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Abstract—Digital systems in the connected world of today 

bring convenience but also complicated cyber security challenges. 

The inadequacies of conventional intrusion detection techniques 

are exposed by the constant adaptation and exploitation of 

vulnerabilities by advanced cyber threats. Identifying dangers in 

massive data flows gets more difficult as networks grow, 

necessitating innovative methods. With the aim of minimizing 

these concerns, a new ID model is created utilizing cutting-edge 

machine learning to proactively and flexibly combat dynamic 

cyber attacks, with regard to evolving cyber attackers, this model 

seeks to improve accuracy and protection systems. This research 

develops an arachnid swarm optimization-based Convolutional 

neural network (ASO opt CNN) model to improve ID 

performance. An improved modified residual CNN is employed 

in the model to lessen the vanishing and exploding gradient 

problems in deep networks and facilitates the optimization 

process, making it easier for deep networks to learn. The 

developed model is adjusted using arachnid swarm optimization 

(ASO), which is the hybridization particle swarm optimization 

(PSO) and social spider optimization (SSO). Utilizing test data, 

the model's efficacy is evaluated at last. This test data is also 

subjected to preprocessing, which leads to the creation of a 

robust detection model that can identify the presence of network 

attacks. Experimentation and comparison indicate the 

approach's effectiveness by attaining accuracies of 95.95%, 

95.61%, and 95.00% for three datasets respectively. This 

highlights the developed model’s potential to detect intrusions 

more effectively. 

Keywords—Intrusion Detection; arachnid swarm optimization; 

Convolutional Neural Network; pre-processing; arachnid swarm 
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I. INTRODUCTION 

The security of computer networks and systems is of 
utmost importance in today's technologically advanced and 
interconnected society. Because vital operations depend more 
and more on digital infrastructure, there are more sophisticated 
and varied potential threats from unauthorized access, hostile 
behavior, and cyber attacks [1]-[3]. By continually monitoring 
system behavior and network traffic in order to spot suspicious 
or malicious activity, ID systems serve a critical role in 
protecting these environments. An essential part of IDS is an 
ID model, which is in charge of data analysis, pattern 
recognition, and differentiating between normal and suspicious 
activity [4]. It works relentlessly to protect the availability, 
confidentiality, and integrity of digital assets as a vigilant 

sentinel. To determine potential risks in real-time, this model 
uses cutting-edge methods from the fields of machine learning 
and artificial intelligence [5]. Finding unauthorized or hostile 
actions that can jeopardize the security of a network or system 
is the main goal of an ID model. The model seeks to identify 
intrusion attempts, data breaches, and other security breaches 
by examining network traffic, system logs, and other pertinent 
data. The model is intended to discover and comprehend the 
fundamental behavior of a network or system. Then, it 
continuously scans for departures from this norm, highlighting 
any actions that are unique or unexpected from a statistical 
perspective [6]. This method makes it possible to find new, 
undiscovered hazards. Even though these patterns are not 
immediately apparent to human analysts, intruders frequently 
leave behind recognizable patterns in their behavior. The ID 
approach is able to spot these minute trends and connect 
seemingly unconnected occurrences to pinpoint potential 
threats [7]-[9]. The ID methodology functions in real-time, 
enabling quick reactions to newly emerging threats in a digital 
environment that is always evolving. The methodology aids in 
risk mitigation by quickly identifying and warning security 
personnel about suspicious actions before they worsen [10]. An 
efficient ID model continuously picks up new information and 
modifies its detection tactics. 

It changes along with the threat environment, ensuring that 
it continues to be effective against both well-known and new 
attack vectors. The fundamental elements of an ID model 
include the model's ability to receive information from a 
variety of sources, including network traffic, system logs, and 
application behavior. The analysis is built on top of this data. 
The characteristics of network traffic and system activity are 
represented by relevant features or attributes that are taken 
from the acquired data [11]. The detecting methods use these 
features as input. The model creates warnings or notifications 
to notify security administrators or automated systems about 
potential threats when it notices behaviors that differ from the 
expected norm. The ID model can start automated responses 
based on the seriousness of the threat it has discovered or it can 
suggest human intervention [12]. These reactions could entail 
isolating affected systems, blocking suspect IP addresses, or 
modifying network settings. In conclusion, an ID model is a 
skilled and perceptive keeper who constantly scans digital 
environments for indicators of harmful intent [13]. Leveraging 
state-of-the-art machine learning algorithms, this technology 
enhances the security stance of networks and systems, 
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empowering enterprises to swiftly detect, confront, and 
mitigate cyber security threats with precision and efficiency. 
As technology develops, ID models play a more and bigger 
role in protecting our digital world [14]. 

Machine learning's contributions to ID significantly 
enhance both the effectiveness and efficiency of identifying 
and mitigating cyber security threats. Key advantages include 
the ability to detect complex and constantly evolving 
infiltration tactics, a task that can pose challenges for rule-
based systems but is well-suited for machine learning 
algorithms [15]. They are capable of picking up abnormalities 
and new attack patterns that typical rule sets do not explicitly 
identify. In order to stay up with new cyber security threats and 
attack vectors, machine learning models can adapt to new data 
and learn from it. This versatility guarantees that the ID system 
will continue to be effective against new attack methods [16]. 

The number of false positive alerts can be decreased by 
using machine learning models to thoroughly analyze data 
patterns. These models can determine whether an activity is 
indeed suspicious or symptomatic of an intrusion by taking into 
account a number of different characteristics and contexts [17] 
[18]. Machine learning algorithms can discover complex 
correlations between features, improving the accuracy of both 
known and undiscovered infiltration patterns. As a result, 
fewer threats are missed and detection rates are improved. 
Many machine-learning models can analyze data in real time, 
which enables quick detection and reaction to incursions as 
they happen [19]. This is essential for reducing possible harm 
and the effects of attacks. Modern computer systems create a 
lot of network traffic and system logs, which makes machine-
learning methods an ideal choice for this task [20]. 

The main aim of the research is to develop an ASO opt 
CNN model to improve ID performance. Getting an intrusion 
dataset and applying class labels constitute the first phase. 
Then a model is trained using this labeled dataset. The data is 
then cleaned and prepared during the preprocessing phase. An 
updated feature matrix is created once statistical features are 
extracted from the preprocessed dataset. An improved 
modified residual Convolutional neural network is fed with the 
retrieved features. The model is tuned using stages of PSO and 
SSO. Utilizing test data, the model's efficacy is evaluated in the 
final phase. This test data is also subjected to preprocessing, 
which leads to the creation of a robust detection model that can 
identify the presence of network attacks. 

 Arachnid swarm optimization: The hybridization of 
SSO and PSO seeks to develop an ASO model that 
takes advantage of each algorithm's strengths while 
adjusting for its drawbacks. SSO and PSO merger could 
imply integrating their update methods, sharing tactics, 
and search strategies to form a new hybrid algorithm. 
SSO's social sharing mechanism may be included in 
PSO's velocity update equation, allowing particles to 
communicate and share information in the same way as 
social spiders weave webs. Alternatively, to achieve 
greater convergence to optimal solutions, the 
exploration and exploitation capacities of both 
algorithms could be balanced. 

 ASO opt CNN: Combining PSO and SSO results in an 
effective and efficient optimization strategy for CNNs 
in ID by combining their respective strengths in global 
exploration and local fine-tuning. Through the use of a 
hybrid strategy, CNN performance, dynamic threat 
adaption, and overall ID accuracy may all be improved. 

The manuscript maintains its current organizational 
structure, with Section II providing a comprehensive review of 
recent research, including methodologies and challenges. 
Section III presents an illustrative example of an ID model. In 
Section IV, the novel ASO is introduced. Section V delves into 
a detailed discussion of experimental results, while Section VI 
delivers the concluding remarks and summary. 

II. MOTIVATION 

The growing threat environment of cyber attacks in our 
linked digital world is what motivated researchers to create an 
ID model. The sophistication and diversity of cyber dangers 
increase as technology develops and our reliance on computer 
networks increases. Hence, a substantial demand exists for 
robust and adaptable ID systems. This section elucidates the 
methodologies employed by researchers to enhance the 
efficacy of ID models. 

A. Literature Review 

Jie Gua and Shan Lu [21] devised an efficient ID 
framework that leverages Support Vector Machines (SVM) 
combined with Naive Bayes feature embedding. Our method 
performs admirably, delivering excellent accuracy across many 
datasets. The naive Bayes feature transformation technique, 
however, may impose some level of computational overhead, 
which could affect real-time processing efficiency in high-
speed network contexts. This poses a potential restriction for 
this system. 

An innovative two-stage intelligent IDS was created by 
NevrusKaja et al. [22] to identify and defend against such 
malicious intrusions. The implementation demonstrates a 
highly effective IDS that detects attacks with high accuracy 
while removing false positives and increasing computational 
effectiveness. The model's reliance on ML algorithms for 
attack detection and classification, meanwhile, has the potential 
to create limitations to adversarial attacks, thus reducing the 
system's robustness in the face of sophisticated attackers. 

The shortcomings of conventional feature-based ID 
systems for detecting advanced threat attacks were addressed 
by Xianwei Gao et al. [23], it debuted a model of adaptive 
ensemble learning. The proposed solution outperformed 
current approaches by achieving high accuracy through 
adaptive. However, the extra computational complexity 
brought on by ensemble learning could be one of the 
drawbacks. 

SoosanNaderi Mighan1 and Mohsen Kahani [24] 
developed a hybrid approach aimed at establishing a rapid and 
highly efficient cyber security ID system. While this method 
exhibited impressive performance in terms of accuracy, f-
measure, sensitivity, precision, and execution time, it's worth 
noting that the complexity associated with configuring and 
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fine-tuning the hybrid model could potentially introduce 
certain drawbacks. 

An adaptable and robust network ID was created 
byLirimAshiku and CihanDagli [25] using the deep learning 
architecture to recognize and categorize network threats. By 
enabling an adaptive ID system that learns to recognize both 
known and new network attack patterns, this paradigm 
improved network security by reducing the chance of intrusion 
but implementing this model required significant 
computational resources and skill due to the potential for 
complex model training and false positives/negatives. 

The goal of Mohammad Noor Injadat et al. [26] was to 
improve network ID with a unique machine learning (ML)--
based framework. This model delivered increased detection 
performance with lower computational complexity, 
maximizing security measures for people and businesses in the 
face of rising cyber threats. To achieve the best results, 
however, the application of several strategies, such as feature 
selection and oversampling, may create additional complexity. 

Peilun Wu and Hui Guo [27] introduced LuNet, a unique 
hierarchical CNN+RNN neural network that successfully 
extracts geographical and temporal information from network 
traffic data, with the goal of improving network ID. Beyond 
incorporating cutting-edge methodologies, our model excels in 
the precise and comprehensive identification of networks. It 
achieves this by adeptly capturing not only the spatial but also 
the temporal characteristics inherent in network traffic data. 
However, the deployment and training of LuNet may need 
significant computational resources, which could lengthen 
processing times. 

The limitations of conventional algorithms were addressed 
by Yihan Xiao [28] hence creating a network ID model based 
on CNN-IDS that concentrated on better feature extraction, 
accuracy, and timely identification of network attacks, which 
improved the accuracy, decreased false alarm rate, and boosted 
the timelines. However, the transformation of traffic data into 
an image format can complicate preparation and might restrict 
the model's applicability to particular data sets. 

B. Challenges 

 It can be difficult to preprocess network traffic data 
before feeding it into a CNN model. It may be 
necessary to use careful engineering to transform raw 
data into a usable format, which could increase 
processing overhead. 

 ID datasets frequently contain unbalanced class 
distributions, with normal traffic greatly outnumbering 
attack cases. It takes sophisticated strategies to train a 
model to handle such imbalances in order to avoid bias 
against the dominant class. 

 Developing a successful feature extraction plan for the 
architecture is essential. Despite the fact that CNNs are 
efficient at learning hierarchical features, it is still 
difficult to pinpoint the characteristics that are the most 
useful for ID. 

 Finding a balance between underfitting and overfitting 
can be difficult and time-consuming when optimizing 
hyperparameters. 

 Striking an equilibrium between reducing false positives 
and minimizing false negatives presents a formidable 
challenge, as often, mitigating one tends to elevate the 
potential of the other. 

III. EFFICIENT ID METHODOLOGY FOR ARACHNID SWARM-

TUNED CNN MODEL 

The primary aim of the research is to develop an ASO opt 
CNN model to improve ID performance. Getting an intrusion 
dataset and applying class labels constitute the first phase. 
Then a model is trained using this labeled dataset. The data is 
then cleaned and prepared during the preprocessing phase. An 
updated feature matrix is created once statistical features are 
extracted from the preprocessed dataset. An improved 
modified residual Convolutional neural network is fed with the 
retrieved features. The model is tuned using stages of PSO and 
SSO. Network traffic can be more accurately classified as 
normal or intrusive by tuning by optimizing the 
hyperparameters, architecture, and training parameters of the 
CNN. The model's performance in classifying data can be 
enhanced by fine-tuning to better capture complex patterns. 
Utilizing test data, the model's efficacy is evaluated in the final 
phase. This test data is also subjected to preprocessing, which 
leads to the creation of a robust detection model that can 
identify the presence of network attacks. Experimentation and 
comparison indicate the approach's effectiveness and highlight 
its potential to considerably increase ID accuracy. The 
architecture of the developed ID model is illustrated in Fig. 1. 

 

Fig. 1. Architecture of the proposed ID model. 

A. Input 

The inputs for the ID model are gathered from BoT-IoT 
(d1), CICIDS2017 (d2), and UNSW-NB15 network (d3), 
which is logically described as follows, 
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The first dataset, hK  is described as having values between 

1 to m , the second dataset, iK  is described as having values 

between 1 and u , and the third dataset, iK  is described as 

having values between 1 and j . 

B. Data Labeling 

After the dataset has been compiled, each data point needs 
to be assigned a class that describes its nature. These groups in 
ID generally comprise subcategories like Normal and other 
kinds of Attacks (such as DoS assaults, malware, and 
intrusions). Each data point must be labeled according to its 
behavior, whether it represents a secure network activity or an 
attack. A crucial stage in machine learning is using the labeled 
dataset to train a model. The primary aim is to instruct the 
model in discerning intricate patterns and meaningful 
correlations between input data, comprising various features, 
and their respective class labels. This is done in the context of 
ID by training a model to differentiate between typical network 
activity and other kinds of attacks. 

C. Pre processing 

Before being used for training or testing an ID system, 
network traffic data must first go through a number of data 
preprocessing procedures in ID. With the help of these 
procedures, the data is properly structured, cleaned, and 
modified to improve the functionality of the detection model. 
In order for the machine learning model to effectively learn 
from the network traffic data and generalize, data 
preprocessing is essential in ID. These procedures help the 
model to more precisely identify and categorize network 
attacks while reducing false positives and false negatives. 

D. Feature Extraction 

Feature extraction transforms raw network data into key 
statistical attributes, creating a streamlined feature matrix. This 
matrix captures data patterns efficiently, aiding the model in 
understanding relevant information. Statistical features like 
mean, variance, standard deviation, skewness, kurtosis, min 
and max summarize data characteristics. This enhances the 
model's ability to spot anomalies and patterns, enabling 
effective ID. By reducing dimensionality and noise, feature 
extraction optimizes model performance and accuracy. 

1) Statistical features: In ID, statistical features are 

generated numerical metrics from network traffic data 

characteristics. These properties and behaviors inside network 

communication are described statistically by these features. 

The ability to recognize patterns, trends, and abnormalities 

that may be signs of network attacks depends heavily on 

statistical aspects. They serve as the foundation for creating 

efficient ID models. Here are a few typical statistical 

characteristics used in ID: 

a) Mean: An attribute's average value across a range of 

data points, for instance, the average size of a packet or the 

average length of a network session. The summing up all of the 

values for a specific characteristic in a dataset and dividing by 

the total number of data points, the mean (average) of that 

attribute is determined. The computation of the mean    of a 

set of values  gttt ,....., 21 is shown below in mathematical 

notation: 

  gttt g /....21    (3) 

  is the attribute's mean (average), gtandtt 2,1 denotes the 

attribute's individual values, and g denotes the overall number 

of data points. 

b) Variance: The statistical concept of variance serves as 

a measure that quantifies the extent or dispersion of data points 

relative to their mean. In other words, it shows how much a 

particular data point deviates from the mean (average). 

Variance is computed by calculating the average of the squared 

deviations between each data point and the mean. The variance 

 2 of a group of values  gtttt ,....,, 321  is calculated as follows 

in mathematical notation: 

  gt f /22   
    

(4) 

Each unique value of the attribute is represented by ft
, and 

2  indicates the variance of the values. 

c) Standard Deviation (SD): The average departure of 

the data points from the mean is measured by the SD, which is 

the variance's square root and is easier to understand. A higher 

standard deviation denotes more data variability. The standard 

deviation    is computed mathematically by taking the square 

root of the variance: 

2     (5) 

The variance and standard deviation of network traffic 
parameters, such as packet sizes, inter-arrival periods, or 
payload sizes, are calculated in ID to assist in identifying the 
typical range of behaviors. High standard deviation values can 
be a sign of aberrant activity or potential network attacks, 
which improves the ability of ID systems to detect deviations 
from the expected variability. 

d) Skewness: Skewness, in the context of ID and 

network traffic data, is a statistical metric that quantifies the 

asymmetry present in the probability distribution of a real-

valued property. The degree to which the distribution is 

skewed to one side or the other is indicated by its skewness. 

While negative skewness implies a larger tail on the left side of 

the distribution, positive skewness suggests a longer tail on the 

right. The equation and variables that consider the skewness in 

ID are as follows: A distribution's third standardized moment is 

measured by skewness. The formula used to calculate it is as 

follows: 

      33 */1  gt f     (6) 

where, ft stands for each unique value of the attribute,   

for the values' standard deviation, and 1 denotes the skewness 

of the data. 
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e) Kurtosis: Kurtosis is a statistical measure that 

assesses the "tailedness" of the probability distribution of a 

real-valued property in network traffic data with regard to ID. 

The concentration of data points in the distribution's tails is 

revealed by kurtosis. High kurtosis suggests that the data may 

contain more outliers and heavier tails. The equation and 

explanation of the variable for kurtosis in ID are given below.  

The fourth standardized moment of a distribution is measured 

by kurtosis. This formula is used to compute it: 

      44 */  gt f     (7) 

In this case,   stands for the kurtosis values. 

f) Min: The minimal value detected for a particular 

property within a batch of network traffic data is referred to as 

the min statistical feature in ID. With the help of this 

capability, you can understand even the most minute instances 

of a certain behavior or trait in network communication. Here 

is a description of the min statistical characteristic in terms of 

ID. The "min" statistical feature can be written mathematically 

as: 

 ftminmin 
    

(8) 

where,  min  is the attribute's minimal value and ft stands 

for each of the attribute's unique values. 

g) Max: An attribute's maximum value inside a dataset 

of network traffic data is referred to as the maximum statistical 

feature in ID. A high frequency of a particular behavior or trait 

in network communication is disclosed by this attribute. The 

max statistical attribute is described in the context of ID in the 

following sections. The statistical feature known as max has 

the following mathematical expression: 

 ftmaxmax 
   

(9) 

where, ft stands in for each unique value of the attribute 

and max is the attribute's maximum value. 

E. Updated Feature Matrix 

A structured data representation of data comprising features 
that were taken directly from a dataset is the updated feature 
matrix. The statistical features received from network traffic 
data are arranged to create this matrix in the context of ID. 
These features record pertinent trends, traits, and information 
about network behaviors that might aid in differentiating 
between typical usage and potential harmful attacks. The 
updated feature matrix is produced by converting the raw data 
into a tabular format, where each row is a data sample (such as 
a network communication session), and each column denotes a 
particular feature retrieved from that sample. These 
characteristics could consist of numerous statistical 
measurements generated from the network traffic data. To 
input the data into machine learning models, in this case, the 
CNN, it is crucial to create an orderly feature matrix. This 
matrix serves as the model's input as it learns and recognizes 
intricate patterns that point to the presence of network threats. 
The updated part of the feature matrix probably refers to the 
fact that the preprocessing and feature extraction processes 

clean up the initial raw data, making it more suitable for input 
into the CNN and raising the overall effectiveness and 
precision of the ID system. The CNN-based ID approach 
works effectively because it combines accurate preprocessing, 
feature extraction, and a well-organized feature matrix. 

F. Working of Modified Residual CNN in Intrusion Detection 

An improved modified residual CNN leverages adaptive 
features, and residual units to address the limitations of 
traditional deep networks. Its ability to handle complex 
patterns and achieve state-of-the-art performance makes it 
suitable for intrusion detection. The updated feature matrix 
dimension becomes the input for the modified residual CNN in 
the intrusion detection process, where it plays a crucial role in 
identifying and mitigating network security risks. A potent 
deep learning architecture called the CNN with residual can be 
used for ID to automatically discover and extract pertinent 
features from network traffic data by increasing the depth of 
the network. Here is a thorough explanation of how modified 
residual CNN detects intrusions: 

1) Convolutional layers: Convolutional layers use filters 

(called kernels) to move across input data and find pertinent 

patterns. These filters combine nearby data points to perform 

convolutions by multiplying each element by an element. 

Convolutions generate feature maps that depict local patterns 

and spatial hierarchies. The following equation gives a 

mathematical description of the convolution layer: 

 tttt dKBcB  1     
(10) 

In this context, tK  represents the weight vector associated 

with the convolution filter at layer t , where tB denotes the 

feature map at layer t , with JBC  . Additionally, td and c

correspond to the bias vector and activation function, 
respectively. It's noteworthy that the Rectified Linear Unit 
(ReLU) activation function is a commonly employed non-
linear function within CNN. One of the distinguishing 
characteristics of the CNN is its efficiency in parameter 
utilization. This efficiency stems from the fact that it employs 
the same weight and bias vectors across its layers, contributing 
to a reduction in the overall number of parameters compared to 
traditional neural networks. 

2) Pooling layers: Max pooling is a common technique 

for combining layers to generate smaller feature maps while 

maintaining the most crucial data and selecting the highest 

value possible within a pooling window. 

3) Residual unit: A residual block consists of standard 

convolutional layers followed by batch normalization and 

ReLU activation. The defining feature is the addition of the 

input to the output of the convolutional layers. This 

connection helps address the vanishing gradient issue.   

4) Activation functions and non-linearity: The model 

becomes non-linear as a result of activation functions like the 

ReLU. They aid residual CNN in learning intricate 

relationships and identifying significant features. 

5) Flattening and fully connected layers: Feature maps 

are flattened into a 1D vector following numerous 
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Convolutional and pooling layers. Then the dense layer 

processes the data and returns some values to determine the 

intrusions. This vector is processed by fully connected layers, 

which also learn higher-level abstractions and how features 

interact. 

6) Output layer: The output layer is coupled to the final 

completely connected layer, which contains neurons that 

represent potential classes (such as normal or attack). This 

layer is responsible for producing final predictions and the 

softmax function is applied, which outputs the probabilities of 

each class for the given input data. 

7) Training and optimization: As input data is associated 

with relevant class labels (such as normal or attack), labeled 

data is used to train the residual CNN. The model uses 

methods like backpropagation and gradient descent during 

training to modify its internal weights and biases in order to 

reduce prediction error. Incoming network traffic data can be 

quickly and accurately classified by trained CNNs. The 

residual CNN can identify a potential intrusion if the output 

neuron associated with the attack is highly activated. Residual 

CNNs are effective in identifying spatial and temporal patterns 

in network traffic because they learn hierarchical data 

representations well. In addition to improving ID accuracy and 

flexibility to change attack patterns, their capacity to 

automatically learn features minimizes the need for manual 

feature engineering. The architecture of the modified residual 

CNN model is depicted in Fig. 2. 

 

Fig. 2. Architecture of the modified residual CNN model. 

G. Testing Phase 

In the research, the ASO opt CNN model's effectiveness is 
thoroughly evaluated using a testing phase. During this phase, 
the model undergoes evaluation using test data to gauge its 
precision in discerning between regular network activities and 
potential intrusion attempts. Before inputting the test data into 
the model, a preprocessing step is conducted to ensure the data 
is cleaned and prepared in a consistent manner. The 
preprocessed test data is then fed into the fine-tuned CNN 
model, which has been optimized through arachnid swarm 
optimization. As the test data flows through the model, it 
generates predictions that indicate whether the network 
activities are benign or indicative of an attack. This evaluation 
phase results in the validation and creation of a robust detection 

model, capable of effectively identifying a wide range of 
network attacks based on the patterns learned from both 
training and test data. Through this rigorous experimentation 
and testing, the research showcases the model's potential to 
significantly enhance ID accuracy in practical network 
scenarios. 

IV. PROPOSED ARACHNID SWARM OPTIMIZATION 

The utilization of the merging algorithm within the realm of 
ID serves as a means to enhance and fine-tune the features and 
parameters of a network-based ID system. The arachnid swarm 
optimization could tune the residual CNN detection model's 
weights, thresholds, and hyperparameters by combining the 
SSO [29] and PSO [30] search algorithms. In order to construct 
a new hybrid algorithm, SSO and PSO may combine their 
update methods, sharing strategies, and search strategies. The 
SSO social sharing mechanism might be implemented into the 
PSO velocity update equation, allowing particles to 
communicate and exchange information in the same way that 
social spiders create webs. Alternatively, to improve 
convergence to optimal solutions, the exploration and 
exploitation capabilities of both algorithms could be balanced.  

A. Population Initialization 

The SSO is a series of repeated procedures that begin by 
randomly initializing the entire population, and the main 
feature of social spiders is female-biased populations.  In 
ancient times, the percentage of female gS  was arbitrarily 

assigned in the domain of percent (65-90) of total population

uS . gS  is so calculated using the following equation: 

   uv SrandfloorS *25.0*1,09.0 

 
(11) 

The number of a male spider iS is calculated as the product 

of vS and uS . 

vui SSS 

   
(12) 

B. Assignation of Fitness 

The size of the spider's ability to properly complete the 
prescribed duties is the feature that evaluates a personal ability. 
Each spider in the supplied strategy has a weight gt , which 

illuminates the fineness solution that meets with the population 

D  of spider g . The following formulas are used to determine 

the fitness of each spider. 

 
DD

Dg
g

worstbest

worstDK
t






  

(13) 

where,  gDK  is the fitness value obtained from the spider 

location gD  assessment. 

The following equation can be used to calculate the value 
of the worst and best solution: 

    SmDKbest mD ,....2,1max 
  

(14) 

    SmDKworst mD ,....2,1min 
 

(15) 
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C. Modeling of the Vibrations 

The communal web acts as a conduit for communication 
among colony members, facilitating the exchange of vital 
information. Vibrations, denoted as  Egi , are influenced by 

both the weight and the distance of the spider responsible for 
their creation. These vibrations represent the outcome of 
information transmitted by a member, denoted as b and are 

meticulously modeled using the following equation, involving 
an individual's contribution. 

2
,.,
bg

e

bbg dtEgi




  
(16) 

The formula computed the distance between spiders g  and

b . 

bgbg DDe ,

   
(17) 

The SSO method took into account three distinct 
correlations (three vibrations): 

1) fgEgj Vibration: Created by individual  gDg in 

response to the transmission of information provided by 

member  gDf , f  is the closest member to g  and has a 

higher weight ft : 

2
,. mge

ffg dtEgi




   
(18) 

2) jgEgj Vibration: Created by the individual  gDg  in 

response to the transmission of information provided by 

member  jDj , where j  is the member with the highest 

weight jt : 

2
,. jge

jjg dtEgi




    
(19) 

3) vgEgj Vibration: Created by the individual  gDg  as an 

outcome of information provided by member  vDg , where v is 

the closest female member to g : 

2
,. vge

vvg dtEgi




   
(20) 

D. Population Initializing 

The first phase is an iterative procedure similar to previous 
SSO evolutionary algorithms in which the entire population 
(males and females) is randomly started, beginning by 
initializing the set D  of S  social-spider positions. Each 

gg iorspiderv  location is a q dimensional vector containing the 

parameter values that need to be improved. These parameter 

values are divided between the original parameter 
high
b

r  

specified upper limit and the preliminary parameter 

low

br lower 
limit. The equations following describe this: 

  qbandSgrrrandrv v
low
b

high
b

low
b

y
bg

,...2,1,....2,1*1,0
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(22) 

Individual indices are indicated by b and g while the 

function   1,0rand generates a random number spanning from 

0 to 1. The initial population is denoted as "zero." 

E. Cooperative Operators 

Spiders' cooperative behavior is determined by their gender 
as well as other elements such as curiosity, reproductive cycle, 
and other random phenomena. 

1) Integrating phase: The hybridization of SSO and PSO 

seeks to take advantage of each algorithm's strengths while 

adjusting for its drawbacks. SSO and PSO merger could imply 

integrating their update methods, sharing tactics, or search 

strategies to form a new hybrid algorithm. SSO's social 

sharing mechanism is included in PSO's velocity update 

equation, allowing particles to communicate and share 

information in the same way as social spiders weave webs. 

Alternatively, to achieve greater convergence to optimal 

solutions, the exploration and exploitation capacities of both 

algorithms could be balanced. 

2) Female cooperative: The following examples illustrate 

how female spiders may attract or repel other spiders: 

11 5.05.0   m
je

m
g qvA

      
(23) 
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      (24) 

In this context, m signifies the number of iterations, while 

 ,, represent random values falling within the range of  1,0 . 

The individuals mD and jD stand for the best individual in the 

entire D population and the closest member to g  with the 

highest weight. 

In the given equation, Ee ,.....2,1 represents the dimension, 

and Tj ,...2,1  represents the particle index within the swarm. 

T denotes the swarm size, while 1s and 2s  are constants 

referred to as cognitive and social scaling parameters, 
sometimes known as acceleration coefficients. 21,uu are the 

random numbers drawn from a uniform distribution in the 
range  1,0 . Equation 24 highlights that each dimension of every 

particle is updated independently of the others. The sole 
connection between these dimensions in the problem space is 
established through the objective function, which relies on the 

best positions discovered thus far, denoted as jbest  andbbest . 

3) Male cooperative: Male spiders are categorized into 

two groups, namely dominant and non-dominant, based on 

their respective weights. To benefit from the resources that are 

being squandered by the dominant spiders, the non-dominant 

individuals are drawn to the weighted mean of the male 

population. The update of the male spider positions can 

therefore be stated as follows: 
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The closest female member to the male member g  is 

represented by the individual vD , while the weighted mean of 

the male population F  is represented by the individual
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Algorithm 1: Pseudo code for the proposed arachnid 
swarm optimization 

S.NO Pseudo code for the proposed arachnid swarm optimization 

1 Initialize swarm population for SSO 

2 Initialize swarm population for PSO 

3 Initialize the best solution 

4 Initialize max iterations 

5 Initialize iteration counter 

6 while iteration counter < max iterations: 

7     Evaluate the fitness of SSO and PSO populations 

8     Update female spiders' positions and vibrations using SSO 

9     Update male spiders' positions using SSO 

10     Calculate the best solution found by SSO 

11     Update particles' velocities and positions using PSO 

12     Evaluate the fitness of the PSO population 

13     Calculate the best solution found by PSO 

14     if fitness(SSO best solution) > fitness(PSO best solution): 

15        Combined best solution = SSO best solution 

16     else: 

17         Combined best solution = PSO best solution 

18      if fitness(combined best solution) > fitness(best solution): 

19         Best solution = combined best solution 

20      Iteration counter += 1 

21 Output best solution 

V. RESULT AND DISCUSSION 

An ID model is meticulously developed using the ASO-
optimized CNN, and its effectiveness is rigorously evaluated in 
comparison to alternative methodologies. 

A. Experimental Setup 

ID is conducted using the Python programming language 
with the Windows 10 operating system. 

B. Dataset Description 

D1 [31]: This dataset is a crucial asset in the realm of ID 
for Internet of Things (IoT) environments. It offers a diverse 
range of network traffic data, encompassing both normal 
communication patterns among various IoT devices and 
simulated malicious activities, including botnet-related 
behaviors. Researchers utilize this dataset to develop and 
evaluate ID systems and security solutions specifically tailored 
to the unique challenges posed by IoT networks. It serves as a 
fundamental resource for enhancing the cyber security of IoT 
ecosystems by facilitating the identification and mitigation of 
potential threats and anomalies. 

D2 [32]: This dataset is a significant asset in the field of ID. 
It consists of a diverse range of network traffic data, including 
both benign and malicious activities. This dataset is 
instrumental in the development and evaluation of intrusion 
detection systems and cyber security solutions. Researchers 
leverage CICIDS2017 to enhance the security of networks by 
effectively identifying and mitigating potential threats and 
anomalies in a controlled, real-world environment. 

D3 [33]: It offers a comprehensive collection of network 
traffic data, featuring a variety of benign network activities and 
simulated cyber-attacks. This dataset facilitates the 
development, testing, and evaluation of intrusion detection 
systems and security mechanisms. Researchers and cyber 
security experts rely on UNSW-NB15 to enhance network 
security by efficiently identifying and countering potential 
threats and anomalies. 

C. Comparative Methods 

The ASO opt CNN model undergoes an evaluation where it 
is compared to various existing models. These existing include 
KNN [34], SVM [35], BiLSTM [36], deep CNN [37], PSO-
based deep CNN [38], and SSO-based deep CNN [39] to gauge 
its performance. 

1) Comparative analysis based on TP for d1: Fig. 3 

illustrates the TP 90 metrics, used to compare the efficacy of 

the ASO-optimized CNN with other comparative techniques. 

Fig. 3(a) depicts the ASO-optimized CNN model's ID 
accuracy. The ASO opt CNN achieves a remarkable accuracy 
of 95.95% with a TP of 90, outperforming the SSO-based 
BiLSTM by 2.84%. 

Fig. 3(b) showcases the ID sensitivity of the ASO-
optimized CNN model. With a TP of 90, the ASO opt CNN 
demonstrates a remarkable sensitivity of 95.00%, surpassing 
the SSO-based BiLSTM by 0.05%. 

In Fig. 3(c), the ID specificity of the ASO-optimized CNN 
model is displayed. Achieving a TP of 90, the ASO opt CNN 
exhibits a specificity of 96.61%, outperforming the SSO-based 
BiLSTM by a margin of 1.67%. 
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Fig. 3. Comparative analysis concerning TP a) accuracy, b) sensitivity, and 

c) specificity. 

2) Comparative analysis based on K-fold for d1: Fig. 4(a) 

depicts the ASO-optimized CNN model's ID accuracy. The 

ASO opt CNN achieves a remarkable accuracy of 94.71% 

with a k-fold 6, outperforming the SSO-based BiLSTM by 

0.47%. 

Fig. 4(b) showcases the ID sensitivity of the ASO-
optimized CNN model. With a k-fold 6, the ASO opt CNN 
demonstrates a remarkable sensitivity of 95.55%, surpassing 
the SSO-based BiLSTM by 2.93%. 

In Fig. 4(c), the ID specificity of the ASO-optimized CNN 
model is displayed. Achieving a k-fold 6, the ASO opt CNN 
exhibits a specificity of 93.12%, outperforming the SSO-based 
BiLSTM by a margin of 4.51%. 

  
(a) (b) 

 
c) 

Fig. 4. Comparative analysis concerning K-fold a) accuracy, b) sensitivity, 

and c) specificity. 

3) Comparative analysis based on TP for d2: Fig. 5(a) 

depicts the ASO-optimized CNN model's ID accuracy. The 

ASO opt CNN achieves a remarkable accuracy of 95.61% 

with a TP of 90, outperforming the SSO-based BiLSTM by 

3.65%. 

Fig. 5(b) showcases the ID sensitivity of the ASO-
optimized CNN model. With a TP of 90, the ASO opt CNN 
demonstrates a remarkable sensitivity of 95.92%, surpassing 
the SSO-based BiLSTM by 2.13%. 

In Fig. 5(c), the ID specificity of the ASO-optimized CNN 
model is displayed. Achieving a TP of 90, the ASO opt CNN 
exhibits a specificity of 96.96%, outperforming the SSO-based 
BiLSTM by a margin of 0.99%. 

  
(a) (b) 

 
c) 

Fig. 5. Comparative analysis concerning TP a) accuracy, b) sensitivity, and 

c) specificity. 

4) Comparative analysis based on K-fold for d2: Fig. 6(a) 

depicts the ASO-optimized CNN model's ID accuracy. The 

ASO opt CNN achieves a remarkable accuracy of 95.63% 

with a k-fold 6, outperforming the SSO-based BiLSTM by 

2.22%. 

Fig. 6(b) showcases the ID sensitivity of the ASO-
optimized CNN model. With a k-fold 6, the ASO opt CNN 
demonstrates a remarkable sensitivity of 95.55%, surpassing 
the SSO-based BiLSTM by 2.93%. 

In Fig. 6(c), the ID specificity of the ASO-optimized CNN 
model is displayed. Achieving a k-fold 6, the ASO opt CNN 
exhibits a specificity of 95.00%, outperforming the SSO-based 
BiLSTM by a margin of 1.32%. 

5) Comparative analysis based on TP for d3: Fig. 7(a) 

depicts the ASO-optimized CNN model's ID accuracy. The 

ASO opt CNN achieves a remarkable accuracy of 95.00% 

with a TP of 90, outperforming the SSO-based BiLSTM by 

3.51%. 
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(a) (b) 

 
c) 

Fig. 6. Comparative analysis concerning K-fold a) accuracy, b) sensitivity, 

and c) specificity. 

Fig. 7(b) showcases the ID sensitivity of the ASO-
optimized CNN model. With a TP of 90, the ASO opt CNN 
demonstrates a remarkable sensitivity of 94.00%, surpassing 
the SSO-based BiLSTM by 3.55%. 

In Fig. 7(c), the ID specificity of the ASO-optimized CNN 
model is displayed. Achieving a TP of 90, the ASO opt CNN 
exhibits a specificity of 96.00%, outperforming the SSO-based 
BiLSTM by a margin of 3.47%. 

  
(a) (b) 

 
c) 

Fig. 7. Comparative analysis concerning TP a) accuracy, b) sensitivity, and 

c) specificity. 

6) Comparative analysis based on K-fold for d3: Fig. 8(a) 

depicts the ASO-optimized CNN model's ID accuracy. The 

ASO opt CNN achieves a remarkable accuracy of 95.09% 

with a k-fold 6, outperforming the SSO-based BiLSTM by 

0.10%. 

Fig. 8(b) showcases the ID sensitivity of the ASO-
optimized CNN model. With a k-fold 6, the ASO opt CNN 
demonstrates a remarkable sensitivity of 95.00%, surpassing 
the SSO-based BiLSTM by 1.05%. 

In Fig. 8(c), the ID specificity of the ASO-optimized CNN 
model is displayed. Achieving a k-fold 6, the ASO opt CNN 
exhibits a specificity of 96.00%, outperforming the SSO-based 
BiLSTM by a margin of 1.04%. 

  
(a) (b) 

 
c) 

Fig. 8. Comparative analysis concerning TP a) accuracy, b) sensitivity, and 

c) specificity. 

D. Comparative Analysis Based on Quality Metrics 

A comparative evaluation of the proposed method with 
other existing methods based on quality metrics such as 
generation distance (GD), Maximum Pareto front error (MFE), 
Spacing, Spread, and weighted sum is conducted and is 
presented in Fig. 9 and the results obtained from the analysis in 
terms of those quality metrics are depicted in Table I. Fig. 9(a) 
shows that the proposed ASO opt Deep CNN Model attains a 
low GD of 0.06 showing that the proposed method has the best 
convergence with the Pareto optimal front. Fig. 9(b) reveals the 
proposed method attains an MFE of 0.26 which is much less 
than other compared methods showing the effectiveness of the 
proposed approach. Fig. 9(c) indicates the spacing metric 
which is 0.04 for the proposed method revealing that the 
approach can have a uniform distribution of Pareto points on 
the curve compared to other approaches. The spread of the 
proposed model is 0.82 which shows its best distribution and 
extension of solutions than other methods and is depicted in 
Fig. 9(d). Fig. 9(e) shows the weighted sum of the proposed 
approach as 0.21 which is very low and indicates that it is 
better than other compared approaches. 
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(c) (d) 

 
(e) 

Fig. 9. Comparative analysis based on Quality Metrics a) GD, b) MFE, c) 

Spacing, d) Spread, and e) Weighted Sum. 

TABLE I.  COMPARISON OF PROPOSED ASO OPT DEEP CNN METHOD 

WITH EXISTING METHODS BASED ON QUALITY METRICS 

Models GD MFE Spacing Spread 
Weighted 

Sum 

PSO-based Deep 

CNN 
0.11 0.37 0.10 0.96 0.45 

SSO-based Deep 

CNN 
0.09 0.29 0.06 0.85 0.37 

ASO opt for Deep 

CNN Model 
0.06 0.26 0.04 0.82 0.21 

E. Computational Complexity Analysis 

The analysis of the computational complexity of the ASO-
opt deep CNN with traditional approaches is presented in Table 
II. The superiority of the ASO opt Deep CNN Model is 
demonstrated by comparing it with other methods based on 
computing time across several iterations. Additionally, the 
developed method outperforms all other known methods with a 
low computational time of 20.46 for D1, 20.51 for D2, and 
20.13 for D3 at iteration 100. The results highlight the ASO opt 
Deep CNN technique's computational efficiency by 
demonstrating that it regularly completes tasks far faster than 
those of other available techniques. 

TABLE II.  COMPARISON OF COMPUTATIONAL TIME 

Models 
Computational time 

D1 D2 D3 

KNN 20.84 20.84 20.83 

SVM 20.56 20.59 20.59 

BiLSTM 20.72 20.73 20.77 

Deep CNN 20.78 20.74 20.79 

PSO-based Deep CNN 20.80 20.81 20.80 

SSO-based Deep CNN 20.80 20.83 20.81 

ASO opt Deep CNN Model 20.46 20.51 20.13 

F. Comparative Discussion 

The developed ASO opt Deep CNN Model compares with 
conventional approaches to prove its effectiveness in intrusion 
detection. Even though, the existing methods show effective 
performance in intrusion detection, they still have some 
limitations, such as KNN [34] being computationally 
expensive and extracting irrelevant features, which affects the 
model’s performance. Likewise, SVM [35] is also a time and 
memory-consuming model.  BiLSTM [36] struggles with long 
sequences due to memory constraints and also suffers from 
gradient issues during training. Deep CNN [37] suffers from 
overfitting and requires a large amount of data for effective 
training. PSO-based Deep CNN [38] struggles with high 
dimensional spaces and SSO-based deep CNN has 
generalization issues.  Therefore, the ASO opt Deep CNN 
Model is developed here for efficient intrusion detection and 
the ASO aids in improving the model’s performance in 
intrusion detection by fine-tuning the parameters of the deep 
CNN. The use of ASO in this model also reduces the risk of 
overfitting and reduces the time complexity of the model due 
to its fast convergence.  The results show that the conventional 
methods attain very low accuracy compared to the proposed 
method. This low accuracy is attained due to the generalization 
issues, overfitting issues, irrelevant feature extraction, and time 
complexity issues in existing approaches. Nevertheless, the 
proposed method solves these existing issues and attained high 
accuracy in detecting intrusion compared to other existing 
methods. The ASO opt Deep CNN Model serves as an 
effective solution for intrusion detection and the model has the 

ability to handle large-scale network data since it is tested on 
three large intrusion datasets. Eventhough, though the model 
requires more computational resources for training large 
datasets; the use of ASO reduces the need for more 
computational time, indicating its efficiency in handling large-
scale data. The model also has the ability to be implemented in 
the real world in various network environments. However, 
real-world data often has imbalanced classes and the 
complicated attackers may try to evade detection by crafting 
adversarial examples. These issues can be solved by employing 
oversampling or under-sampling techniques to address class 
imbalance issues and the development of robust techniques 
also helps to enhance the model’s resilience, which can be 
done in the future. Tables III and IV provide a comprehensive 
comparative analysis of the ASO-opt deep CNN, alongside 
several other existing approaches. The findings from this 
analysis clearly demonstrate that the ASO-opt deep CNN 
excels, surpassing the performance of the other methods 
examined in the realm of ID. 
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TABLE III.  COMPARATIVE DISCUSSION TABLE FOR TP 

Models 

TP 90 

D1 D2 D3 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

KNN 85.90 84.85 84.62 76.56 81.25 81.63 80.60 79.33 79.00 

SVM 87.18 84.85 87.18 80.07 81.25 83.67 81.40 83.60 80.00 

BiLSTM 88.46 88.89 87.18 81.27 87.50 87.88 82.20 85.20 82.00 

Deep CNN 90.00 90.91 90.00 85.75 87.50 92.00 87.25 85.60 86.00 

PSO based Deep CNN 92.50 93.94 92.31 90.16 89.80 92.00 87.75 89.00 87.50 

SSO based Deep CNN 93.22 94.95 95.00 92.12 93.88 96.00 91.67 90.67 92.67 

ASO opt Deep CNN Model 95.95 95.00 96.61 95.61 95.92 96.96 95.00 94.00 96.00 

TABLE IV.  COMPARATIVE DISCUSSION TABLE FOR K-FOLD 

Models 

K-fold 6 

D1 D2 D3 

Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity Accuracy Sensitivity Specificity 

KNN 85.43 80.85 81.41 86.70 83.33 75.00 83.89 84.44 81.45 

SVM 87.32 83.30 84.88 92.44 87.50 80.00 87.22 85.56 87.78 

BiLSTM 91.07 86.12 84.88 92.44 90.00 85.71 87.22 87.10 88.89 

Deep CNN 91.98 91.00 86.61 92.44 92.86 90.00 87.91 88.71 89.19 

PSO based Deep CNN 93.50 92.75 86.71 92.44 94.44 91.67 89.11 88.71 90.10 

SSO based Deep CNN 94.27 92.75 88.92 93.50 95.83 93.75 95.00 94.00 95.00 

ASO opt Deep CNN Model 94.71 95.55 93.12 95.63 95.83 95.00 95.09 95.00 96.00 
 

VI. CONCLUSION 

In summary, this research focuses on improving ID 
performance through an ASO-opt CNN model. It follows a 
comprehensive methodology, starting with dataset acquisition 
and model training, followed by data preprocessing and feature 
extraction. An enhanced CNN model is introduced and fine-
tuned through PSO and SSO optimization stages, enhancing its 
ability to classify network traffic accurately. The final phase 
evaluates the model's effectiveness using test data, resulting in 
a robust detection system. Experiments highlight the 
approach's efficacy and its potential to significantly boost ID 
accuracy, making it a valuable asset in the ever-evolving 
cybersecurity landscape. The ASO-opt CNN model 
demonstrated outstanding performance in TP 90, achieving 
high accuracy for d1 95.95%, d2 95.61% and for d3 95.00%, 
sensitivity of d1 95.00%, d2 95.92% and d3 94.00%, finally 
specificity of d1 96.61%, d2 96.96% and d3 96.00% for 
different datasets. In k-fold 6, the model's effectiveness 
remained strong with impressive accuracy of d1 94.71%, d2 
95.63% and d3 95.09%, sensitivity of d1 95.55%, d2 95.83% 
and d3 95.00%, and finally specificity of d1 93.12%, d2: 
95.00% and d3 96.00%. These exceptional results highlight the 
model's reliability and potential to significantly enhance 
intrusion detection accuracy. In future, additional hybrid 
optimization techniques can be employed to improve the 
model’s performance. Different ensemble classifiers may also 
be employed for effective performance in intrusion detection. 
The model can also be improved to make it suitable for 
detecting other cyber threats. 
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