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Abstract—The use of deep learning in unmanned aerial vehi-
cles (UAVs), or drones, has greatly improved various technologies
by making complex tasks easier, faster, and requiring less human
help. This study looks into how artificial intelligence (AI) can
be used in farming, especially through creating a system where
drones can be controlled by hand gestures to support agricultural
activities. By using a special type of AI called a Convolutional
Neural Network (CNN) with an EfficientNet B3 model, this
research developed a gesture recognition system. It was trained
on 1,393 pictures of different hand signals taken under various
light conditions and from three different people. The system was
evaluated based on its training and testing performance, showing
very high scores in terms of loss, accuracy, F1 score, and the
Area Under the Curve (AUC), which means it can recognize
gestures accurately and work well in different situations. This
has big implications for farming, as it gives farmers an easy way
to control drones for tasks like checking on crops and spraying
them precisely, which also helps keep them safe. This study is
an important step towards smarter farming practices. Moreover,
the system’s ability to perform well in different settings shows
it could also be useful in other areas like construction, where
drones need to operate precisely and flexibly.
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I. INTRODUCTION

Drones, also known as unmanned aerial vehicles (UAVs),
have moved beyond their military beginnings to become essen-
tial tools in many industries, not just for recreation. Drones
are used in many areas, such as security, defense, farming,
energy, insurance, and water management [1]. This variety
shows how drones are and their potential to improve traditional
methods. Drones can reach difficult area, carry out detailed
aerial survey, and provide immediate data, improving decision
making and operational efficiency in many fields. The growing
popularity of drones is driven by continuous technological
improvement, making them more user friendly and effective
for both professional and personal use [2]. Technological ad-
vancements in drone capabilities have significantly broadened
their applications, enabling them to contribute to environmental
monitoring, search and rescue operations, and infrastructure
inspection, among others. Innovations such as increased au-
tonomy through AI integration [3], extended battery life, and
enhanced payload capacities allow drones to perform complex
tasks more efficiently and reliably. For instance, in agriculture,
drones equipped with advanced sensors can monitor crop
health [4], optimize water usage [5], and manage resources
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more sustainably [6]. Similarly, in emergency response, drones
provide invaluable assistance in locating victims and assessing
damage in disaster stricken areas, demonstrating their critical
role in saving lives and managing crises [7].

The integration of drones into agriculture is poised to
enhance crop health monitoring, reduce environmental impact,
protect farmer health and increase the efficiency of farming
operations. Farmers are progressively turning to drones to
oversee their crops and enhance precision agriculture practices,
a trend that is expected to significantly fuel the growth of the
drone market in agriculture over the next decade. These drones
have the ability to monitor vast fields, capture intricate images,
and provide data that is not affected by cloud cover, offering a
clear advantage over traditional monitoring methods. As drone
technology continues to advance, becoming more efficient and
cost-effective, their adoption in agriculture is set to increase
[8]. Therefore, these developments promise to revolutionize
farming by improving yield predictions, optimizing resource
use, and enabling more precise application of water, fertilizers,
and pesticides [9].

In the context of agriculture, drones equipped with Ar-
tificial Intelligence (AI) extend their utility beyond monitor-
ing and analysis to include actionable interventions, such as
precise spraying. Spraying drones leverage AI to optimize
the application of pesticides, herbicides, and fertilizers. They
can autonomously navigate over fields, applying substances
directly where needed and in the correct amounts, protect
farmer health, significantly reducing waste and environmental
impact. This targeted approach ensures that crops receive the
exact treatment they require, enhancing growth conditions
and potentially increasing yield efficiency. The combination
of drones and deep learning is transforming how tasks are
performed and redefining the possibilities for innovation and
efficiency in global industries [10]. Transitioning to the devel-
opment of a hand gesture recognition system, this technology
further amplifies efficiency in agriculture by enabling farmers
to control drones and other automated equipment.

Before reach into the development of a hand gesture
recognition system, it is important to understand the context
in which such technology could be particularly beneficial
in agriculture. Farmers often face the challenge of applying
spray fertilizers to their crops at various times, depending
on the crop’s growth stage, weather conditions, and the type
of fertilizer being used. The timing and amount of fertilizer
application are critical to ensure optimal crop health and yield.
Traditional methods can be imprecise and labor intensive,
requiring manual labor to cover large areas and sometimes
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leading to uneven distribution of the fertilizer. The imple-
mentation of a wide array of intuitive and easy to perform
gestures requires a user centric design approach. This involves
conducting extensive user research to identify natural and
comfortable gestures for different commands, considering both
ergonomic principles and cultural differences. By ensuring that
the gestures are easily performable by a broad spectrum of
users, including those with physical disabilities, the system
becomes more inclusive and user friendly.

To enhance the efficiency of hand gesture control, some ap-
proaches include the wearable device or IoT device controller
placed on the back of the hand to intend hand motion and
control the UAV with hand gesture recognition [11] [12]. Multi
modal control is another technique for overcoming UAV ges-
ture control. A multi modal control system integrates multiple
interactions, such as hand gestures, eye movements, and voice
interactions [13]. The multi channel joint interaction promotes
high UAV control efficiency. It is crucial to use advanced
technologies with deep learning. By combining computer, and
cameras, the system’s capability to capture and understand
gestures in varied lighting will be greatly improved.

In this study, the focus primarily on hand gesture control, as
it has shown promising results in previous research [12] [13].
Therefore, this study aims to create a hand gesture recogni-
tion system that works effectively in different environmental
settings and individuals, such as under direct sunlight, on
cloudy days, and shady. The given model first detects the
hand and then draws the hand skeleton. Next, the model is
generated by using the detected hand as a training set for
a deep convolutional neural network. These technologies are
excellent at picking up slight movements, which is essential
for the system to tell apart purposeful gestures from accidental
ones. Moreover, applying machine learning algorithms and
deep learning to process the data from the study will enhance
the system’s precision and flexibility. This will allow it to
accurately recognize a broad array of gestures.

II. METHOD

A. Data Collection and Preprocessing

A dataset consisting of 1,393 images was compiled around
a farm in Thailand, capturing both indoor and outdoor settings.
This collection aims to advance posture trajectory analysis
and includes shots taken under a variety of lighting condi-
tions; sunlight, cloudy, and in shade. Participation from three
individuals ensured a wide range of imagery. The dataset
features eight specific gesture types: ascending, descending,
pitch forward, pitch backward, roll left, roll right, yaw left,
and yaw right. Each contributor supplied images for every
gesture, photographed under three distinct lighting scenarios.
Cameras were employed to take these pictures, which were
then stored in JPG format. During the image preprocessing
phase, the sizes of the collected images were standardized
to a uniform dimension of 300 × 300 pixels. These images
were divided into eight classes: ascending, descending, pitch
forward, pitch backward, roll left, roll right, yaw left, and yaw
right, as shown in Fig. 1 Subsequently, the dataset underwent
a division into training, validation and testing sets, allocating
880 images for training purposes, 320 images for validation,
and the remaining 192 images for testing.

B. The Proposed Model

The proposed model presents a sophisticated hand ges-
ture recognition model designed to enhance the operational
efficiency of drones in agricultural settings. This innovation
is made possible through the integration of a Convolutional
Neural Network (CNN) with an EfficientNet B3 architecture,
tailored to interpret various hand signals under diverse envi-
ronmental conditions.

The integration of MediaPipe, Hand Landmark, Tensor-
Flow, Keras in TensorFlow, and the EfficientNet B3 model
within this method provides a robust framework for accurate
hand gesture recognition tailored for drone control in agricul-
tural applications. MediaPipe offers a real-time, efficient hand
tracking solution, utilizing the Hand Landmark model to pre-
cisely identify the positions of key points on the hand, essential
for recognizing complex gestures. TensorFlow serves as the
backbone for deep learning operations, enabling scalable and
efficient model training and execution. By leveraging Keras,
a high-level API within TensorFlow, the process of building
and training deep learning models is simplified, making it
more accessible while maintaining flexibility and performance.
The choice of the Convolutional Neural Network (CNN)
architecture, specifically EfficientNet B3, is strategic for its
ability to handle image data effectively, utilizing compound
scaling to optimize accuracy and computational efficiency. This
combination of technologies and models ensures the system’s
ability to accurately interpret a wide range of hand gestures
under various environmental conditions, making it a powerful
tool for enhancing drone operations in agriculture.

1) MediaPipe: Numerous deep learning frameworks and
libraries are available for hand gesture recognition, among
which MediaPipe stands out. MediaPipe is a framework tai-
lored for the deployment of deep learning solutions ready
for production [14], [15]. It facilitates the construction of
pipelines necessary for performing inference on various types
of sensory data. Moreover, MediaPipe supports the publication
of code alongside research efforts and aids in the development
of technological prototypes. As an open-source tool, it is
accessible to developers worldwide and supports a wide range
of platforms, ensuring its versatility and broad applicability.
Its lightweight nature enhances its performance and ease of
integration into various software and hardware environments,
making it a preferred choice for real-time applications.

2) Hand landmark: In the MediaPipe framework (see Fig.
2), the hand is modeled using 21 distinct 3D landmarks to
represent the joints and tips of the fingers [16]. For each
finger, there are four landmarks: the Carpometacarpal (CMC)
joint is marked as Landmark 1 for the thumb, followed by
the Metacarpophalangeal (MCP) joint as Landmark 2, the
Interphalangeal (IP) joint as Landmark 3, and the fingertip
as Landmark 4. This pattern is consistent across the hand,
with the MCP joint for the index, middle, ring, and pinky
fingers designated as Landmarks 5, 9, 13, and 17, respectively.
The Proximal Interphalangeal (PIP) and Distal Interphalangeal
(DIP) joints follow in sequence for each finger, culminating
with the fingertip, or Landmark 8 for the index, Landmark 12
for the middle, Landmark 16 for the ring, and Landmark 20
for the pinky finger, providing a comprehensive mapping of
the hand’s articulations for gesture recognition.
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Fig. 1. Effects of selecting different switching under dynamic condition.

The model predicts the (x, y, z) coordinates of these
landmarks in the image, with: x and y representing the land-
mark’s position on the plane of the image, and z indicating
the landmark’s relative depth from the camera. To put the
trained model into action, it is integrated into an OpenCV-
based workflow that handles real-time data processing. This
involves using MediaPipe to detect and track hand landmarks
in each data stream. The information about the landmarks is
then input into the TensorFlow model, which determines what
gesture is being made.

3) TensorFlow: The trained model is then implemented
within an OpenCV pipeline to process data sets in real time. As
the data stream flows through the pipeline, MediaPipe extracts
the hand landmarks from each data, and these are instantly
passed to the TensorFlow model for gesture prediction [17].

Wrist (0)
Thumb: CMC (1), MCP (2), IP (3), and Tip (4).
Index Finger: MCP (5), PIP (6), DIP (7), and Tip
(8).
Middle Finger: MCP (9), PIP (0), DIP (11), and Tip
(12).
Ring Finger: MCP (13), PIP (14), DIP (15), and Tip
(16).
Pinky (Little Finger): MCP (17), PIP (18), DIP (19),
and Tip (20).

Fig. 2. The 21 landmarks (0-20) of hand gestures in MediaPipe.

This seamless process allows for the recognition of gestures
as they occur, enabling real-time interaction. The system can
be further tailored to recognize a wide array of gestures,
enhancing its utility in various applications.

In TensorFlow, computations are represented as graphs,
where nodes in the graph represent mathematical operations,
and the edges represent the tensors that flow between these op-
erations. The core concept of TensorFlow can be encapsulated
in how it handles these tensors and performs operations on
them [18]. The concept of Gradient Descent is implemented
through optimizers that automatically adjust the model’s pa-
rameters (weights and biases) to minimize the loss function:

θnew = θold − α∇θJ(θ),

where, θ represents the model parameters, J(θ) is the loss
function, α is the learning rate, ∇θJ(θ) is the gradient of
the loss function with respect to the parameters. TensorFlow
abstracts and simplifies the implementation of gradient descent,
making it accessible and flexible for optimizing a wide variety
of models. By adjusting the model parameters (weights and
biases), optimizers improve the model’s accuracy over time.

Neural networks, including those built with TensorFlow,
rely heavily on linear algebra [19]. One fundamental operation
is matrix multiplication, used in fully connected layers:

Y = XW + b,

where, X represents the input matrix, W is the weights matrix,
b is the bias vector, and Y is the output matrix. Linear algebra
operations in TensorFlow are used behind the scenes in training
machine learning models, especially in operations like forward
and backward propagation in neural networks, where weights
and inputs are represented as matrices and vectors. Operations
such as convolution in CNNs can also be understood in terms
of linear algebra.

4) Keras in TensorFlow: TensorFlow provides a compre-
hensive, scalable platform for building and deploying machine
learning models, with Keras serving as the high-level interface
that simplifies model development through its focus on ease
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of use and modularity. The combination of TensorFlow’s
scalability and Keras’s user-friendliness makes it an excellent
toolkit for both beginners and experts in machine learning.
Integrating Keras directly into TensorFlow as tf.keras offers
a streamlined workflow for designing and training machine
learning models with TensorFlow’s robust capabilities for
scaling and deployment. This integration provides a high-
level, user-friendly API for TensorFlow, without sacrificing
flexibility and performance [20].

Therefore, the research is defined a neural network ar-
chitecture using TensorFlow. This could be a Convolutional
Neural Network (CNN) for processing image data or a custom
model suited for sequential data like time-series of landmarks.
The model is trained on the preprocessed hand landmark data,
using labeled gestures to teach the model the corresponding
gesture for each set of landmarks.

C. Convolutional Neural Network and EfficientNet B3 Model

The framework is notable for its collection of pre-trained
machine learning models, which serve as a foundation for
advanced applications in computer vision and augmented re-
ality. Among its offerings are highly accurate face detection
algorithms that can identify and track multiple hand in real
time. Convolutional Neural Networks (CNNs) are at the heart
of image recognition and processing tasks [21], [22]. In the
context of using CNNs for recognizing hand gestures, a key
operation is the convolution, applied to the input image using
filters or kernels to extract features:

G[j, k] =
∑
m

∑
n

F [m,n] ·H[j −m, k − n],

where G is the output feature map, F is the input image, H
is the filter/kernel, j, k are indices in the output feature map,
and m,n are indices in the filter/kernel.

In the process of applying convolution operations within
CNNs, an input image or feature map from a previous layer,
denoted as F [m,n] undergoes a transformation through a
convolutional filter, H[j−m, k−n]. This filter, a small matrix,
traverses the input, focusing on extracting specific features by
learning relevant patterns during the model’s training phase.
The convolution between the input image and the filter results
in an output feature map, represented by G[j, k], where each
element signifies the convolution operation’s output at distinct
locations across the input. This output encapsulates the de-
tected features, such as edges or textures, effectively captur-
ing the input’s essential characteristics for further processing
or classification tasks, like hand gesture recognition, where
the input can range from grayscale to color (RGB) images.
Therefore, in hand gesture recognition, convolution allows the
model to learn to identify key features of hand gestures. This
capability is crucial for accurately classifying different gestures
based on visual input.

Moreover, efficientNet B3 is part of the EfficientNet family,
which is a group of Convolutional Neural Network (CNN)
models designed for efficient performance [23], [24], [25]. The
EfficientNet models use a systematic approach to scaling called
compound scaling, which uniformly scales the network depth,
width, and resolution with a set of fixed scaling coefficients.

This approach is different from traditional scaling methods
that independently scale these dimensions, often leading to
suboptimal performance.

The compound scaling method used in EfficientNet in-
volves scaling the network’s depth, width, and resolution with
a compound coefficient ϕ, according to the following formulas:
d = αϕ, w = βϕ and r = γϕ where depth (d) is the number
of layers in the network, width (w) is the number of channels
in the layers, resolution (r) is the size of the input image, α, β,
and γ are constants that determine the scaling of depth, width,
and resolution, respectively and ϕ is the compound coefficient
that controls the overall resource increase of the network.
Higher values of ϕ result in larger, potentially more accurate
networks. The idea is to find a balance between depth, width,
and resolution that leads to the best performance improvement
for a given increase in model size and computational cost.

Therefore, incorporating the EfficientNet B3 architecture
into the study of performance metrics for deep learning
in hand gesture recognition models further illustrates the
model’s advanced technical capabilities and its practical utility
in augmenting drone operations for agricultural purposes.
EfficientNet B3 is part of the EfficientNet family, which
represents a series of Convolutional Neural Network (CNN)
architectures designed to provide higher accuracy with fewer
parameters than previous models, making them both powerful
and efficient. The use of EfficientNet B3 in the hand gesture
recognition model capitalizes on its ability to scale model
size in a more balanced and effective manner, optimizing for
accuracy, latency, and resource utilization.

D. Evaluation Metrics for Hand Gesture Recognition Model

An evaluation of the hand gesture recognition model across
eight distinct sign classes was conducted, employing metrics
such as precision, recall, and the F1-score for a comprehensive
analysis, detailed as follows:

Precision, also referred to as the positive predictive value,
is determined by the following formula:

Precision =
True Positive

True Positive + False Positive

Recall, measured as the percentage of correctly predicted
instances out of all actual instances of the class, is given by
the equation:

Recall =
True Positive

True Positive + False Negative

The F1-score, also known as the F-measure, encapsulates
the harmonic mean of precision and recall, thereby reflecting
their equilibrium. Improvement in the F1-score is observed
only with simultaneous increases in both precision and recall.
This score spans from 0 to 1, with values closer to 1 denoting
greater accuracy in classification. The formula for calculating
the F1-score is as follows:

F1-score = 2× Precision × Recall
Precision + Recall

Accuracy is quantified as the ratio of accurate predictions
to the total number of predictions made. The calculation for
accuracy is represented by the following formula:
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Fig. 3. Training and validation curves for hand gesture recognition model: The left graph displays validation loss and the right graph displays validation
accuracy.

Fig. 4. Training and validation curves for hand gesture recognition model: The left graph displays validation F1 score and the right graph displays validation
AUC.

Accuracy =
TP + TN

TP + TN + FP + FN

To effectively use these metrics, it is important to have
a well-defined test dataset that accurately represents the real-
world scenarios in which the model will be deployed. Com-
paring these metrics after integrating EfficientNet B3 can
also provide insights into how this architecture improves the
model’s performance.

III. RESULTS

Fig. 3 shows two plots side by side, on the left is the
Training and Validation Loss, and on the right is the Training
and Validation Accuracy over 30 epochs of efficientNet B3
model training. The left plot indicates that both training and
validation loss decrease sharply initially and then level off,
converging to a low value, with the best epoch marked at 30.
On the right plot, the accuracy of both training and validation
rapidly increases and plateaus close to 1.0, indicating high
effectiveness of the model, with the best epoch for accuracy
marked at 11. These plots suggest that the model quickly

learned the task and achieved a stable and high performance
early in the training process, with minimal overfitting as
indicated by the close convergence of training and validation
lines.

Fig. 4 showcases two performance metric plots for a
machine learning model over the course of 30 training epochs.
On the left is the Training and Validation F1 Score plot,
which represents the harmonic mean of precision and recall.
The plot shows both training and validation F1 scores quickly
converging to a value close to 1.0, indicating excellent model
performance with a peak F1 score at epoch 11. This suggests
that the model maintains a balanced precision-recall relation-
ship and is neither overfitting nor underfitting.

On the right is the Training and Validation AUC (Area
Under the ROC Curve) plot, which is used to evaluate the
performance of a binary classification system. The AUC values
are consistently high and also converge to a score near 1, with
the best AUC score achieved at epoch 30. This high AUC value
indicates a high degree of separability, meaning the model
is very capable of distinguishing between classes. The close
proximity of the training and validation lines in both plots
suggests that the model is generalizing well to unseen data.

www.ijacsa.thesai.org 1261 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 5, 2024

Fig. 5. Confusion matrix depicting the performance of the hand gesture recognition model for drone control in agricultural applications.

Fig. 5 shows visualizes the confusion matrix of a hand
gesture recognition model used for controlling drones in an
agricultural setting. It is structured with actual gestures along
the y-axis and predicted gestures along the x-axis. The matrix
contains eight different hand gestures: ascending, descending,
pitch backward, pitch forward, roll left, roll right, yaw left,
and yaw right. The diagonal from the top left to bottom right
represents instances where the predicted gesture matches the
actual gesture, signifying a correct prediction by the model.
The numbers within these diagonal cells, 24 for ascending, 25
for descending, 24 for pitch backward, 26 for pitch forward,
23 for roll left, 25 for roll right, 23 for yaw left, and 21
for yaw right, indicate a high rate of accurate classifications
for each respective gesture. Non-diagonal cells would show
misclassifications, but in this matrix, almost all non-diagonal
cells are zero, demonstrating that there are very few errors
made by the model. Notably, there is only one misclassification
observed, where a gesture was actually yaw right but was
predicted by the model as yaw left. This could be attributed to
the potential similarity in the appearance of these two gestures
to the model. Overall, the high count of True Positives (TP) and
the sparse misclassifications underscore the model’s robustness
and reliability in interpreting hand gestures for drone operation
under the tested conditions.

The data-driven approach, employing a Convolutional Neu-
ral Network (CNN) with EfficientNet B3 architecture, confirms
its suitability for visual tasks such as hand gesture recogni-
tion. The EfficientNet B3 model’s performance signifies that
its application in the agricultural domain, controlling drones
via hand gestures, can be both feasible and effective. This
holds promise for increasing operational efficiency and the
democratization of technology use in the field, allowing for
more intuitive and natural human-machine interaction without
the need for complex controllers or extensive training.

IV. DISCUSSION

The research presented herein marks a notable advance-
ment in leveraging artificial intelligence, particularly convo-
lutional neural networks (CNNs) with EfficientNet B3 archi-
tecture, for hand gesture recognition aimed at drone control
in agriculture. This integration showcases a substantial leap in
precision, robustness, and dependability in gesture recognition
technology, as demonstrated by superior performance metrics
including loss accuracy, F1 score, and Area Under the Curve
(AUC). Such achievements signal the potential for transforma-
tive enhancements in agricultural methodologies, optimizing
operational efficiency and elevating safety standards.

The exceptional performance of the hand gesture recogni-
tion system is rooted in meticulous dataset preparation, encom-
passing a diverse array of lighting conditions and subjects, in
conjunction with deploying the EfficientNet B3 model within
the CNN framework [26]. The scalability and efficiency inher-
ent to this model were instrumental in achieving a balanced
and effective learning process, thereby facilitating the system’s
ability to recognize gestures with high accuracy under varying
environmental conditions and across different individuals [27].
Moreover, by integrating EfficientNet B3, the hand gesture
recognition model achieves superior performance in recogniz-
ing and interpreting complex hand gestures, translating them
into precise commands for drone control.

Practical implications of this advancement are manifold,
primarily offering a simplified and intuitive means for farmers
to control drones, thus circumventing the complexities asso-
ciated with traditional control mechanisms. This innovation
significantly diminishes the learning curve associated with
drone technology, making it more accessible and user friendly
for agricultural applications [28]. Incorporating hand gesture
recognition into agricultural drone operations could revolution-
ize crop monitoring processes, enable precise application of
pesticides and fertilizers, and reduce the reliance on manual
labor. Moreover, this technology promises to enhance safety
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by reducing human exposure to potentially harmful chemicals
and facilitating crop inspection in otherwise inaccessible ar-
eas [29]. Traditional gesture recognition systems often faced
difficulties when used in poor lighting or with subjects that
moved quickly [30]. This study overcomes these challenges
by utilizing advanced image processing methods and machine
learning algorithms. These enhancements improve the system’s
ability to recognize gestures in a variety of lighting situations
and from different viewpoints, making it more flexible and
dependable.

Despite the promising outcomes, this study acknowledges
certain limitations. The dataset’s diversity, while extensive,
was limited to images from three individuals. Augmenting
the dataset with a broader spectrum of gesture variations
from a more diverse demographic could significantly improve
the model’s generalizability and performance in real-world
settings. Moreover, the controlled environment of the study
may not fully capture the complexity and unpredictability of
actual agricultural environments, where factors like fluctuating
lighting conditions, background clutter, and weather variations
could impact system performance.

Looking towards the future, the integration of these intu-
itive drone control systems with artificial intelligence and data
analytics heralds a new era of precision agriculture. Future
research could focus on developing fully autonomous drones
capable of real-time monitoring and management of crops, pest
control, and targeted nutrient application, thus optimizing crop
health and yield. Additionally, exploring the synergy between
drones and other technological innovations in agriculture,
such as robotic ground vehicles and sensor networks, could
lead to the creation of comprehensive, interconnected farm
management systems. This could revolutionize agricultural
practices, making them more efficient, sustainable, and tailored
to specific environmental and crop needs, thereby supporting
global human and food security challenges.

V. CONCLUSION

This study represents a significant advancement in the
application of artificial intelligence (AI) within the realm of
agriculture, showcasing a system that leverages Convolutional
Neural Networks (CNNs), specifically the EfficientNet B3
model, for the purpose of hand gesture recognition to control
drones. The system’s training involved a dataset of 1,393
images featuring diverse hand signals captured under various
lighting conditions and from three distinct individuals, demon-
strating its robust ability to accurately interpret gestures with
high performance metrics such as loss, accuracy, F1 score,
and Area Under the Curve (AUC). This breakthrough provides
a tangible solution to enhancing agricultural productivity and
safety by enabling farmers to effortlessly manage drones for
critical tasks through intuitive hand gestures. The successful
application of hand gesture model in agriculture demonstrates
the potential for its adoption in construction scenarios where
drones can operate in more structured environments. In ad-
dition, the precision of the hand gesture recognition system
will be crucial for ensuring accurate delivery of materials,
especially in high or hard-to-reach areas. Future research will
aim to enhance the model’s robustness against the diverse
environmental conditions typically found on agricultural sites
with farms. This would entail further data collection and

model training to ensure the system can accurately interpret
hand gestures even in less than ideal conditions. Additionally,
integrating the use of drones for spraying will be explored,
potentially enabling precise and efficient delivery of substances
in various farming scenarios.
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