term, and 𝑋𝑜𝑢𝑡 is the output feature map. When the input 
image size is 𝐻𝑖𝑛×Win, the convolution kernel size is 𝐹×𝐹, the 
padding is 𝑃, and the stride is 𝑆, the output feature map size 
can be calculated using the following Eq. (2) and Eq. (3): 

 𝐻𝑜𝑢𝑡 = ⌊
𝐻𝑖𝑛+ 2𝑃 − 𝐹

𝑆
⌋ + 1 

 𝑊𝑜𝑢𝑡 = ⌊
𝑊𝑖𝑛+ 2𝑃 − 𝐹

𝑆
⌋ + 1 

Further, AGMNet designed a RepNCSPELAN4SCConv1 
module to extract features and enhance the feature 
representation capability. The specific module design is as 
follows: first, a 1×1 convolutional layer Conv reduces the 
number of channels in the input feature map from c1 to c3. 
Then, the feature map goes through two consecutive 
RepNCSP_SCConv modules, each containing a standard 
convolutional layer and an SCConv attention layer [17], along 
with a residual connection. These modules further transform 
and refine the channel number from c3 to c4. Finally, the 
original c3 output is concatenated with the outputs of the two 
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RepNCSP_SCConv modules (a total of 2×c4) on the channel 
dimension to form a richer feature representation. The 
concatenated feature map is then passed through a final 1×1 
convolutional layer Conv4, converting the number of channels 
to the final output c2. Throughout this process, the SCConv 
layer uses a combination of average pooling and convolutional 
operations to implement a spatial attention mechanism, which 
helps the model to focus more on important areas of the image, 
thereby enhancing detection performance. 

In summary, by stacking multiple convolutional layers, 
activation functions, and downsampling layers to gradually 
extract multi-scale features of the image, the entire Encoder 
consists of five convolutional layers and four feature extraction 
layers, specifically defined as C3(2)-C3(2)-R-C3(2)-R-C3(2)-
R-C3(2)-R, where Ck(m) represents a two-dimensional 
convolutional layer with a k×k kernel size and a stride of m, 
and R is a feature extraction layer. After the transformation by 
the Encoder, the input image will complete a 32x 
downsampling, and the feature map is reduced to 1/32 of the 
original image size, outputting multiple feature maps of 
different depths that are used in the Decoder. Such Encoder 
design helps to improve object detection performance, 
especially when dealing with occlusions and small targets. 

2) Decoder design details: In the design of AGMNet, the 

Decoder part employs multi-scale feature fusion technology 

and is designed with a Main Branch and an Auxiliary Branch 

to perform object detection simultaneously. This design 

enhances the model's ability to detect targets of different 

scales, improves feature expression capabilities, and allows 

for more effective information flow between different network 

layers. 

In the Main Branch, the SPPELAN module [14] is first 
used to receive the high-dimensional feature maps output by 
the Encoder to enhance the receptive field and extract multi-
scale features. Then, a DySample layer is connected to perform 
dynamic upsampling of the feature map, expanding the size to 
facilitate fusion with larger feature maps. This fusion operation 
is implemented through a Concat module, which concatenates 
the upsampled feature map with a feature map of the same size 
from the Encoder in the depth direction, forming a new feature 
map that integrates information from different levels. This 
fusion strategy helps the model capture context information at 
different levels and improves the model's ability to detect 
multi-scale targets. Similarly, the same convolutional layers as 
in the Encoder are used to perform downsampling operations 
again. Next, the RepNCSPELAN4SCConv1 layer is used again 
to perform convolutional operations on the fused features, 
reducing the number of convolutional kernel parameters. 

In the Auxiliary Branch, the CBLinear layer is first used to 
extract features from the 8x, 16x, and 32x downsampling 
layers of the Encoder, transforming these features from 
different levels to match the required number of channels. The 
transformation operation can be expressed as Eq. (4) to Eq. (6): 

 𝐹𝑐𝑏
8𝑥 = (𝐹𝑒𝑛𝑐

8𝑥 ; 𝐶𝑜𝑢𝑡) 

 𝐹𝑐𝑏
16𝑥 = (𝐹𝑒𝑛𝑐

16𝑥; 𝐶𝑜𝑢𝑡) 

 𝐹𝑐𝑏
32𝑥 = (𝐹𝑒𝑛𝑐

32𝑥; 𝐶𝑜𝑢𝑡) 

where, 𝐹𝑒𝑛𝑐
8𝑥 , 𝐹𝑒𝑛𝑐

16𝑥, 𝐹𝑒𝑛𝑐
32𝑥 represent feature maps at different 

scales, and 𝐶𝑜𝑢𝑡  is the target channel number. Then, feature 
fusion technology is used, and after each downsampling 
operation, the CBFuse layer fuses the output of the auxiliary 
branch with the feature map of the main branch. This fusion 
operation combines feature information from different levels, 
further enhancing the feature expression capabilities. 
Specifically, AGMNet adopts a specific fusion strategy based 
on the level and channel number of the feature map to ensure 
that the fused feature map retains the key information of the 
original features and introduces new contextual information. 
This further improves the model's detection performance, 
especially when dealing with small and blurred targets. The 
auxiliary branch, through parallel processing of additional 
feature maps, can capture information that the main detection 
branch may miss. 

The design of the Decoder effectively utilizes the multi-
scale features extracted by the Encoder and further enhances 
the feature expression capabilities through feature fusion and 
convolutional operations. This design allows the model to more 
accurately detect targets of different sizes, giving AGMNet an 
advantage in the object detection and classification tasks of 
Alstroemeria. Finally, the Detect layer receives feature maps of 
different scales and generates the final detection results. 

C. Activation Function 

In deep learning, the role of activation functions in neural 
networks is to introduce nonlinearity, allowing the network to 
model complex functions. Different activation functions have 
different mathematical properties and computational 
efficiencies. Commonly used activation functions include 
Sigmoid-weighted Linear Unit (SiLU) [18], Rectified Linear 
Unit (ReLU) [19], and Exponential Linear Unit (ELU) [20], etc. 

The Sigmoid function maps any real number to the interval 
(0, 1), defined by the Eq. (7): 

 (𝑥) =
1

1+𝑒−𝑥 

SiLU dynamically adjusts the scaling of the input x through 
the output of the sigmoid function, retaining the linear part of 
the input information while introducing nonlinearity. Its output 
range is limited, which helps to avoid the vanishing gradient 
problem and, to some extent, prevents the "dead neuron" issue. 
The ReLU activation function is a more concise nonlinear 
function, defined by the Eq. (8): 

 𝑅𝑒𝐿𝑈(𝑥) = 𝑚𝑎𝑥(0, 𝑥) 

ReLU has a gradient of 1 when the input is positive, 
effectively alleviating the vanishing gradient problem and has 
high computational efficiency. However, ReLU has a gradient 
of 0 when the input is negative, which can lead to some 
neurons never being activated during the training process, also 
known as the "dead" phenomenon. Furthermore, the ELU 
function combines the characteristics of ReLU and Sigmoid, 
defined by the Eq. (9): 

 𝐸𝐿𝑈(𝑥)  =  {
         𝑥        , 𝑥 > 0
𝛼(𝑒𝑥 − 1), 𝑥 ≤ 0

 
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where, α is a parameter that adjusts the gradient of negative 
input values, typically set to a small positive constant (e.g., 0.1 
or 1.0). ELU has soft saturation for negative inputs, which can 
reduce the problem of dead neurons, but the computation is 
relatively complex. 

Considering the specific needs of the AGMNet model, 
SiLU (Sigmoid Linear Unit) was selected as the activation 
function for the model. SiLU not only maintains the non-zero 
gradient characteristic of ELU in the negative value area but 
also avoids additional exponential operations and effectively 
prevents the dead ReLU issue, maintaining the continuity of 
the gradient. This makes SiLU more effective in dealing with 
complex nonlinear relationships, helping the model capture 
more refined feature representations and thereby enhancing the 
performance of object detection. 

III. EXPERIMENTS 

In this section, the evaluation metrics and experimental 
details are first introduced. Subsequently, the performance will 
be reported, and the proposed AGMNet model will be 
compared with existing methods. The annotated data was 
statistically analyzed, and the model's performance was 
comprehensively assessed using common evaluation metrics, 
with visualization techniques employed to display and analyze 
the model's detection results. 

A. Experimental Conditions and Details 

In this study, the publicly available morado_5may dataset 
was selected for experimental validation. To ensure the 
accuracy and reliability of the experiments, the experimental 
conditions were meticulously set, and the details were refined. 
During the model training process, special attention was given 
to the selection of the loss function, the configuration of the 
optimization algorithm, and the adjustment of 
hyperparameters. To enhance the model's generalization 
capability, data augmentation techniques such as random 
scaling, rotation, and color transformation were implemented. 
Mini-batch stochastic gradient descent (SGD) was used as the 
optimizer to avoid the computational resource waste caused by 
calculating the gradients of the entire dataset. The initial 
learning rate was set to 0.01, with a batch size of 4 and a 
momentum factor of 0.937. Considering the convergence, the 
model was trained for 300 epochs, which allowed it to reach a 
state of convergence. 

The experiments were conducted on a machine equipped 
with an NVIDIA GeForce GTX 3090 GPU, using the PyTorch 
2.0.0 deep learning framework [21] for model training and 
evaluation, with the CUDA version 11.8 parallel computing 
framework and the CUDNN version 8.9.5 deep neural network 
acceleration library to fully utilize the parallel computing 
capabilities of the GPU. These experimental conditions and 
details ensure that the model can fully learn the characteristics 
of the dataset and provide an objective evaluation and accurate 
comparison of the model's performance. Moving forward, 
comparative experiments will be conducted to validate the 
effectiveness of the proposed method, and a thorough 
exploration will be made regarding its potential and value in 
practical applications. 

B. Comparison of Model Performance with Different Object 

Detection Methods 

In this study, to comprehensively evaluate the performance 
of the proposed object detection model, multiple evaluation 
metrics were selected for comparison with benchmark models 
on four public datasets. These benchmark models include 
YOLOv5 [22], YOLOv8 [23], and YOLOv9 [14]. AGMNet 
was trained and tested under the same experimental conditions 
as these benchmark models and evaluated based on indicators 
such as Precision (P), Recall (R), F1-score (F1), and mean 
Average Precision (mAP). 

Precision (P) represents the proportion of objects correctly 
predicted by the model out of all predicted objects, Recall (R) 
represents the proportion of objects correctly predicted by the 
model out of all actual objects, and F1-score (F1) is the 
harmonic mean of Precision and Recall, providing a balanced 
perspective of the model's accuracy and recall rate. mAP is the 
average of the average precision over multiple different IoU 
thresholds, which can more comprehensively evaluate the 
model's performance under different thresholds and is an 
important performance indicator. Specifically, mAP@0.5 and 
mAP@0.5:0.95 represent the mAP values at an IoU threshold 
of 0.5, and the average mAP value as the IoU threshold 
changes from 0.5 to 0.95 (with a step size of 0.05), with the 
latter being a more stringent assessment of performance. Their 
definitions are as Eq. (10) to Eq. (13): 

 𝑃 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 

 𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 

 𝐹1 = 2 ×
𝑃×𝑅

𝑃+𝑅
 

 𝑚𝐴𝑃 =
1

𝑛
∑ 𝑃(𝑅)𝑑(𝑅)𝑛

1  

where, True Positives (TP), False Positives (FP), and False 
Negatives (FN) represent the number of true positives, false 
positives, and false negatives, respectively. "TP + FP" is the 
total number of objects detected by the model, and "TP + FN" 
is the total number of actual objects in the image. As shown in 
Table II, the performance of each model in the four datasets is 
displayed. 

TABLE II.  PERFORMANCE EVALUATION RESULTS OF DIFFERENT 

MODELS 

Model P R F1 mAP@0.5 mAP@0.5:0.95 

YOLOv5 0.725 0.722 0.723 0.754 0.530 

YOLOv8 0.715 0.755 0.734 0.762 0.564 

YOLOv9 0.704 0.802 0.750 0.788 0.630 

AGMNet 0.737a 0.807 0.770 0.826 0.637 

a. Optimal performance is indicated in bold. 

Through experimentation, the performance of these models 
was compared and analyzed on evaluation metrics such as 
Precision (P), Recall (R), F1-score (F1), and mean Average 
Precision (mAP). It is evident that the AGMNet model 
achieved the best performance across all assessment metrics. 
AGMNet reached an F1-score of 0.770, indicating that 
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AGMNet can effectively detect most real targets while 
maintaining high precision and recall rates. In addition, 
although YOLOv9 achieved a recall rate of 0.802, its precision 
was slightly lower, resulting in an F1-score slightly lower than 
AGMNet. The performance of the YOLO series models in 
mAP@0.5 and mAP@0.5:0.95 also did not surpass AGMNet, 
which means that AGMNet has stronger generalization 
capabilities under different IoU thresholds and can maintain 
high detection accuracy, especially within the more stringent 
IoU threshold range. It is worth noting that in the article by the 
author of the morado_5may dataset [11], the experimental 
model achieved an F1 result of 0.755, which shows that the 
performance of the AGMNet model has indeed been improved. 

In the experiments, models such as CenterNet [10], Faster 
R-CNN [7], FCOS [24], and EfficientDet [25] were also tested. 
Their performance on the test dataset was notably poor, with an 
mAP@0.5 value not exceeding 0.3, significantly lower than the 
over 0.8 they could achieve on the training dataset. Although 
they showed a decreasing trend in loss values during training 
and ultimately reached a loss value of less than 1, they almost 
failed to successfully detect targets on the unseen test dataset. 
This phenomenon reveals their lack of generalization 
capabilities when dealing with datasets with complex 
backgrounds and more occlusions. Their performance dropped 
sharply when facing unseen target poses, occlusion situations, 
small targets, or background interference. 

C. Comparison of Classification Performance with Different 

Object Detection Methods 

After evaluating the performance of different models, 
further attention was given to their classification performance 
in the morado_5may dataset. This dataset contains two labels, 
raw and ripe, which represent unripe and ripe fruits, 
respectively. Similarly, metrics such as Precision (P), Recall 
(R), F1, and mean Average Precision (mAP) were used to 
comparatively assess them. The experimental results are shown 
in Table III. 

TABLE III.  CLASSIFICATION PERFORMANCE EVALUATION RESULTS OF 

DIFFERENT MODELS 

Model 
Clas

s 
P R F1 

mAP@0.

5 

mAP@0.5:0.9

5 

YOLOv

5 

Raw 0.733 
0.78

4 

0.75

8 
0.778 0.522 

Ripe 0.716 
0.66
1 

0.68
7 

0.729 0.538 

YOLOv

8 

Raw 0.719 
0.79

9 

0.73

4 
0.801 0.555 

Ripe 0.710 
0.71

1 
0.75

7 
0.724 0.574 

YOLOv

9 

Raw 0.733 
0.84

9 

0.78

7 
0.829 0.627 

Ripe 0.675 
0.75
4 

0.71
2 

0.748 0.632 

AGMNe

t 

Raw 
0.794
a 

0.80

6 
0.80

0 
0.857 0.630 

Ripe 0.681 
0.80

9 

0.74
0 

0.795 0.645 

a. The best performance for each category is indicated in bold. 

For the raw category, the AGMNet model achieved the 
highest scores in Precision, Recall, and F1, indicating that 
AGMNet has higher accuracy and fewer missed detections 

when identifying unripe fruits. For the classification task of the 
ripe category, although AGMNet is slightly lower than 
YOLOv9 in Precision, it leads in Recall and F1, especially 
with a Recall of 0.809, showing AGMNet's higher recall rate 
when identifying ripe fruits. In addition, AGMNet also 
performed well in the mAP indicators, proving its overall 
performance superiority. 

It is worth noting that AGMNet's performance in detecting 
unripe category flowers is particularly outstanding. Unripe 
flowers have greater difficulty in recognition because their 
characteristics are not as obvious as those of ripe flowers, and 
they are also smaller in size. These results further confirm the 
effectiveness of AGMNet in the tasks of object detection and 
classification of Alstroemeria Genus Morado. AGMNet, 
through its advanced network structure and optimization 
algorithms, can effectively handle the issue of class imbalance 
and achieve accurate classification in complex backgrounds, 
demonstrating stronger robustness. 

D. Visualization of Typical Errors 

In the task of object detection, missed detections and false 
detections are the two major issues affecting the model's 
performance. To delve into the causes of these errors, a visual 
investigation was conducted on the detection results of 
AGMNet and other benchmark models. During the evaluation 
process, a confidence threshold was carefully set to ensure 
optimal counting metrics on the dataset. This strategy helped to 
filter out the model's most confidentw detection results while 
excluding errors that might be brought by low-confidence 
predictions. 

For missed detections, it was observed that these often 
occur when the target features are not distinct, the background 
is complex, or the target is occluded. In the visual results, blue 
arrows were used to point to these targets that were not 
detected. These targets may be due to their small size, high 
degree of integration with the background, or severe occlusion, 
making it difficult for the model to accurately capture their 
features. Differences in feature extraction and contextual 
understanding among different models also further affect the 
situation of missed detections. As for false detections, they 
usually occur when the model incorrectly identifies non-target 
objects as target categories. In the visualization images, yellow 
arrows point to these falsely detected targets. These errors may 
stem from the model's vague understanding of category 
boundaries or the issue of class imbalance in the dataset. When 
the model fails to fully learn the subtle differences between 
different categories during the training process, 
misclassification is likely to occur. In the detection of 
Alstroemeria Genus Morado, false detections may occur when 
plant structures that are similar in shape but not part of the 
target category are incorrectly classified as ripe or unripe 
flowers. To provide a clear illustration of these errors, Fig. 4 
presents visual examples of typical missed (blue arrow) and 
false detected (yellow arrow) cases. 

Through careful review of the object detection results, 
several typical error types and their potential causes were 
identified: 
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Fig. 4. Visualizing typical missed (blue arrow) and false detected (yellow 

arrow) cases. 

Missed Detections: YOLO series models exhibit significant 
missed detection issues when detecting small, occluded, or 
targets with colors similar to the background. This problem can 
be attributed to the model's inability to fully capture the 
detailed information of these targets during the feature 
extraction phase, leading to their neglect in subsequent 
detection stages. 

False Positives: On the other hand, false positives often 
occur when flowers are in the transitional phase between 
maturity and immaturity, making it difficult for the model to 
classify accurately. Additionally, imaging issues under strong 
light conditions can also cause the color features of mature 
flowers to distort, leading them to be misjudged as immature. 
These situations indicate that the model has limitations in 
dealing with detailed variations in color and shape. 

Boundary Box Issues: In some detection results, it was 
noticed that targets with incomplete edges are easily ignored by 
the model. This may be due to the model's failure to fully 
consider the information in the edge areas when processing 
images, or because targets in these areas suffer loss during the 
feature extraction process. For example, in the case images of 
the YOLOv5 and YOLOv8 detection results, the target in the 
lower left corner was not detected. In contrast, YOLOv9 and 
AGMNet successfully addressed such issues. 

In summary, the error analysis of AGMNet in object 
detection tasks indicates that the model has significant 
advantages in detecting small targets, occluded targets, and 
targets at the image edges, thanks to its innovative structure 
and algorithmic optimizations. These features of AGMNet give 
it important practical value in application scenarios such as 
precision agriculture, especially in object detection tasks that 
require high accuracy and robustness. 

IV. DISCUSSION 

This paper introduces the AGMNet model for the object 
detection and classification task of Alstroemeria Genus 
Morado flowers, showcasing its superior performance. 
Comparative analysis has validated the model's advantages in 
object detection and classification. AGMNet's dual-path 
detection structure, featuring a main detection trunk and 
auxiliary branches, offers robust support for dealing with 
occlusions and multi-scale targets. This architecture not only 
bolsters the model's robustness but also demonstrates 
AGMNet's enhanced generalization across different IoU 
thresholds, particularly within stricter IoU ranges where its 
performance benefits are more evident. When compared to the 
YOLO series models, AGMNet has highlighted its potential 
and value in object detection tasks. The outcomes confirm 
AGMNet's practical application potential in precision 
agriculture, especially in scenarios demanding high accuracy 
and robustness. The introduction of AGMNet substantiates the 
efficacy of deep learning technology in precision agriculture 
and sets a foundation for subsequent research. Nevertheless, 
despite AGMNet's commendable performance in numerous 
instances, issues persist, such as missed detections when targets 
are heavily occluded or closely resemble the background in 
color. Additionally, false detections are prevalent during the 
transitional phase of flower maturation, suggesting that the 
model can improve in capturing nuanced variations in color 
and shape. 

To counter these limitations, future efforts should 
concentrate on several fronts: the model requires further 
refinement to more adeptly manage occlusions and background 
interference. Constructing a more extensive dataset of 
Alstroemeria flowers, replete with detailed annotations, is 
essential. Developing a more lightweight model to meet real-
time detection requirements will enhance the object detection 
model, improving its adaptability to targets across diverse 
environmental conditions. Future studies will also address 
more tangible needs in agricultural applications, offering 
effective technical support for plant disease and pest 
monitoring, plant population statistics, and ecological 
conservation. 

V. CONCLUSION 

This study aimed to address the insufficient object 
detection and classification performance of Alstroemeria 
Genus Morado flowers, filling a gap in this line of research. 
Innovatively, this study proposed the AGMNet model, which 
incorporates Encoder and Decoder structures. By applying a 
range of innovative technologies, including multi-scale feature 
fusion, spatial attention mechanisms, and dual-path detection 
structures, AGMNet has surpassed existing YOLO series 
models in key performance indicators, demonstrating 
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exceptional performance. Comprehensive experimental 
evaluations were conducted using the morado_5may dataset, 
and the results showed that compared to other benchmark 
models, AGMNet achieved higher levels in terms of precision, 
recall, and mAP metrics. However, despite the positive 
outcomes, there are still some issues that need to be further 
explored and resolved in future work. Specifically, addressing 
class imbalance, enhancing model generalization, improving 
computational efficiency, adapting to environmental changes, 
and creating larger-scale datasets are all key directions for the 
next phase of research. It is anticipated that through continued 
research, AGMNet can play a greater role in the field of 
precision agriculture, making a more significant contribution to 
the improvement of agricultural production efficiency and 
automation levels. 
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