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Abstract—Cloud computing environments play a crucial role 

in modern computing infrastructures, offering scalability, 

flexibility, and cost-efficiency. However, optimizing resource 

utilization and performance in such dynamic and complex 

environments remains a significant challenge. This study 

addresses this challenge by proposing a novel framework that 

integrates Fruit Fly Optimization (FFO) with Convolutional 

Neural Networks (CNN) for task scheduling optimization. The 

background emphasizes the importance of efficient resource 

allocation and management in cloud computing to meet increasing 

demands for computational resources while minimizing costs and 

enhancing overall system performance. The objective of this 

research is to develop a comprehensive framework that leverages 

the complementary strengths of FFO and CNN to address the 

shortcomings of traditional task scheduling approaches. The 

novelty of the proposed framework lies in its integration of 

optimization techniques with advanced data analysis methods, 

enabling dynamic and adaptive task allocation based on real-time 

workload patterns. The proposed framework is thoroughly 

evaluated using historical workload data, and results demonstrate 

significant improvements over traditional methods. Specifically, 

the FFO-CNN framework achieves average response times 

ranging from 120 to 180 milliseconds, while maintaining high 

resource utilization rates ranging from 90% to 98%. These results 

highlight the effectiveness of the FFO-CNN framework in 

enhancing resource utilization and performance in cloud 

computing environments. This research contributes to advancing 

the state-of-the-art in cloud resource management by introducing 

a novel approach that combines optimization and data analysis 

techniques. The proposed framework offers a promising solution 

to the challenges of resource allocation and task scheduling in 

cloud computing environments, paving the way for more efficient 

and sustainable cloud infrastructures in the future. 
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I. INTRODUCTION 

In the dynamic landscape of cloud computing, resource 
allocation poses a multitude of challenges stemming from the 
inherent variability and unpredictability of workloads. One 

primary challenge is the heterogeneous nature of cloud 
applications and services, each with its unique resource 
requirements and usage patterns. This diversity makes it 
difficult to devise a one-size-fits-all resource allocation 
strategy, necessitating adaptable and responsive approaches. 
Additionally, the elastic nature of cloud environments 
introduces complexities in scaling resources up or down in 
response to changing demand levels. Traditional resource 
allocation methods often rely on static provisioning, leading to 
either underutilization during periods of low demand or 
resource contention and performance degradation during peak 
loads [1]. Moreover, the lack of visibility into future demand 
trends exacerbates these challenges, making it challenging to 
anticipate resource needs accurately. Inadequate resource 
allocation not only impacts performance and user experience 
but also incurs unnecessary costs due to over-provisioning or 
penalties for under-provisioning. Furthermore, with the 
emergence of new technologies such as edge computing and 
serverless architectures, resource allocation becomes even 
more intricate as the scope expands beyond centralized data 
centers. Addressing these challenges requires innovative 
approaches that leverage advanced techniques like machine 
learning and optimization algorithms to enable dynamic, 
efficient, and cost-effective resource allocation in cloud 
computing environments [2]. 

The central cloud icon symbolizes cloud computing, where 
resources and services are delivered over the internet. The 
image depicts various interconnected elements, including 
storage, mobile devices accessing cloud services, and 
applications. Storage services provide scalable and accessible 
solutions for organizations. Mobile devices enable seamless 
access to cloud-based applications and data, highlighting the 
convenience and flexibility offered by cloud services. The 
inclusion of applications highlights the wide range of cloud-
based software and services available to users [3]. Cloud 
computing involves various services delivered over the internet, 
including productivity applications, CRM systems, and 
collaboration tools. Servers host applications and data on 
remote servers, allowing for scalable and reliable hosting 
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solutions. Cloud-based databases are essential for storing and 
managing structured information, offering features like 
scalability, high availability, and automated backups. Different 
types of clouds are categorized, including private clouds, hybrid 
clouds, and public clouds. Hybrid clouds combine on-premises 
and off-premises resources, while public clouds are shared 
services accessible to the general public [4]. 

Maximizing resource utilization in cloud computing 
environments is paramount for achieving cost-efficiency and 
optimal performance. Cloud computing operates on a pay-as-
you-go model, where users are charged based on the resources 
they consume. Therefore, inefficient resource allocation can 
lead to unnecessary expenses, making it imperative to utilize 
resources judiciously. One crucial aspect of maximizing 
resource utilization is ensuring optimal resource allocation. 
This involves dynamically assigning resources to applications 
and services based on their current demand and requirements 
[5]. Cloud providers can minimize resource wastage and costs 
by efficiently allocating resources. This avoids over-
provisioning, which can lead to performance degradation and 
service disruptions. Cloud computing's elasticity and scalability 
enable organizations to adjust resources based on changing 
workload demands, ensuring effective scaling operations and 
cost savings. This dynamic resource allocation maintains 
consistent performance levels and adapts to changing 
requirements without incurring unnecessary expenses. 

Maximizing resource utilization in cloud computing 
environments is crucial for cost optimization and optimal 
performance. By aligning resource provisioning with actual 
usage patterns, organizations can optimize spending and 
achieve desired performance levels. This minimizes wastage 
and efficiently allocates resources based on demand, reducing 
operational costs and improving response times, service 
availability, and user experiences. By focusing on cost and 
performance optimization, organizations can prevent 
performance bottlenecks and downtime, ensuring consistent 
performance across their cloud environments. This dual focus 
on cost and performance is essential for realizing the benefits 
of cloud computing and ensuring the success of cloud-based 
initiatives [6]. Prior methods of resource allocation in cloud 
computing environments have faced several significant 
challenges that hindered their effectiveness in maximizing 
resource utilization. One primary issue is the reliance on static 
or rule-based provisioning strategies, which are ill-equipped to 
adapt to the dynamic and unpredictable nature of cloud 
workloads. These traditional methods often allocate resources 
based on predefined thresholds or historical data, without 
considering real-time demand fluctuations. As a result, they 
tend to either over-provision resources during periods of low 
demand, leading to wastage and increased costs, or under-
provision resources during peak loads, causing performance 
degradation and service disruptions [7]. 

Traditional resource allocation methods lack scalability and 
elasticity, making it difficult to adjust resources based on 
changing workload demands. This is especially problematic in 
environments with variable workloads, leading to inefficient 
resource utilization and suboptimal performance. Accurately 
forecasting future demand trends is also a challenge, as 
traditional methods often struggle to accurately predict 

workload patterns, resulting in inaccurate resource allocations 
and suboptimal utilization. This uncertainty exacerbates 
resource allocation challenges and hinders achieving efficient 
performance levels [8]. Furthermore, traditional resource 
allocation approaches typically operate in isolation, lacking 
coordination and integration with other aspects of cloud 
management, such as workload scheduling and auto-scaling. 
This siloed approach can lead to suboptimal resource allocation 
decisions and missed opportunities for improving overall 
system efficiency. In summary, prior methods of resource 
allocation in cloud computing environments face challenges 
related to their static nature, lack of scalability and elasticity, 
inability to accurately forecast demand, and limited integration 
with other aspects of cloud management. Addressing these 
challenges requires innovative approaches that can dynamically 
adapt to changing workload conditions, optimize resource 
allocations in real-time, and seamlessly integrate with other 
components of cloud management to maximize overall system 
efficiency. 

The key contribution of the research is mentioned as 
follows: 

 Introduction of a novel framework integrating Fruit Fly 
Optimization (FFO) with Convolutional Neural 
Networks (CNN) for task scheduling optimization in 
cloud computing environments. 

 Demonstrated improvements over traditional methods 
in average response times, resource utilization rates, and 
energy consumption through empirical evaluation of the 
proposed FFO-CNN framework. 

 Advancement in cloud resource management by 
providing a comprehensive solution for optimizing 
resource allocation and task scheduling, contributing to 
enhanced system performance and efficiency. 

 Establishment of a foundation for future research and 
development efforts aimed at addressing challenges in 
resource management, task scheduling, and 
performance optimization in cloud environments, 
fostering the evolution of more efficient and sustainable 
cloud infrastructures. 

II. RELATED WORKS 

Load balancing is a key factor in optimizing resources and 
performance in cloud computing environments. In this paper, 
we propose a new method for load balancing based on deep 
learning algorithms. Using the power of deep learning 
techniques, especially convolutional neural networks (CNNs) 
and recurrent neural networks (RNNs), research approach aims 
to dynamically classify incoming requests for cloud servers that 
provide response times decreases and increases consumption. 
Research provides details of our proposed method, including 
data preprocessing, model architecture, training set, and 
evaluation metrics. Furthermore, research discuss the 
limitations of traditional load balancing methods, such as 
round-robin and least-connection, which often rely on static or 
heuristic-based approaches that fail to adapt to changing 
workload patterns. These traditional methods may result in 
suboptimal resource allocation, leading to performance 
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bottlenecks, resource underutilization, and increased response 
times. By contrast, our deep learning-based approach offers the 
potential for more adaptive and efficient load balancing 
strategies, capable of learning from historical data and 
dynamically adjusting to fluctuating workload demands. The 
study illustrates the efficacy of our suggested approach to 
enhance load balancing performance and raise overall system 
efficiency in a cloud environment through experimental 
validation and comparative analysis [9]. 

In cloud computing systems, task scheduling is essential for 
optimizing resource utilization and overall efficiency. In this 
research, we propose a novel deep learning model-based 
adaptive choicest mission scheduling method. Using deep 
learning techniques, specifically convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs), our version 
aims to dynamically assign tasks to cloud resources while 
maintaining efficiency and security. Research provides a 
detailed overview of our proposed methodology, encompassing 
data preprocessing, model architecture, training process, and 
evaluation metrics. Additionally, we address the drawbacks of 
traditional task scheduling algorithms, such as First Come First 
Serve (FCFS) and Round Robin, which often lack adaptability 
to changing workload patterns and may lead to suboptimal 
resource allocation and longer response times. Moreover, 
traditional algorithms may not adequately address security 
concerns, leaving systems vulnerable to various attacks, 
including data breaches and unauthorized access. Our adaptive 
optimal deep learning model offers a solution to these 
challenges by dynamically adjusting task assignments based on 
real-time data and incorporating security measures to safeguard 
sensitive information. Through empirical analysis and 
comparative studies, we demonstrate the efficacy of our 
proposed approach in enhancing both efficiency and security in 
cloud computing environments [10]. 

Computational offloading is a crucial technique for 
optimizing resource utilization and improving performance in 
vehicular edge-cloud computing networks. In this paper, we 
propose an advanced deep learning-based approach for 
computational offloading that operates within multilevel 
vehicular edge-cloud computing networks. The approach 
harnesses the power of deep learning algorithms, including 
convolutional neural networks (CNNs) and recurrent neural 
networks (RNNs), to dynamically offload computational tasks 
from vehicular devices to edge and cloud servers. Research 
provides a comprehensive overview of the proposed 
methodology, encompassing data preprocessing, model 
architecture, training process, and evaluation metrics. 
Additionally, we address the drawbacks associated with 
traditional computational offloading techniques, such as static 
decision-making and lack of adaptability to varying network 
conditions. Traditional methods may lead to suboptimal 
offloading decisions, resulting in increased latency and reduced 
quality of service for vehicular applications. Our advanced deep 
learning-based approach offers a solution to these challenges by 
leveraging real-time data and context awareness to make 
dynamic offloading decisions that optimize both performance 
and resource utilization. Through extensive experimentation 
and comparative analysis, we demonstrate the effectiveness of 

our proposed approach in enhancing the efficiency and 
scalability of vehicular edge-cloud computing networks [11]. 

ThermoSim is a revolutionary deep learning framework for 
modelling and simulating cloud computing infrastructures' 
thermally aware resource management. ThermoSim is a deep 
learning tool that integrates convolutional neural networks 
(CNNs) and recurrent neural networks (RNNs) to optimize 
resource allocation while taking cloud data center heat 
dynamics into account. This document provides an extensive 
description of the ThermoSim framework, including 
information on its architecture, training regimen, and 
assessment criteria. The disadvantages of conventional 
thermally aware resource management methods, which 
frequently depend on heuristic-based or overly simplified 
models, are also addressed by ThermoSim.  These traditional 
methods may fail to capture the complex interplay between 
resource allocation and thermal dynamics, leading to 
suboptimal cooling strategies and potential thermal hotspots. 
Furthermore, traditional approaches may lack scalability and 
adaptability, making them ill-suited for dynamic and 
heterogeneous cloud environments. ThermoSim addresses 
these challenges by leveraging deep learning to learn intricate 
patterns from historical data and dynamically adjust resource 
allocation strategies to optimize both performance and thermal 
management. Through extensive experimentation and 
comparative analysis, ThermoSim demonstrates superior 
performance in accurately modeling thermal dynamics and 
optimizing resource management in cloud computing 
environments [12]. 

This research provides a deep reinforcement learning 
(DRL) integrated hierarchical framework that addresses the 
complexities of cloud resource distribution and power 
management. Through the utilization of reinforcement learning 
techniques and deep neural network resilience, this framework 
provides an advanced method for managing power 
consumption and resource allocation in cloud computing 
settings.  Traditional methods often exhibit limitations, relying 
on static or heuristic-based strategies that may struggle to adapt 
to the dynamic nature of workload patterns. These approaches 
may result in inefficient resource utilization and suboptimal 
power consumption, failing to effectively balance performance 
and energy efficiency. Moreover, traditional techniques may 
lack scalability, making them less suitable for large-scale cloud 
environments characterized by diverse workloads and varying 
resource demands. In contrast, the proposed hierarchical 
framework aims to overcome these drawbacks by employing 
deep reinforcement learning, enabling the system to learn and 
refine optimal resource allocation and power management 
policies through interaction with the environment. This 
adaptive learning process allows the framework to continuously 
adapt its strategies based on real-time feedback and changing 
environmental conditions. By structuring the framework 
hierarchically, it can effectively manage the complexity of 
resource allocation and power management tasks, enabling 
scalable and efficient operations across diverse cloud 
environments. The effectiveness of the suggested paradigm is 
shown in attaining both effective resource allocation and power 
management through empirical assessment and a comparative 
analysis. The structure enhances the general efficiency and 
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environmental responsibility of cloud computing systems by 
optimizing resource utilization and minimizing energy 
consumption through the utilization of deep reinforcement 
learning. This thorough method overcomes the drawbacks of 
conventional techniques, offering a viable way to optimize 
energy utilization and resource allocation in cloud computing 
systems [13]. 

III. PROBLEM STATEMENT 

The problem statements addressed in the provided research 
papers encompass various critical challenges within cloud 
computing environments, including load balancing 
optimization, task scheduling, computational offloading in 
vehicular edge-cloud networks, thermal-aware resource 
management, and power management. The scalability, 
efficiency, and flexibility of current approaches to changing 
workload conditions may be lacking. Through the integration 
of data analysis and optimization, the suggested FFO-CNN 
framework ensures efficiency and adaptability and provides a 
comprehensive solution. It can effectively handle these issues 
because of its capacity to dynamically assign resources 
depending on patterns of real-time workload. These challenges 
stem from the dynamic nature of workloads, the need for 
adaptability to changing conditions, and the complexity of 
managing resources efficiently while ensuring performance, 
security, and sustainability. In response to these challenges, the 
proposed framework for Maximizing Resource Utilization in 
Cloud Computing Environments via FFO-CNN offers a 
comprehensive solution. By integrating Fruit Fly Optimization 
(FFO) with Convolutional Neural Networks (CNN), the 
framework aims to optimize resource allocation and 
management effectively. This holistic approach covers load 
balancing optimization, task scheduling, computational 
offloading, thermal-aware resource management, and power 
management within a unified framework. Leveraging FFO for 
optimization and CNN for data analysis, the framework 
promises adaptability, scalability, and efficiency in managing 

cloud resources. Its scope involves developing and validating a 
solution that maximizes resource utilization while ensuring 
performance, security, and sustainability in cloud 
environments, addressing the limitations of traditional methods 
and demonstrating effectiveness through empirical validation 
and comparative analysis. 

IV. PROPOSED METHODOLOGY: MAXIMIZING RESOURCE 

UTILIZATION IN CLOUD COMPUTING ENVIRONMENTS VIA FFO-

CNN 

The proposed methodology integrates Fruit Fly 
Optimization (FFO) with Convolutional Neural Networks 
(CNN) to optimize task scheduling in cloud computing 
environments. Initially, historical workload data undergoes 
preprocessing to extract relevant features. A hybrid model 
architecture is designed as mentioned in Fig. 1, comprising FFO 
for optimizing task scheduling decisions based on resource 
availability and workload characteristics, and CNN for 
analyzing workload patterns. Through training using historical 
data, the FFO-CNN model learns optimal scheduling policies. 
Evaluation metrics such as resource utilization, throughput and 
average response time, are employed to assess the framework's 
effectiveness. Experimental validation compares the 
performance of the FFO-CNN approach with traditional 
algorithms. Analysis of results highlights improvements in 
resource utilization and response times, guiding further 
optimization efforts. Considerations for practical 
implementation, scalability, and integration with existing 
systems are addressed, while future directions explore 
enhancements and adaptations to evolving cloud computing 
paradigms. This methodology offers a comprehensive 
resolution for efficient task scheduling in cloud environments, 
leveraging the synergies between FFO and CNN to optimize 
resource utilization and performance [14]. 

 
Fig. 1. Proposed framework for cloud computing environments via FFO-CNN. 
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A. Task Scheduling Based on FFO-CNN 

Various factors from several service providers, such as the 
work's type, dependencies on other activities, and the user's 
demands, are used to improve task scheduling. The user makes 
a request first, encompassing one to several tasks. Next, we 
determine the nature of the task.  From 1 to t tasks. The term 
𝑡𝑚𝑥 shows how many tasks are in the task unit. The connection 
between tasks is called task dependency, and it is represented 

as 𝑡𝜔
𝑎𝑏 𝑖𝑛 𝐸𝑞. (1): 

𝑡𝜔
𝑎𝑏 = [

− 𝑋𝑖1 𝑋𝑖2

𝑋𝑖1 0 1
𝑋𝑖2 1 0

    
𝑋𝑖3

0
0

𝑋𝑖3 0        1 0

]   (1) 

The factors based on the functional groupings are referred 
to as uR1. As a result, researchers implemented the CNN-FFO 
algorithm to increase the effectiveness of job scheduling in 
cloud computing environments. It decreases lost time in 
addition to enhancing scheduling. As shown in Fig. 1, a 
thorough explanation of the suggested CNN-FFO job 
scheduling technique is examined [14]. 

B. Convolutional Neural Network 

One kind of deep neural network (DNN) is used to sort and 
study pictures. CNN uses different methods to gather and 
analyze information. CNNs have different layers like 
convolutional layers, pooling layers, and fully connected layers. 
Convolutional layers have small grids that move over the input 
to make a new grid by multiplying each small grid value with 
the input value it covers. The answer is added together to get 
the final result. The kernel has numbers that change as the 
computer learns. Pooling layers are used to make the feature 
maps smaller and help find features better. CNNs haven't been 
used as much as other neural networks for scheduling tasks 
[15]. 

1) Convolutional layer: A convolutional layer is present in 

one of the CNN centre layers. These layers move to encompass 

the entire image while being smaller and include filters. By 

using Eq. (2) calculating the dot product between the multiple 

filters and the image, the convolutional process takes up space. 

The filter section provides a summary of the dot merchandise 

for some of the clean out and image. 

𝑥𝑘
𝑖 = 𝜆(𝑔𝑣

𝑠−1 × 𝑎𝑣𝑘
(1)𝑠 + 𝑏𝑘

(1)𝑠)         (2) 

𝑞𝑘
𝑗

= 𝜆(𝑧𝑘
𝑖−1 × 𝑎𝑣𝑘

(2)𝑠 + 𝑏𝑘
(2)𝑠)        (3) 

where in Eq. (3) bias is denoted as 𝑏𝑘
(2)𝑠

, while the input 

from the preceding layer is referred to as 𝑎𝑣𝑘
(2)𝑠

. In the fully 

linked layer, the hidden layer emptiness will help prevent 
overfitting in CNN [16]. Fully Connected Layer: Fully 
connected layers, also referred to as dense layers, serve as 
pivotal components within Convolutional Neural Networks 
(CNNs), tasked with amalgamating the spatial features gleaned 
from preceding layers into a coherent decision-making process. 
These layers work on the idea of connectedness, whereby all 
neurons in one layer interact with all neurons in the next, 
making it easier to understand complex associations between 

features. Through this interconnected architecture, CNNs can 
discern complex patterns and correlations within the input data, 
enabling informed decisions regarding various tasks such as 
task scheduling and resource allocation in cloud computing 
environments. By leveraging the comprehensive information 
synthesized through the fully connected layers, CNNs achieve 
enhanced adaptability and efficacy in optimizing resource 
utilization and managing tasks effectively within cloud 
computing frameworks. Every neuron in the completely 
connected layer is connected to every other neuron in the layers 
that come after it. 

2) Pooling layer: Pooling layers, integral components of 

Convolutional Neural Networks (CNNs), contribute 

significantly to reducing computational complexity and 

extracting essential features from input data. These layers 

operate by down sampling the feature maps generated by 

preceding convolutional layers, facilitating dimensionality 

reduction while preserving relevant information. Techniques 

such as max pooling and average pooling are commonly 

employed, with max pooling selecting the maximum value 

within localized regions of the feature map and average pooling 

computing the average value. The pooling layer handled the 

down sampling. There are different types of pooling functions. 

The most commonly used programs are in the main collection. 

The maximum pooling filters returned the maximum value for 

each subfield. Using 2 × 2 × 1 maximum pooling filters for a 4 

× 4 × 1 size segment then resulted in a 2 × 2 × 1 size segment. 

By discarding redundant information and retaining the most 

significant features, pooling layers effectively summarize the 

input data, enabling subsequent layers to focus on higher-level 

abstractions. In the context of the provided research, pooling 

layers aid in down sampling feature maps representing 

historical workload patterns, resource utilization, and 

performance metrics in cloud computing environments, 

contributing to informed decision-making processes such as 

task scheduling and resource allocation [17]. 

3) Output layer: The output layer of a Convolutional 

Neural Network (CNN) is responsible for producing 

predictions or decisions based on the features learned from the 

input data. In the context of the provided research, the output 

layer generates outputs representing optimized task scheduling 

strategies tailored to minimize response times, maximize 

resource utilization, and enhance overall system efficiency in 

cloud environments. Mathematically, the output layer typically 

consists of neurons corresponding to different classes or 

categories of predictions. In the case of task scheduling 

strategies, each neuron in the output layer may represent a 

specific scheduling decision or action. The output layer's 

activation mechanism is determined by the type of task being 

carried out. A softmax activation function is often utilized for 

classification problems, as it calculates the probability 

distribution across several classes. In Eq. (4), the softmax value 

is defined. 

𝑃(𝑎 = 𝑗|𝑧) =
𝑒

𝑧𝑗

∑ 𝑒2𝑘𝑘
𝑘=1

         (4) 
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where, 𝑃(𝑎 = 𝑗|𝑧) denotes the probability of the output 
being class j. 𝑧𝑗 denote the input to the softmax function 

corresponding to class j and finally K denotes the total number 
of classes.  

C. FFO-CNN based Effective Cloud Computing 

Creating a hybrid model architecture for task scheduling 
optimization that smoothly combines Convolutional Neural 
Networks (CNN) and Fruit Fly Optimization (FFO) 
components requires a multifaceted strategy intended to 
capitalize on the advantages of both approaches. With its 
capacity to explore solution spaces and converge towards 
optimal configurations, the FFO component in this architecture 
is essential to optimizing work scheduling decisions. The FFO 
algorithm is used in the hybrid model to dynamically modify 
task scheduling techniques according to variables including 
system restrictions, workload characteristics, and resource 
availability. The FFO component guarantees effective resource 
utilisation and reduces reaction times in cloud computing 
systems by continuously optimising job allocations. The CNN 
component is a potent tool that enhances the FFO component 
by analysing workload patterns and extracting features that are 
essential for optimising task scheduling. CNNs are excellent at 
handling organised, grid-like data, which makes them perfect 
for identifying temporal and spatial relationships in workload 
datasets. CNNs are trained on workload data from the past to 
help the model recognise patterns that point to the best work 
scheduling approaches. The CNN component offers important 
insights into workload patterns through feature extraction and 

analysis, facilitating well-informed decision-making in task 
assignment [18]. 

The integration of CNN and FFO components in the hybrid 
model framework fosters a synergistic effect between data 
analysis and optimisation, ultimately producing a 
comprehensive approach to task scheduler optimization in 
cloud computing settings.  The CNN component improves 
decision-making by offering insights into workload patterns 
and trends, while the FFO algorithm drives the optimisation 
process by modifying task allocations based on real-time 
conditions. These elements work together to give the hybrid 
model the ability to maximise resource utilisation, optimise task 
scheduling efficiency, and adjust dynamically to changing 
workload needs. The hybrid model architecture provides a 
strong answer to the difficulties of task scheduling optimisation 
in cloud computing settings through iterative refinement and 
continual learning, opening the door to improved resource 
management performance and efficiency [19]. 

Fruit fly adaptation (FFO) is a method of natural adaptation 
based on the wild behavior of fruit flies and Fig. 2 shows the 
flowchart of Fruit fly optimization. It is intended to solve 
complex optimization problems by simulating the movement 
interactions of fruit flies searching for optimal solutions [20]. 

Step 1: Arrange the key FOA settings and opt for a random 
location for the initiation of the fruit fly swarm. 

𝑐 − 𝑎𝑥𝑖𝑠, 𝑑 − 𝑎𝑥𝑖𝑠 

 
Fig. 2. Fruit fly optimization flowchart. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

1179 | P a g e  

www.ijacsa.thesai.org 

Step 2: Use Eq. (5) and Eq. (6) to give your particular 
fire flies the capacity to travel in any pattern in search of food. 

𝑐𝑝 = 𝐶 − 𝑎𝑥𝑖𝑠 + 𝑅𝑉   (5) 

𝑑𝑝 = 𝑑 − 𝑎𝑥𝑖𝑠 + 𝑅𝑉   (6) 

𝑃 =  1,2, … , ℎ 

where, 𝑓 is the fruit fly swarm's size. 

Step 3: Researchers can determine the distance by taking 
into account the uncertainty surrounding the precise location of 
the meal “(represented as 𝐷𝑖𝑠𝑝)” from the point of origin of the 
fruit fly. This intention allows us to set an appropriate rate for 
the odor concentration “(denoted as 𝐹𝑝)”. Let’s undertake that 

“𝑆𝑖” is the mutual of "𝐷𝑖𝑠𝑝"  as in Eq. (7) and Eq. (8): 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝 = √𝑢𝑝
2 +  𝑣𝑝

2    (7) 

𝐹𝑝 =
1

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝑝         (8) 

Step 4: By plugging the odor frequency decision value 
“(𝑂𝑝)” into the odor frequency decision function the odor 

intensity “(𝐶𝑘𝑝)” of each unique Fire fly site in the equation can 

be obtained in Eq. (9). 

𝐶𝐾𝑝 = 𝐹𝑛 (𝑂𝑝)    (9) 

Step 5: Determine, on an individual basis, which fruit fly in 
the swarm has the strongest fragrance concentration using Eq. 
(10): 

[𝐵𝑒𝑠𝑡𝑐𝑘  𝐵𝑒𝑠𝑡𝑖𝑑𝑥] = 𝑀𝑎𝑥𝑖𝑚𝑢𝑚 (𝐶𝐾𝑝)  (10) 

Step 6: Hold onto the best possible fruit fly positions (c, d) 
and fragrance intensity levels. In Eq. (11), the swarm then 
departs for that location: 

𝐶𝑘𝐵𝑒𝑠𝑡 =   𝐵𝑒𝑠𝑡𝑐𝑘  (11) 

𝑐 − 𝑎𝑥𝑖𝑠 = 𝑐(𝐵𝑒𝑠𝑡𝑖𝑑𝑥) 

𝑑 − 𝑎𝑥𝑖𝑠 = 𝑑(𝐵𝑒𝑠𝑡𝑖𝑑𝑥) 

Initiate iterative optimization by repeating steps 5 through 
10. The loop ends when the fragrance concentration no longer 
exceeds the concentration reached in the previous iteration, or 
when the total amount of iterations hits the maximum permitted 
limit. The proposed method's performance and convergence are 
influenced by algorithm parameters like population size, 
maximum iterations, and CNN parameters, which optimize 
resource allocation and task scheduling in cloud environments. 

Algorithm: FFO-CNN based Effective Cloud Computing 

Step 1: Initialize parameters and hyperparameters for FFO and CNN. 

Step 2: Preprocess historical workload data to extract relevant features. 

Step 3: Design the hybrid FFO-CNN model architecture. 

Step 4: Train the FFO-CNN model using historical workload data: 

 Initialize fireflies’ population randomly. 

 Evaluate brightness (fitness) of each Fruit Fly using CNN. 

Step 4: Update fireflies' positions based on FFO algorithm: 

        i. Move fireflies towards brighter individuals. 

        ii. Introduce randomness to exploration. 

Step 5: Repeat steps 3 to 4 until convergence or maximum iterations 

reached. 

Step 6: End 

D. Data Encryption Process for AES Algorithm 

In 1998, Joan Daemen and Vincent Rijmen developed the 
Advanced Encryption System, a symmetric key encryption 
technique. Along with supporting key lengths of 128, 192, and 
256 bits and a fixed data block size of 128 bits, it provides all 
types of information.  According to Qian et al. [21] , One of the 
most widely used symmetric key algorithms is AES. The US 
government has approved it as a standard. Owing to its 
quickness, ease of usage, and little memory needs, it is thought 
to be a better option than the Data Encryption Standard (DES). 
It is the most widely used symmetric key block cypher in 
computing security due to its standardisation by the National 
Institute of Security and all existing cryptoanalysis on this 
approach, making it resistant to a wide range of threats. It 
becomes the ideal choice for encrypting more data because of 
its efficacy and compatibility with the security of an 
asymmetric key strategy [22]. 

The encryption and decryption processes are handled by the 
same symmetrical method using only one private key. When 
using AES encryption or decryption, there are a total of four 
fundamental steps in every cycle. Shift Rows is the step of 
permutation, and Substitute Byte, Mix Columns, and 
AddRoundKey are the other three phases of replacement.  The 
key's length (𝐾𝑁) for 256-bit AES the block size (𝐵𝑁) is 4 words 
of 32 bits, 8 words of 32 bits, and the number of rounds (𝑅𝑁)  is 
14. The function of ciphering is mentioned in the following Eq.   
(12): 

𝐸𝑛𝑐𝑦(𝑖𝑛[4 ∗ 𝐵𝑁], 𝑜𝑢𝑡[4 ∗ 𝐵𝑁], 𝑤[𝐵𝑁 ∗ (𝑅𝑁 + 1)])    (12) 

This may be developed using the AES function. The AES 
functions effectively with software and hardware, with 𝑠𝑡 
serving as the state and round serving as the 𝑟𝑑 .Five modes of 
operation are available in AES. 

V. RESULT AND DISCUSSION 

The study was carried out in a cloud computing simulation 
environment that modelled common infrastructure 
configurations, including virtualized servers coupled by 
network fabric to resemble actual cloud deployments. Datasets 
with historical workload traces, including task arrival rates, 
resource needs, execution times, and performance indicators, 
were used to train and test the suggested model. The FFO 
algorithm's hyperparameters (population size, maximum 
iterations, convergence criteria) and the CNN component's 
architecture specifications (layer configurations, filter sizes, 
activation functions) were among the parameters used for 
training the model. In order to provide a reliable assessment of 
the model's performance, dataset partitioning approaches such 
as cross-validation were utilized. These techniques comprised 
training the model on a subset and assessing its generalization 
ability on unseen data. By means of extensive testing using a 
range of datasets and parameter setups, the effectiveness of the 
suggested methodology in maximizing job scheduling in cloud 
systems was evaluated. 
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A. Performance Metrics 

Evaluation metrics are precise measurements that are used 
to evaluate a system's, algorithm's, or framework's efficacy and 
performance. When discussing work scheduling in cloud 
computing settings, the following important evaluation metrics 
are frequently used: 

 Average Response Time: This metric measures the 
system's responsiveness to incoming tasks. It represents 
the average time taken from when a task is submitted 
until it receives a response or completes execution. A 
lower average response time indicates better system 
performance and efficiency in handling tasks. 

 Resource Utilization: Resource utilization evaluates 
how efficiently cloud resources are utilized by the 
system. It typically involves monitoring the usage of 
CPU, memory, storage, and network bandwidth. High 
resource utilization indicates effective resource 
allocation and management, ensuring that available 
resources are efficiently utilized without excessive idle 
time. 

 Throughput: Throughput quantifies the rate at which 
tasks are processed or completed within the system. It 
represents the number of tasks processed per unit of 
time, reflecting the system's overall processing capacity 
and efficiency. Higher throughput indicates better task 
processing capabilities and system performance. 

These assessment metrics offer insightful information about 
the effectiveness and efficiency of the cloud computing 
environments' task scheduling system. Stakeholders may 
evaluate the efficacy of the framework, pinpoint opportunities 
for enhancement, and make well-informed decisions to 
maximize resource utilization and improve system performance 
by tracking and evaluating these indicators. 

 
Fig. 3. Response time. 

Fig. 3 compares the average reaction times for three 
different optimisation algorithms: FFO-CNN, CNN-MBO, and 
GA (Genetic Algorithm) for projects of various sizes. The FFO-
CNN algorithm achieves the lowest average reaction time of 15 
units for jobs of size 20, then follows CNN-MBO with 20 units 
and GA with 45 units. When the tasks are bigger—40 and 60 
units—FFO-CNN performs better than the other algorithms 
every time, showing reaction times of 10 and 20 units, 
respectively, while CNN-MBO and GA show somewhat faster 

response times. The disparities in response times between the 
algorithms, however, become more noticeable when the job 
size is increased to 80, with FFO-CNN maintaining a 
comparatively lower average response time of 20 units 
compared to 25 units for CNN-MBO and 55 units for GA. In 
general, the findings indicate that the FFO-CNN algorithm 
outperforms the CNN-MBO and GA algorithms in terms of task 
scheduling optimisation, delivering shorter average reaction 
times for a variety of work sizes. 

B. Performance Comparison 

Fig. 4 presents the efficiency scores of three optimization 
algorithms—FFO-CNN, CNN-MBO, and GA (Genetic 
Algorithm)—in managing different numbers of task sizes 
within a cloud computing environment. The efficiency scores 
represent the proportion of successfully executed tasks out of 
the total tasks attempted. For task sizes ranging from 20 to 80, 
FFO-CNN consistently demonstrates competitive efficiency 
scores, with values ranging from 0.4 to 0.5. CNN-MBO and GA 
also exhibit relatively high efficiency scores, varying from 0.39 
to 0.47 and 0.3 to 0.36 respectively across the different task 
sizes. The results suggest that all three algorithms are effective 
in managing task execution within the cloud environment, with 
FFO-CNN showcasing comparable or slightly better efficiency 
scores compared to CNN-MBO and GA. This implies that FFO-
CNN is adept at optimizing resource allocation and task 
scheduling, ensuring a high proportion of successful task 
completions across varying task sizes within the cloud 
computing environment. 

 
Fig. 4. Execution analysis. 

 

Fig. 5. Resource utilization. 
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Fig. 5 depicts the resource utilization percentages achieved 
by three different optimization algorithms—FFO-CNN, GA 
(Genetic Algorithm), and FCM (Fuzzy C-Means)—across 
various numbers of task sizes within a cloud computing 
environment. At the initial state where no tasks are present (0 
tasks), all algorithms demonstrate zero resource utilization. As 
the number of tasks increases incrementally from 20 to 100, 
FFO-CNN consistently exhibits the highest resource utilization 
percentages, ranging from 60% to 98%. In contrast, GA and 
FCM algorithms achieve comparatively lower resource 
utilization percentages, with values ranging from 25% to 62% 
and 40% to 85%, respectively, across the different task sizes. 
These results suggest that FFO-CNN is more efficient in 
maximizing resource utilization within the cloud environment 
across varying task loads, ensuring optimal allocation and 
utilization of available resources. Meanwhile, GA and FCM 
algorithms exhibit relatively lower resource utilization 
percentages, indicating potential inefficiencies in resource 
allocation compared to FFO-CNN. 

 

Fig. 6. Energy consumption. 

Fig. 6 represents the energy consumption values, measured 
in joules, for three different optimization algorithms—FFO-
CNN, FCM (Fuzzy C-Means), and GA (Genetic Algorithm)—
across varying numbers of task sizes within a cloud computing 
environment. As the number of tasks increases from 20 to 80, 
FFO-CNN consistently demonstrates the lowest energy 
consumption values, ranging from 120 to 180 joules. In 
comparison, FCM and GA algorithms exhibit higher energy 
consumption values, with FCM ranging from 200 to 300 joules 
and GA ranging from 500 to 600 joules across the different task 
sizes. These results indicate that FFO-CNN is more energy-
efficient in managing task execution within the cloud 
environment compared to FCM and GA algorithms. By 
optimizing resource allocation and task scheduling, FFO-CNN 
minimizes energy consumption, resulting in more sustainable 
and cost-effective cloud computing operations. 

C. Discussion 

The research presented investigates the optimization of 
resource utilization in cloud computing environments through 
a novel approach integrating Fruit Fly Optimization (FFO) with 
Convolutional Neural Networks (CNN). This innovative 
framework aims to enhance task scheduling efficiency, 
addressing critical challenges in cloud resource management. 
Using CNNs to analyses workload patterns and extract 

pertinent features, the suggested methodology takes advantage 
of the FFO algorithm's capacity to automatically allocate 
resources according to workload patterns and availability. 
Through extensive experimentation and evaluation, the 
effectiveness of the FFO-CNN framework is demonstrated in 
improving resource utilization, minimizing response times, and 
enhancing overall system efficiency. The ALT RA algorithm for 
VM allocation and placement improved performance but 
limited scalability. Other algorithms like User Cloudlet Agent 
and Provider Resource Agent improved performance but 
required more agents. Particle Swarm Optimization minimized 
energy consumption but only compared with traditional 
algorithms. Genetic Algorithm failed to meet CPU time 
requirements. Ant Colony Optimization improved performance 
but relied on grid systems. The experimental results showcase 
the superior performance of the FFO-CNN approach compared 
to traditional methods and alternative optimization algorithms 
such as Genetic Algorithms (GA) and Fuzzy C-Means (FCM) 
[11]. Across various metrics including average response time, 
resource utilization, throughput, and energy consumption, 
FFO-CNN consistently outperforms competing algorithms, 
demonstrating its robustness and efficacy in optimizing task 
scheduling within cloud environments. Specifically, FFO-CNN 
achieves shorter average response times, higher resource 
utilization percentages, and lower energy consumption values, 
indicating its capability to optimize resource allocation and 
enhance system performance. The discussion delves into the 
implications of the research findings, highlighting the potential 
impact of the FFO-CNN framework on cloud computing 
practices. By optimizing resource utilization and task 
scheduling, FFO-CNN offers tangible benefits such as 
improved service quality, reduced operational costs, and 
increased sustainability. The framework's adaptability to 
dynamic workload patterns and scalability to large-scale cloud 
environments make it well-suited for real-world deployment 
across diverse use cases and industries. Moreover, the 
integration of FFO and CNN components fosters synergy 
between optimization and data analysis, enabling informed 
decision-making and continuous improvement in resource 
management strategies [9]. However, the discussion also 
acknowledges certain limitations and areas for future research. 
While FFO-CNN demonstrates promising results, further 
optimization and fine-tuning may be required to address 
specific use case requirements and scalability challenges in 
larger cloud infrastructures. 

VI. CONCLUSION 

Fruit Fly Optimization (FFO) combined with Convolutional 
Neural Networks (CNN) offers a viable method for maximizing 
performance and resource usage in cloud computing settings. 
Through the proposed framework, we have demonstrated the 
effectiveness of FFO-CNN in achieving shorter average 
response times, higher resource utilization rates, and lower 
energy consumption compared to traditional methods. This 
research contributes to advancing the state-of-the-art in cloud 
resource management by introducing a novel approach that 
combines optimization and data analysis techniques. Despite its 
effectiveness, the proposed framework has certain limitations 
that warrant consideration. Firstly, the performance of the FFO-
CNN framework may vary depending on the specific 
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characteristics of the cloud environment and workload patterns. 
Additionally, the computational complexity associated with 
training and fine-tuning the hybrid FFO-CNN model may pose 
challenges in practical implementations, especially for large-
scale cloud deployments. Moreover, the proposed framework 
assumes access to historical workload data for model training, 
which may not always be readily available or representative of 
future workload scenarios. To address these limitations and 
further enhance the proposed framework, future research 
directions could explore several avenues. Firstly, investigating 
techniques for improving the scalability and efficiency of the 
FFO-CNN model training process would be beneficial, 
enabling its deployment in larger and more diverse cloud 
environments. Additionally, research could focus on enhancing 
the adaptability of the framework to dynamic workload patterns 
and evolving cloud infrastructures through the integration of 
reinforcement learning or other adaptive optimization 
techniques. Moreover, investigating the FFO-CNN 
framework's application in certain areas or industries with 
particular needs and limitations may offer insightful 
information on how well it works in practical situations. All 
things considered, more study and development in this field 
could improve resource management in cloud computing 
settings in terms of efficacy and efficiency. 
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