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Abstract—With the development of robot technology, 

animation drawing robots have gradually appeared in the public 

eye. Animation drawing robots can generate many types of images, 

but there are also problems such as poor quality of generated 

images and long image drawing time. In order to improve the 

quality of images generated by animation drawing robots, an 

animation face line drawing generation algorithm based on 

knowledge distillation was designed to reduce computational 

complexity through knowledge distillation. To further raise the 

quality of images generated by robots, the research also designed 

an unsupervised facial caricature image generation algorithm 

based on semantic constraints, which uses facial semantic labels to 

constrain the facial structure of the generated images. The 

outcomes denote that the max values of the peak signal-to-noise 

ratio and feature similarity index measurements of the line 

drawing generation model are 39.45 and 0.7660 respectively, and 

the mini values are 37.51 and 0.7483 respectively. The average 

values of the gradient magnitude similarity bias and structural 

similarity of the loss function used in this model are 0.2041 and 

0.8669 respectively. The max and mini values of Fréchet Inception 

Distance of the face caricature image generation model are 81.60 

and 71.32 respectively, and the max and mini time-consuming 

values are 15.21s and 13.24s respectively. Both the line drawing 

generation model and the face caricature image generation model 

have good performance and can provide technical support for the 

image generation of animation drawing robots. 

Keywords—Knowledge distillation; semantic constraints; robot; 
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I. INTRODUCTION 

A. Background 

With the development of technologies such as artificial 
intelligence, drawing robots have also emerged. As a human-
computer interaction task, drawing robots have been applied in 
many scenarios in life, such as social entertainment. Drawing 
robots can generate corresponding artistic portraits based on 
given user photos through algorithms and perform drawing. 
There are two core issues in drawing robot technology. One is 
how to use a computer to convert facial photos into high-quality 
portrait paintings, and the other is how to plan the trajectory of 
portrait lines so that robots can quickly draw portraits on paper. 
Current painting robots mainly involve interactive systems and 
image synthesis algorithms [1-2]. It is very meaningful to draw 
animations through drawing robots, especially animation 
images of human faces and portraits, which can reduce the time 
and labor costs of traditional manual painting. At present, 
regarding the generation of anime face line drawings, commonly 

used methods include block-based mechanisms, projection-
based methods, generative adversarial learning, and 
optimization and variants of generative adversarial learning [3]. 
However, these technologies also have certain shortcomings, 
resulting in poor image generation quality, long image 
generation time, and high computational complexity [4]. 

B. The Method Designed by the Manuscript 

With the advancement of deep learning technology, 
knowledge distillation technology is gradually applied to the 
compression of different models to reduce the computational 
complexity of the model [5]. In order to improve the quality of 
images generated by animation drawing robots, an animation 
face line drawing generation algorithm based on knowledge 
distillation was designed, which uses deformable convolution to 
align features of different scales. The research also designed an 
unsupervised facial caricature image generation algorithm based 
on semantic constraints, which uses facial semantic labels to 
constrain the facial structure of the generated image. 

C. The Purpose, Innovation, and Contribution 

The research targets to raise the quality of images generated 
by animation drawing robots from multiple perspectives, reduce 
the drawing robot's drawing time and operation complexity, and 
provide good technical support for the wide application of 
animation drawing robots. The innovation points of the research 
are mainly reflected in two points. The first point is to combine 
knowledge distillation, deformable convolution and loss 
function in the model. The second point is to improve the quality 
of image generation by drawing robots from the perspectives of 
anime facial line drawing and facial comic images. The 
contribution of the research is the improvement of image quality 
generated by anime drawing robots, the improvement of 
drawing speed, and the reduction of computational complexity. 

D. The Structure of the Manuscript 

The research is structured into five sections. Section II is a 
literature review related to the animation drawing robot image 
generation. Section III is the specific design of the animation 
face line drawing generation algorithm and the face caricature 
image generation algorithm. Results and discussion is given in 
Section IV and finally, Section V concludes the paper. 

II. LITERATURE REVIEW 

With the advancement of technologies such as artificial 
intelligence and robotics, intelligent robots are gradually being 
utilized to different fields in society. With the development of 
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the animation industry, more and more researchers have 
conducted research on image generation for animation drawing 
robots. Experts such as Ko D K have designed a high update rate 
method for image generation problems. The method involves 
low update images, current gripping position and motor current. 
The research also equipped the robot's gripper with cameras and 
gripping force sensors. The outcomes denoted that the method 
designed by this research can generate high update rate images 
[6]. Liu R and other scholars designed a flexible and robust robot 
system to solve the problem of autonomous drawing on three-
dimensional surfaces, and took two-dimensional drawing 
strokes and three-dimensional target surfaces as inputs. The 
system also involves visual recognition, grasping posture 
reasoning and motion planning. The outcomes denoted that the 
system is flexible and robust, capable of generating robot motion 
and successfully drawing three-dimensional strokes [7]. 
Researchers such as Khanam Z analyzed the impact of gamma 
radiation on robot vision sensors in nuclear sites by analyzing 
two images at different dose rates, namely dark images and 
bright images. Experiment outcomes show that the electrical 
characteristics change significantly, and when the gamma dose 
rate is as high as 3Gy/min, the imaging sensor data is unreliable 
for visual odometry [8]. In order to design a painting robot with 
style conversion, Wang T and other experts designed a robot-
based real-time collaborative drawing system RoboCoDraw. 
The system involves a generative adversarial network and a 
random key genetic algorithm. Style transfer is achieved through 
the generative adversarial network, and path optimization is 
achieved through the random key genetic algorithm. The results 
show that the system can generate cartoon face images from real 
face images [9]. 

Wu P L and other experts designed an art robot drawing 
system in order to create pencil sketches. This system can 
address the issue of pencil wear through tactile sensing function. 
In addition, this research also uses neural style transfer 
technology to extract the content and style features of the image, 
and performs edge detection and further layering on the newly 
generated image. The results show that the system has good 
effectiveness in painting and the painting time is less than 30 
minutes [10]. In order to allow non-professionals to operate 
robots as easily as professionals, researchers such as Jens P 
introduced text-based programming that minimizes robot 
manufacturing. Furthermore, the drawing of manual instructions 
on the workpiece before robot machining is investigated. The 
results show that the method designed by the institute can help 
non-professionals operate the robot as easily as professionals 
[11]. Scalera L and other experts conducted drawing 
experiments to evaluate the performance of the robot 
architecture, allowing the experimenters to use their eyes to 
operate the robot's manipulator. Experimental results show that 
gaze-based human-computer interfaces are beneficial for 
amputees and patients with various forms of movement 
disorders [12]. In order to give a brief report on Drawing Fields, 
Herrmann E W and other scholars explained the use and origin 
of Drawing Fields. In addition, the report discusses the cultural, 
ecological and technological resonances of Drawing Fields. The 

results show that each painting in Drawing Fields corresponds 
to a different theme [13]. 

Overall, there is currently massive research related to image 
generation for animation drawing robots. However, these studies 
also have certain deficiencies, such as low quality of image 
generation, single image style, long time-consuming painting, 
and high computational complexity. In addition, existing 
methods also have other challenges and limitations, such as 
inadequate facial feature preservation, incomplete detail texture 
processing, and high storage space requirements [14-15]. 
Therefore, to raise the quality of images generated by animation 
drawing robots, an animation face line drawing generation 
algorithm based on knowledge distillation was studied and 
designed, and an unsupervised face comic image generation 
algorithm based on semantic constraints was also designed. The 
research targets to raise the quality of images generated by 
animation drawing robots from multiple perspectives. 

III. DESIGN OF FACIAL PORTRAIT GENERATION 

ALGORITHM FOR ANIMATION DRAWING ROBOTS 

For the image generation problem of animation drawing 
robots, the research starts from two directions: animation lines 
and comic images, and designs a face line drawing generation 
algorithm based on knowledge distillation and an unsupervised 
face comic image generation algorithm based on semantic 
constraints. The study uses knowledge distillation to reduce 
computational complexity and facial semantic labels to 
constrain the facial structure of the generated image. 

A. Construction of Animation Face Line Drawing Generation 

Algorithm based on Knowledge Distillation 

To raise the quality of the images generated by the animation 
drawing robot, reduce the drawing time of the image and reduce 
the complexity of the operation, starting from the face portrait 
image, two image generation algorithms for animation lines and 
comics were designed. For the generation of face line images, 
the research uses knowledge distillation to reduce computational 
complexity, and uses deformable convolution to align features 
of different scales. Finally, the study uses boundary loss, style 
loss and coherence loss to further enhance the quality of line 
drawings generated by anime drawing robots. The model 
structure of the line drawing generation algorithm designed by 
the institute is shown in Fig. 1. 

From Fig. 1, the model of the line drawing generation 
algorithm mainly includes pre-trained teacher network, learning 
network, distillation loss, input and output. The pre-trained 
teacher network is a modified model that produces line drawings 
with better results, and then the study will transfer its 
intermediate layer knowledge to the student network through 
knowledge distillation. The network structure used in the study 
is a two-level nested U-shaped structure to obtain more 
contextual information. The network structure involves the 
encoder, decoder and saliency map fusion module, and the U-
shaped residual module is involved in the encoder. The 
structural comparison of the original residual block and the U-
shaped residual block is denoted in Fig. 2. 
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Fig. 1. The model structure of line drawing generation algorithm. 
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Fig. 2. Structure of U-shaped residual module. 

As can be seen from Fig. 2(a), the original residual block 
mainly includes convolutional layers, modified linear units, 
intermediate feature maps and feature fusion. From Fig. 2(b), the 
U-shaped residual block involves convolutional layers, 
modified linear units, U-shaped structural blocks, multi-scale 
features and feature fusion. Because the structures of the teacher 
network and the learning network are both nested U-Nets, in 
order to avoid damage to target boundary prediction, the 
research needs to align the upsampling and downsampling 
features before performing feature fusion. To align features, 

deformable convolutions were used. The output features at 
ˆ

pa

any position after convolution 
pa

are shown in Eq. (1). 

1

ˆ
N

p n p n

n

a a p


                                  (1) 

In Eq. (1), N m m  , m m  means the size of the 

convolution layer and n  means the sequence number. n is the 

weight of the n th convolution sample position, np representing 

the pre-specified offset of the n th convolution sample position. 
Deformable convolution can adaptively apply to additional 
offsets at different sample positions, so Eq. (1) can be re-
expressed as shown in Eq. (2). 

1

ˆ
N

p n p n n

n

a a p p


                           (2) 

In Eq. (2), np  represents the additional offset. When 
deformable convolution is applied to the position information of 
the down-sampled feature map and the offset field is used as a 
parameter, the deformable convolution can be aligned by the 
spatial distance between the position information of the up- and 
down-sampled feature maps. Therefore, the study selected 
deformable convolution as the feature alignment function. In 
order to obtain the trained teacher network, the study introduces 
boundary loss, style reconstruction loss and coherence loss. In 
order to further reduce the computational load and model size of 
the teacher network, the research uses knowledge distillation to 
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transfer the thinking process and results of the teacher network 
to the student network, so that students can reach or even exceed 
the level of the teacher model with a smaller model. To achieve 
this process, the study adopts feature-based knowledge transfer. 
The feature-based knowledge distillation loss is shown in Eq. (3) 
[16]. 

           , ,zs t s F t t s sL f x f x L f x f x        (3) 

In Eq. (3),  tf x
and  sf x

 are the feature maps of the 
middle layer of the teacher network and student network 

respectively, 
  t tf x

and 
  s sf x

both are conversion 

functions.  .FL
 represents the distillation loss of matching 

feature map similarity. The expression of distillation loss is 
denoted in Eq. (4) [17]. 

 , /
h h

k

dis s t h

h

L kl f f d                           (4) 

In Eq. (4),  .kl
represents the kl divergence function and 

hd is the number of channels of the corresponding encoder and 

decoder. h is the serial number of the channel number. hsf
and 

ht
f

represent the amount of channels of the teacher network and 

student network, respectively, and k  are the number of 
channels. In addition to boundary loss, style reconstruction loss 
and coherence loss, the teacher network and student network 
also involve binary cross-entropy loss and distillation loss, so 
the loss function of the teacher network is denoted in Eq. (5). 

1 2 3 4teacher bce style boundary filterL L L L L               (5) 

In Eq. (5), 1 , 2 , 3 and 4 are all weight coefficients, 

bceL , 
styleL

, 
boundaryL

and 
filterL

are binary cross-entropy loss, 
style loss, boundary loss and coherence loss respectively. The 
student network not only needs to use all the loss functions 
involved in the teacher network, but also needs to use distillation 
loss. Therefore, the final loss function of the student network is 
shown in Eq. (6). 

1 2 3 4 5student bce style boundary filter disL L L L L L            (6) 

In Eq. (6), 5 it is also the weight coefficient. 

B. Design of Unsupervised Face Caricature Generation 

Algorithm Based on Semantic Constraints 

To raise the quality of images generated by animation 
drawing robots, research has designed an algorithm for 
generating facial line images. To further raise the quality of 
images generated by robots, an unsupervised face caricature 
image generation model based on semantic constraints was 
designed. The study uses an unsupervised face caricature image 
generation model to enrich the image style drawn by the robot, 
and uses group activation mapping and attention modules to 
avoid the impact of unimportant features on the generated 
caricature images. In order to better preserve the facial features 
of human faces, research uses facial semantic labels to constrain 
the facial structure of the generated images. The network 
structure of the algorithm in this chapter mainly contains two 
generators and two discriminators, and both the generator and 
the discriminator contain attention modules. The specific 
structure of the face caricature image generation algorithm is 
shown in Fig. 3. 

As can be seen from Fig. 3, the generator mainly includes 

downsampling, residual block, encoder, auxiliary classifier and 

group class activation mapping (Group Class Activation 

Mapping, Group-CAM). The discriminator mainly involves 

downsampling, encoder, auxiliary classifier and group 

activation mapping. The face caricature generation algorithm 

also involves decoders, features, feature weights, face parsing 

modules and classifiers, where the decoder contains adaptive 

residual blocks and upsampling. Class activation mapping can 

retain the spatial information of the image and use it to guide 

generator training. In addition, class activation mapping can 

also determine the method of input image categories and 

enhance the capabilities of the generator and discriminator [18-

19]. However, there is a large amount of meaningless data in 

the saliency map generated by the class activation map in the 

model, so the study improved it to form the final Group-CAM. 

The structure of the Group-CAM model is shown in Fig. 4. 
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Fig. 3. The specific structure of facial comic generation algorithm. 
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Fig. 4. The structure of the Group-CAM model. 

From Fig. 4, the Group-CAM model involves input images, 
convolutions, feature maps, gradients, importance weights, 
activations, number of groups, activation maps, activation map 
denoising, activation map bilinear interpolation upsampling, 
Initial mask, perturbed image, confidence score, weight sum and 
saliency map. The initial category mask of the target 
convolutional layer is shown in Eq. (7). 

 

 
0

0

1 cc

k k
l j lj

F I

Q R I


 


                           (7) 

In Eq. (7), 
Q

represents the amount of pixels 
kR  and 

kR is 

the amount of channels of the target layer feature map.  0cF I
 

represents the predicted probability that the input image 0I  is 

in the class c , l  and 
j
the sum is the given number of groups. 

k

ljR
is the sum of the channel numbers of the feature map of the 

l th group and the 
j
th group of target layers. The initial mask in 

each group is shown in Eq. (8). 

 1 1

ReLU
q g

c k

q k

k q g

M R
  

 

 
   

 
                         (8) 

In Eq. (8),  0,1,..., 1q G 
, G  denotes the amount of 

groups of all feature maps and their corresponding importance 

weights. 
g

 denotes the amount of feature maps in each group. 
Since the initial mask is visually noisy, the study uses a 
denoising function to process it, and scales the value of the initial 
mask to [0, 1] through normalization. The initial mask 
processing process is shown in Eq. (9). 

 
   

min
'

max min

q q

q

q q

M M
M

M M





                         (9) 

In Eq. (9), 
'qM
represents the smoother mask generated by 

the activation map, 
 min qM

and 
 max qM

are the mini and 
max values of the initial mask, respectively. Afterwards, the 
study uses bilinear interpolation for upsampling. When 
generating saliency maps, blur operations are required. The 
calculation of the blurred image is shown in Eq. (10) [20]. 

 0 0' ' 1 'q q qI I M I M                        (10) 

In Eq. (10), 0I  represents an image with the same 

dimensions as 0I , and  represents multiplication. The 

calculation of the confidence score 

c

q
 is shown in Eq. (11). 

   0'c

q c q cF I F I                            (11) 

In Eq. (11), 
 'c qF I

 and 
 0cF I

represent the predicted 

probability of the image 
'qI

and 0I  in the  class c  respectively 
. The calculation of the final saliency map is shown in Eq. (12). 

ReLU 'c c

Group CAM q q

q

L M

 
  

 
                     (12) 

To better preserve the facial features of human faces, 
research uses facial semantic labels to constrain the facial 
structure of the generated images. For the acquisition of facial 
semantic labels, the BiseNet model was selected in this study. 
The BiseNet model structure mainly includes input images, 
spatial branch paths, feature fusion modules, output semantic 
labels and contextual branch paths. The specific structure of the 
BiseNet model is indicated in Fig. 5 [21]. 
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Fig. 5. The specific structure of the BiseNet model. 

From Fig. 5, the spatial branch path involves three groups of 
convolution + batch normalization + modified linear units. The 
contextual branch path includes 4x, 8x, 16x and 32x 
downsampling, attention mechanism module and spatial 
perception wild. In order to allow the generator to retain the 
characteristics of the comic domain, the study performed strong 
blur processing on the image, and then calculated the gradient 
magnitude similarity deviation. The local gradient amplitude is 
similar as shown in Eq. (13). 

 
   

   2 2

2 u v

u v

y y c
GMS

y y c

 


 




 
                       (13) 

Eq. (13),   is the position of the pixel, which  uy 
 

denotes the gradient amplitude of the   pixel in the horizontal 

direction.  vy 
 represents  the gradient amplitude of the 

pixel in the vertical direction, which  GMS 
 is the local 

gradient field of each small patch . The calculation of gradient 
amplitude similarity deviation is shown in Eq. (14) [22]. 

  
2

1

1 T
GMSD GMS GMSM

T 



                     (14) 

Eq. (14), T  denotes the total amount of pixels and GMSM  
denotes the average value of the local gradient field. The loss 
functions used in the face caricature image generation algorithm 
include generative adversarial loss, cycle consistency loss, 
identity loss, class activation mapping loss and weighted sum 
total loss. The total loss is calculated as denoted in Eq. (15). 

1 2 3 4 5min max lsgan cycle idenitity cam gmsdL L L L L                  (15) 

Eq. (15), 1 , 2 , 3 , 4 and 5 are all constant weight 

factors, 
lsganL

, 
cycleL

, 
idenitityL

, camL and 
gmsdL

respectively 
represent the generative adversarial loss, cycle consistency loss, 

identity loss, class activation mapping loss and gradient 
magnitude similarity bias loss. 

IV. RESULTS AND DISCUSSION 

The research verifies the performance of the animation face 
line drawing generation algorithm and the face caricature image 
generation algorithm, and explains the data set and experimental 
environment. The performance verification uses ablation 
experiments, and uses indicators such as peak signal-to-noise 
ratio (PSNR), gradient amplitude similarity deviation, and 
structural similarity to assess the effectiveness of the algorithm. 

A. Performance Verification of Animation Face Line 

Drawing Generation Algorithm 

In order to verify the effectiveness of the line drawing 
generation algorithm, an ablation experiment was conducted. 
Ablation experiments involve studying the designed model and 
loss function. Performance evaluation indicators include PSNR, 
Feature Similarity Index Measure (FSIM), Gradient Magnitude 
Similarity Deviation (GMSD), structural similarity (Structure 
Similarity Index Measure, SSIM) and Fréchet Inception 
Distance (FID). PSNR, FSIM, GMSD, SSIM and FID are all 
important indicators for measuring image quality. Among them, 
PSNR is mainly used to compare the differences between the 
original signal and the processed signal, FSIM is used to 
quantify the degree of distortion of images in visual perception. 
GMSD measures the similarity of gradient images and is used to 
evaluate the clarity of images. SSIM measures the structural 
similarity between the original image and the processed image, 
such as brightness, contrast, and structure. FID measures the 
quality of image generation models. The data set applied in the 
experiment is the Apdrawing data set, and the algorithm 
performed a total of 280,000 iterations. In addition, in the line 

drawing generation algorithm, the values of 
1 , 

2 , 
3  

and 

4  are 10, 1, 1000, and 1/1000, respectively. The operating 

system applied in the experiment is Windows 11, the processor 
is Intel Core i9-13900KS, the maximum turbo frequency is 
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6.00GHz, the basic power consumption of the processor is 
150W, the maximum memory is 192GB, the basic frequency 
and maximum dynamic frequency of the graphics card are 
300MHz and 1.65GHz respectively. The comparison of PSNR 
and FSIM of different models is shown in Fig. 6. 

From Fig. 6, the models included in the experiment include 
the U2 -Net model, the improved U2 -Net (teacher network) 
model, the student network model, the student network + 
knowledge distillation model and the line drawing generation 
model designed by the institute. From Fig. 6(a), the max PSNR 
values of the five models are 34.58, 36.70, 33.55, 38.64 and 
39.45 respectively, and the mini values are 31.58, 33.87, 30.33, 
36.35 and 37.51 respectively. From Fig. 6(b), the max FSIM 

values of the five models are 0.7457, 0.8539, 0.7257, 0.7559 and 
0.7660 respectively, and the mini values are 0.7224, 0.8305, 
0.7066, 0.7351 and 0.7483, respectively. The larger the PSNR 
and FSIM values are, the better the quality of the images 
generated by the model is. The PSNR value of the line drawing 
generation model designed by the institute is significantly 
greater than the comparison model, which shows that the 
performance of the model designed by the institute is better. 
Both the teacher and the student network models after 
introducing knowledge distillation have improved in PSNR, 
which can identify the performance of the modules added by the 
institute. The comparison of GMSD and SSIM of different 
models is shown in Fig. 7. 
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Fig. 6. Comparison of PSNR and FSIM of different models. 
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Fig. 7. Comparison of GMSD and SSIM of different models. 

From Fig. 7(a), the max GMSD values of the U2 -Net model, 
teacher network model, student network model, student network 
+ knowledge distillation model and research design model are 
0.2801, 0.2141, 0.2931, 0.2642 and 0.2432 respectively, the 
minimum values are 0.2588, 0.1927, 0.2732, 0.2411 and 0.2213, 
respectively. From Fig. 7(b) that the max SSIM values of the 
five models are 0.7810, 0.8769, 0.7747, 0.8084 and 0.8285, 
respectively, and the mini values are 0.7573, 0.8591, 0.7534, 
0.7865 and 0.8098 respectively. The larger the GMSD value is, 
the worse the fidelity of the image is. The larger the SSIM value 

is, the more similar the image structure is to the real label, and 
the better the image quality is. The GMSD value and SSIM 
value of the model designed by the institute have obvious 
advantages, which also shows that the performance of the model 
designed by the research is better. The comparison of indicators 
under different loss function constraints is shown in Fig. 8. 

In Fig. 8, the experiment involves a total of 8 combinations 
of loss functions, which are named A1, A2, A3, A4, A5, A6, A7 
and A8 respectively. From Fig. 8(a), the average PSNR of the 
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eight loss function combinations are 33.58, 33.67, 33.70, 33.29, 
33.65, 33.74, 33.70 and 35.70 respectively, and the average 
FSIM are 0.7346, 0.7752, 0.7880, 0.7679, 0.7783, 0.7814, 
0.7880 and 0.8428 respectively. The PSNR value and FSIM 
value of the loss function combination A8 used in the study are 
significantly larger than other loss function combinations. From 
Fig. 8(b), on GMSD, the average values of the eight loss 
function combinations are 0.2701, 0.2591, 0.2440, 0.2382, 
0.2425, 0.2279, 0.2440 and 0.2041 respectively. A8 has the 
smallest GMSD value. The average SSIM values of the eight 
loss function combinations are 0.7710, 0.7413, 0.7856, 0.7746, 
0.7983, 0.7872, 0.7856 and 0.8669 respectively. A8 has the 
largest SSIM value. The loss function combination A8 used in 
the study is beneficial to the image results generated by the final 
model. In order to better validate the performance of the line 
drawing generation algorithm, other similar models were 
selected for comparison. The comparison models include the 
facial portrait line generation algorithm based on unpaired 
training data designed by R. Yi et al. [23], the bipartite graph 
inference generative adversarial network designed by H. Tang 
et al. [24], and the facial image generation algorithm based on 
edge optimization and generative adversarial network designed 
by F. Zhang et al. [25]. The comparison of image generation 
time and FID using different methods is shown in Table I. 

From Table I, it can be seen that in terms of image generation 
time, the maximum value of the research and design line 

drawing generation algorithm is 13.88s, and the minimum value 
is 11.36. The minimum time consumption of facial portrait line 
generation algorithm based on unpaired training data, bipartite 
graph inference generative adversarial network, and facial 
image generation algorithm based on edge optimization and 
generative adversarial network are 20.62, 23.42, and 16.38, 
respectively. In addition, the minimum values for the four 
methods in FID values are 67.52, 115.05, 123.01, and 101.59, 
respectively. It can be seen that the research and design of line 
drawing generation algorithms takes less time and the model 
quality is better. To verify the robustness and generalization 
ability of the learning network, the image generation effect 
analysis was conducted. The specific image generation effect is 
shown in Fig. 9. 

From Fig. 9(a) that in the generated image of anime face line 
drawings, details such as the hair of anime characters are better 
generated, the lines are smooth and clear, and the features are 
accurately grasped. The facial features of anime characters are 
well preserved, such as eyes, noses, etc. In addition, the physical 
details of anime characters are also well preserved. From Fig. 
9(b), when the image generation range is expanded from the face 
to the whole body, the generated line drawing image effect is 
also very good, and the hair, charm, body structure and other 
characteristics of the anime characters are well preserved. The 
algorithm designed by the research has good generalization 
ability and robustness. 
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Fig. 8. Comparison of indicators under different loss function constraints. 

TABLE I.  COMPARISON OF IMAGE GENERATION TIME AND FID USING DIFFERENT METHODS 

Model 

Time consumption/s FID 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

R. Yi et al. [23] 21.36 20.62 21.37 22.09 21.75 115.05 117.84 121.10 117.78 116.59 

H. Tang et al. [24] 25.42 24.17 24.04 25.83 23.42 123.01 125.24 127.70 130.51 129.32 

F. Zhang et al. [25] 17.87 16.38 17.16 18.33 19.01 104.23 103.83 109.78 101.59 106.60 

Manuscript 12.97 11.71 13.88 12.55 11.36 67.52 69.04 68.54 70.13 68.66 
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(a) Animation facial line drawing 

generation effect
(b) Full body image generation effect
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Fig. 9. Specific image generation effects. 

B. Performance Verification of Face Caricature Image 

Generation Algorithm 

To assess the effectiveness of the face caricature image 
generation algorithm, an ablation experiment was conducted. 
Ablation experiments are mainly carried out from the overall 
model. The overall model compares U-GAT-IT (baseline), U-
GAT-IT+semantic constraints and the comic image generation 
model designed by the research institute [26]. The indicators 
used in the experiment include FID, Mean Squared Error (MSE), 
PSNR and SSIM. Among them, MSE is an indicator used to 
measure the difference between a model's predicted values and 
actual observed values, and is commonly used to evaluate the 
degree of fit of a model on a given data. The data sets used in 
the experiment include the Flickr-Faces-High-Quality (FFHQ) 
data set and the Avatar data set. The operating system and 
processor used in the experiment are the same as those in Section 
III(A) and will not be repeated here. The facial comic image 
generation algorithm uses an Adam optimizer with a learning 
rate of le-4 and a training batch size of 1. In addition, the values 
of the algorithm on 

1 , 
2 , 

3 ,
4 , and 

5  are 1, 10, 10, 

1000, and 10 respectively. The comparison of FID values and 
MSE values of different models is shown in Table II. 

From Table II, it can be seen that the maximum FID values 
of the U-GAT-IT model, U-GAT-IT + semantic constraints and 
the comic image generation model designed by the institute are 
144.68, 103.49 and 81.60 respectively, and the minimum values 
are 139.54, 139.54 and 81.60 respectively. The FID index can 
express the similarity of feature distributions of two sets of 
images, and the smaller the FID value, the more similar the 
feature distributions are. In addition, the max MSE values of 
the three models are 3.27, 2.98, and 1.42 respectively, and the 
mini values are 3.04, 2.65, and 1.21 respectively. The MSE 
metric can also evaluate the quality of images generated by the 
model. The FID value and MSE value of the model designed by 
the institute are significantly lower than the baseline model, and 
the FID value and MSE value of the U-GAT-IT + semantic 

constraint model are also significantly lower than the baseline 
model. This shows that the comic image generation model 
designed by the research has better performance, and also 
proves the effectiveness of the semantic constraints and group 
activation mapping modules. The comparison of PSNR values 
and SSIM values of different models is indicated in Table III. 

From Table III, the max PSNR values of the U-GAT-IT 
model, U-GAT-IT + semantic constraints and the research 
design model are 32.65, 36.97 and 39.65 respectively, and the 
mini values are 31.87, 35.36 and 38.44 respectively. In terms of 
SSIM values, the max values of the three models are 0.7357, 
0.7743 and 0.8284 respectively, and the mini values are 0.7123, 
0.7615 and 0.8117, respectively. The PSNR value and SSIM 
value of the model designed by the institute are significantly 
greater than those of the baseline model and the U-GAT-IT + 
semantic constraint model, which shows that the performance of 
the model designed by the institute is better and the quality of 
the images it generates is better. To better verify the 
performance of the model designed in the study, the study 
selected other advanced unsupervised models for comparison. 
Comparative models include Cycle-consistent Generative 
Adversarial Network (CycleGAN), Adaptive Convolutions 
(AdaConv) and No Independent Component Encoding 
Generative Adversarial Network (NICEGAN). The comparison 
of FID and time consumption of different models is shown in 
Fig. 10. 

From Fig. 10(a), in terms of FID values, the maximum 
values of CycleGAN, AdaConv, NICEGAN and the research 
design model are 263.57, 365.96, 119.47 and 81.60 respectively, 
and the minimum values are 251.75, 352.64, 102.31 and 71.32 
respectively. From Fig. 10(b), in terms of time consumption, the 
maximum values of the four models are 22.54s, 21.31s, 19.32s 
and 15.21s respectively, and the minimum values are 20.46s, 
19.89s, 17.65s and 13.24s respectively. Whether it is in terms of 
FID value or model time consumption, the performance of the 
research design model has more advantages. 
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TABLE II.  COMPARISON OF FID AND MSE VALUES FOR DIFFERENT MODELS 

Model 

FID MSE 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

U-GAT-IT 139.54 140.87 144.68 143.92 142.85 3.27 3.11 3.21 3.04 3.18 

U-GAT-IT 

+semantic 

constraints 

97.45 103.49 102.71 99.21 95.86 2.65 2.78 2.98 2.82 2.73 

Research 71.32 75.64 81.60 73.17 77.48 1.42 1.37 1.29 1.32 1.21 

TABLE III.  COMPARISON OF PSNR AND SSIM VALUES FOR DIFFERENT MODELS 

Model 

PSNR SSIM 

Number of experiments Number of experiments 

1 2 3 4 5 1 2 3 4 5 

U-GAT-IT 32.57 32.24 31.98 32.65 31.87 0.7123 0.7344 0.7357 0.7224 0.7234 

U-GAT-IT 

+semantic 
constraints 

35.82 36.43 35.64 36.97 35.36 0.7647 0.7743 0.7684 0.7718 0.7615 

Research 38.75 39.46 38.44 39.65 39.13 0.8257 0.8117 0.8226 0.8273 0.8284 
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Fig. 10. Comparison of FID and time consumption for different models. 

C. Discussion 

Aiming at the improvement of image quality generated by 
anime drawing robots, this study designs facial line drawing 
generation algorithms and comic image generation algorithms 
from the perspectives of anime lines and comic images. The 
results show that the maximum PSNR of the knowledge 
distillation based generation algorithm is 39.45, and the 
minimum value is 37.51, which is significantly better than the 
comparison model. Researchers such as M. Yuan have designed 
a cross task knowledge distillation method and a multi-stage 
knowledge distillation paradigm to address the issue of text 
synthesized images, achieving improvements in visual quality 
and semantic consistency of synthesized images [27]. The 
generation algorithm based on knowledge distillation is similar 
to the research results of M. Yuan et al. The maximum and 
minimum FID values of the comic image generation model 
based on semantic constraints are 81.60 and 71.32, respectively, 

with a maximum time consumption of 15.21 seconds. The 
performance is superior to the comparison model. In order to 
solve the problem of low image generation quality under limited 
data, Y. Gou et al. designed a cross domain semantic 
relationship loss to improve the performance of image 
generation models under limited data. The comic image 
generation model based on semantic constraints is similar to the 
research results of Y. Gou et al. [28]. 

V. CONCLUSION 

To raise the quality of images generated by animation 
drawing robots, an animation face line drawing generation 
algorithm based on knowledge distillation was designed, and an 
unsupervised face comic image generation algorithm based on 
semantic constraints was also designed. The results show that 
the maximum PSNR values of the U2 -Net model, teacher 
network model, student network model, student network + 
knowledge distillation model and line drawing generation model 
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are 34.58, 36.70, 33.55, 38.64 and 39.45 respectively, and the 
minimum values are 31.58, 33.87, 30.33, 36.35 and 37.51. The 
performance of the line drawing generation model designed by 
the institute is better, and the modules added by the institute are 
effective. The average values of the loss functions PSNR, FSIM, 
GMSD and SSIM of the line drawing generation model are 
35.70, 0.8428, 0.2041 and 0.8669 respectively. Investigate the 
combinations of loss functions used that are beneficial to the 
image results generated by the final model. The maximum FID 
values of the U-GAT-IT model, U-GAT-IT + semantic 
constraints and comic image generation model are 144.68, 
103.49 and 81.60 respectively, and the minimum values are 
139.54, 95.86 and 71.32 respectively. The maximum and 
minimum time consumption of the comic image generation 
model are 15.21s and 13.24s respectively. The performance of 
the comic image generation model is better, and the semantic 
constraints and group activation mapping modules used in the 
study are effective. The performance of the comic image 
generation of research model can be further improved on some 
images. Future research can introduce the Spade module to 
maintain the structure and improve the quality of image 
generation on facial features. In addition, future research can 
also extend knowledge distillation to multi-task models to 
improve the performance of learning network models. 
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