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Abstract—Securing smart cities in the evolving Internet of
Things (IoT) demands innovative security solutions that extend
beyond conventional theft detection. This study introduces tem-
poral convolutional networks and gated recurrent units (TCGR),
a pioneering model tailored for the dynamic IoT-SM dataset,
addressing eight distinct forms of theft. In contrast to conven-
tional techniques, TCGR utilizes Jaya tuning (TCGRYJ), ensuring
improved accuracy and computational efficiency. The technique
employs ResNeXt for feature extraction to extract important
patterns from IoT device-generated data and Edited Nearest
Neighbors for data balancing. Empirical evaluations validate
TCGRJ’s greater precision (96.7%) and accuracy (97.1%) in
detecting theft. The model significantly aids in preventing theft-
related risks and is designed for real-time Internet of Things
applications in smart cities, aligning with the broader goal of
creating safer spaces by reducing hazards associated with unau-
thorized electrical connections. TCGRJ promotes sustainable en-
ergy practices that benefit every resident, particularly those with
disabilities, by discouraging theft and encouraging economical
power consumption. This research underscores the crucial role
of advanced theft detection technologies in developing smart cities
that prioritize inclusivity, accessibility, and an enhanced quality
of life for all individuals, including those with disabilities.
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I. INTRODUCTION

Urban areas are undergoing a paradigmatic transition to-
wards intelligent ecosystems, propelled by the incorporation of
state-of-the-art technologies that fundamentally alter conven-
tional urban terrains [1]. The integration of cloud computing
and the Internet of Things (IoT) is driving a transformative
change in the way cities function by establishing smart cities.
This research article investigates the complex relationship be-
tween cybersecurity, smart energy analytics, and the incorpora-
tion of cloud and IoT technologies in smart city environments.
The motivation behind the development of smart cities is the
necessity to address the challenges presented by increasing
populations and limited resources [2].

Smart cities, which are conceptualized as environments that
promote innovation through the use of data, are built upon
the integration of digital technologies, citizen engagement, and
data-driven decision-making. Energy management emerges as
a pivotal field in which optimization, sustainability, and re-

silience are paramount. Central to the smart city paradigm are
cloud computing and the Internet of Things, which function as
neural networks that empower municipalities to comprehend,
assess, and intelligently respond [1], [3]. The IoT, by means of
interconnected sensors and devices, supplies smart cities with
real-time data that is vital, whereas cloud computing provides
the necessary infrastructure and processing capabilities to ana-
lyze the enormous datasets produced by IoT devices [3]. These
technologies have a significant impact on energy management
by improving bidirectional connectivity and real-time moni-
toring for smart meters, smart grids, and Advanced Metering
Infrastructure (AMI) [4]. However, the establishment of a fully
operational smart energy environment continues to present
obstacles, necessitating the implementation of strong security
protocols to safeguard against data management complications,
cyber risks, privacy apprehensions, and the resilience of cloud-
based systems.

Intelligent energy analytics faces the difficulty of effec-
tively managing enormous quantities of data [5]. This article
highlights the significance of implementing a Demand Side
Management System (DSMS) in smart cities as a means to
improve energy efficiency, offer inventive resolutions, and exert
efficient authority over energy consumption. DSMS develop-
ments, which include load shifting, economic planning, and
system optimization, improve energy management precision
and efficiency through the use of machine learning algorithms
such as Grey Wolf Optimization (GWO), Long Short-Term
Memory (LSTM), and Recurrent Neural Network (RCNN) [6].

Energy theft is a major concern, causing damage to in-
frastructure and leading to global economic hardship, despite
progress. Detecting electrical theft promptly improves envi-
ronmental safety by reducing the risks associated with illegal
connections. This effort aims to encourage the implementation
of sustainable energy practices, which will result in more
affordable power and benefits for all residents, including
persons with disabilities. The incorporation of advanced theft
detection technologies into smart city infrastructure enables
faster and more precise decision-making through the use of
machine learning algorithms [7]. The Energy Theft Detection
and Prevention System (ETDPS) sets a new benchmark in
smart cities by ensuring its efficacy even in unmonitored
households, therefore revolutionizing energy theft monitoring.
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Research Gap: Overcoming Challenges in Smart City Data
Analytics: Although there have been notable progress in smart
city technologies, there are still some technological constraints
that impede the complete utilization of data analysis in smart
cities. The efficient management of the growing amount of
data in smart cities greatly depends on strong data security
and the use of advanced energy-related information systems.
Nevertheless, even with these technological breakthroughs,
there is still a crucial requirement to improve the performance
of smart city infrastructure in order to attain maximum levels
of efficacy and efficiency. The changing dynamics of intelligent
city infrastructure sometimes exceed the capacity of existing
optimization tools, requiring the creation of simpler ways for
assessing restrictions. In addition, adapting machine learning
models to process massive volumes of data poses considerable
difficulties, particularly considering that scalability is essential
for successful implementation in expansive urban regions.
An important problem in machine learning approaches is the
adoption of a “black box” design, which makes it difficult
to understand the underlying processes, especially in vital
industries like power management, where accountability and
openness are crucial. The reliability of input data has a sub-
stantial influence on the outcomes of machine learning models,
and inherent biases can undermine both the impartiality and
precision of energy statistics. In order to effectively implement
and improve data analytics systems in smart cities, it is crucial
to tackle these obstacles. The objective of this study is to
create new and creative methods to address the technological
obstacles, therefore enhancing the efficiency and dependability
of smart city infrastructure.

Field Contributions: This work adds significantly in several
important areas:

1) Incorporation into Smart Cities Framework: The TC-
GRJ paradigm effectively interacts with the smart
cities architecture, specifically targeting security con-
cerns associated with IoT devices. The use of ad-
vanced theft detection technology plays a significant
role in the advancement of inclusive and intercon-
nected smart city infrastructures.

2)  Processing in the Cloud: Utilizing a cloud-based data
processing technique improves computational effi-
ciency in real-time theft detection in smart cities. Ev-
ery person, including those with impairments, reaps
the advantages of sustainable energy practices as a
direct result.

3)  Collection of Data from IoT Devices: The approach
employed in the formulation of the conceptual frame-
work involves gathering data from adaptive Internet
of Things (IoT) devices to identify patterns of behav-
ior in urban environments connected to the IoT. This
promotes affordable electricity expenses that benefit
both the general public and those with disabilities.

4) Dynamic adaptability to security challenges: The
framework’s capacity to accommodate intricate secu-
rity issues in smart cities is exemplified by its division
of theft into eight distinct categories. This approach
demonstrates accuracy and efficiency in managing the
growing threats to security.

This study enhances the existing comprehension and effi-
cacy of security protocols in connected devices through the
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implementation of cutting-edge techniques and the improve-
ment of larceny detection.

The subsequent sections of the paper are organized as
follows: Section 2 provides an overview of the most recent
advancements in the field of literature. Additionally, in Section
3, the issue that has been identified and emphasized in the work
is discussed. The proposed materials and methods utilized to
address the issue are detailed in Section 4. Section 5 discusses
how the identified issue is resolved by the proposed model,
which is simulated using experimental results. In Section 6,
the article’s concluding remarks are discussed.

II. RELATED WORK

The current research analyzes how modern technologies
could benefit living in cities in various kinds of methods,
including specific focus on IoT, cloud-based computing, power,
information analysis, and cybersecurity.Incorporating Internet
Control Message Protocol information, a pioneering study [8]
demonstrates the relevance of early recognition of power theft
for security when operating urban intelligent environment.
The system prevents complications and threats involved in
illegal activities associations through employing sensitivity
assessment and neural networks for recognizing and reduce
efficient criminal activity. Furthermore, to raising stability, it
additionally minimizes the entire energy expenses benefiting
every citizen and includes those with handicap. In study
[9], a connection between cloud systems and IoT in the
evolution of smart cities is completely examined, especially
emphasizing on the prerequisites of constant monitoring and
immediate enhancements for IoT and cloud-based integration.
Future research objectives and evaluating factors may become
enhanced with the guidance of this study.

In study [10], obstacles to IoT adoption in smart cities in
India are examined through the utilization of a hybrid multi-
criteria decision-making methodology. The research identifies
and evaluates fifteen barriers impeding the extensive adoption
of the Internet of Things (IoT), providing policymakers with a
systematic framework to facilitate informed decision-making.
The investigation of traffic prediction in smart cities using
long-term and short-term memory networks is detailed in
study [11]. The research is centered around enhancing traffic
management and reducing congestion through the development
of precise prediction models for environmentally sustainable
and intelligent urban transportation systems.

A proposed security system in study [12] addresses secure
communication in IoT-driven smart cities using a detection
concept. Utilizing neural network-based training, the system
track local and global changes in the sharing of data among
IoT devices in order to detect vulnerabilities in resource access
and bolster overall security. Researcher in study [13] presents
a thorough examination of machine learning techniques based
on the Internet of Things (IoT) in diverse domains. The
article illuminates the ways in which machine learning models
have been implemented in the energy management, healthcare,
agriculture, vehicle wireless networks, device security, and
environmental sectors.

Energy statistics and dependability are the subject of the
second compilation of works, which addresses the critical issue
of energy theft in smart cities. In their study, [14] presents
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a data-driven approach that employs the hybrid Bagged Tree
method to detect Non-Technical Losses (NTLs) resulting from
deceitful customer conduct. The research highlights the criti-
cality of surmounting challenges associated with the complex-
ity of artificial intelligence algorithms designed for the purpose
of detecting larceny. The authors in study [15] emphasize
the significance of pattern identification and prediction error
calculation in their examination of pattern formation utilizing
LSTM models. The theft detection systems, which are essential
for ensuring a consistent power supply and averting blackouts,
contribute to the overarching objective of establishing urban
environments that are more secure, intelligent, and efficient.

The study conducted by [16] investigates novel approaches
to ensuring energy reliability and presents a methodology
founded on Distributed Generation (DG). Utilizing photo-
voltaic modules, the study recommends installing renewable
distributed generation units on the properties of customers.
In order to address instances of fraudulently reported over-
charging, the authors suggest implementing SCADA metering
point-based solutions. The investigation of hardware-driven
architecture and network-based topology for monitoring energy
distribution in the Neighborhood Area Network (NAN) is
detailed in study [17]. As an effort to improve energy man-
agement in smart cities, the authors propose a NAN strategy
that includes a central master monitor for the complete energy

supply.

This study examines the significance of variable transfer
learning (TLs) and the properties of non-sequential auxiliary
data. This anthology explores the complex issues and cre-
ative solutions found in the fields of energy data analysis,
cybersecurity, the Internet of Things (IoT), and smart cities.
Researchers from throughout the world are actively promoting
the advancement of smart cities. Their contributions include
identifying transgressions, predicting congestion, and detecting
energy theft. The many ideas and methods discussed in these
publications together contribute to the continuing discussion
about creating urban settings that are smarter, safer, and more
efficient.

III. PROBLEM STATEMENT

The fusion of IoT and cloud computing in smart energy
data analysis is driving secure smart city development, pre-
senting challenges that demand focused research. The influx of
data in smart city ecosystems necessitates intelligent solutions
for efficient processing to optimize resources, plan cities, and
inform decisions [18]. Inefficient processing poses a threat to
smart city futures, hindering innovations in energy efficiency,
infrastructure design, and citizen services [19]. Energy theft
is a critical challenge compromising the integrity of smart
city energy infrastructures. This research proposes innovative
methods integrating technology, security, and energy analytics
to address challenges and meet future smart city standards.
Early identification of electricity theft enhances safety, re-
ducing the risk of incidents and hazards from unauthorized
power connections [20]. Preventing theft lowers power costs
and ensures a reliable supply, aligning with sustainable energy
practices. Cutting-edge theft detection technologies contribute
to inclusive smart cities, enhancing accessibility, mobility, and
living conditions, especially for individuals with disabilities.
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IV. MATERIALS AND METHODS

Our strategy, combining machine learning and advanced
data mining in IoT-Cloud solutions, fortifies smart cities
against energy theft and enhances cybersecurity. In simula-
tions, 20% data is for testing and 80% for training. The
following sections detail our approach, with Fig. 1 illustrating
the model. Detecting electricity theft early ensures safety
and benefits all, including those with disabilities. It prevents
mishaps and aligns with our goal of a secure smart city
ecosystem. Guarding against theft makes power more afford-
able and aids equitable energy use, reducing financial burdens
for everyone. Identifying theft promotes sustainable energy
practices, benefiting all residents, especially those with impair-
ments. Cutting-edge technologies for theft detection advance
smart city creation and enhance inclusivity. Implementing
theft detection systems prevents disruptions, ensuring a steady
power supply, crucial for those relying on electric-powered
technology. Our strategy aligns with inclusive urban design,
acknowledging the transformative impact on the well-being of
individuals with disabilities. To solve this problem, we have
proposed a model comprises of differnt components including
the preprocessing of input data from cloud, processing of
the gathered data, check imbalancing, extraction of relevant
features and then perform classification based on the TCN-
GRU network.

A. Dataset Collection and Preprocessing

This study used a dataset obtained from the Open Energy
Data Initiative (OEDI) [21], which is acquired from the In-
ternet of Things (IoT). The dataset provides comprehensive
information on energy consumption across 16 different cate-
gories, covering a period of 12 months. In order to replicate
a wide range of energy theft situations, we have incorporated
eight different forms of fraudulent activities into our analytical
model, hence expanding the scope of our depiction. The use of
ToT architecture enables the collection of real-time data, which
facilitates a comprehensive analysis of energy consumption
patterns. Fig. 2 provides a visual representation of the dataset.
Initial preprocessing is conducted to assure the quality of the
data by resolving concerns such as differences in size, missing
values, and anomalies. The unprocessed data, obtained from
intelligent meters and Internet of Things (IoT) devices, offers
vital observations on energy consumption trends in smart urban
infrastructures. The methods are shown numerically.

data —
normalized_data = raw_data — mean W
std_dev

where, the original dataset is denoted by raw_data, the
dataset mean is mean, and the standard deviation is std_dev.
By ensuring that characteristics with varying sizes contribute
equally to the ensuing analyses, normalizing the data helps to
avoid variables with greater magnitudes from predominating.

Interpolation for Handling Missing Values and Outlier
Removal [22]:

interpolated_data = f(observed_data) 2)

Data_filtered = {DT _instance; | DT_instance; ¢ outliers}
3

www.ijacsa.thesai.org

1267 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

Data o o

Dataset Input

Preprocessinge

Feature Feature
. . One Hot .
- Data Extraction using Encodin Scaling
ResNeXt & | and score

Normalization

Cloud Storage

\
da
M_) «P | Missing values
CLOUD STORAGE 9

Interpoloation
HEM Controller L

Feature
Imporance
Smart Meter
loT-Smart Home
Appliances T
LB Fl-measure,
Smart Home . -
Accuracy, ! I
4 — Recall, . -
Precision

Feature Engineering and scaling o

Data Balancing using ENN

Undersampling

Performance Evaluation and Statistical Analysis

Vol. 15, No. 5, 2024

Proposed Ensembler — TCN-GRU e

Oversampling

Tuning using Jaya Algorithm ‘

Wilcoxon Test, Kruskal Test Kendalla's Test
Paired Student's Test, ANOVA Test,
Pearson's Test

Etc.

7
Classification of 8

{ types of thefts
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Fig. 2. Derived dataset broad overview.

Observed data, observed_data, undergo interpolation for miss-
ing values, ensuring a comprehensive dataset. DT_instance;
instances have outliers removed to preserve integrity, enhanc-
ing dataset quality for valid inferences in further study.

B. Data Balancing using ENN

Addressing energy theft detection challenges in unbalanced
datasets, we employ the Edited Nearest Neighbors (ENN)
technique [23]. ENN adeptly navigates dataset complexities,
effectively balancing irregular theft and consistent energy use
patterns by pruning redundant information based on nearest
neighbor concepts [23].

EENN(X7 Y) = {(xzayl) € XaY

4
| z; satisfies the ENN criterion} @)

Applying ENN to a dataset Epny modifies instances repre-
sented by X, with corresponding class labels Y as (z;,y;).
ENN assesses an instance’s significance based on its proximity
to neighbors in the feature space. This technique balances
the dataset, enabling the next machine learning model to
better identify patterns associated with energy theft, enhancing
accuracy and dependability in smart city settings.

C. Feature Extraction using ResNeXt

In order to analyze data from smart cities, it is essential to
first do feature extraction, which involves taking the raw input
information and identifying patterns and correlations. Modern
Convolutional Neural Networks (CNNs) such as the ResNext
architecture are used for this [24]. The following represents the
feature extraction method mathematically: X, is the original
input dataset. Its dimensions are D x F' x G, where D is the
number of channels and F' and G are the input’s width and
length, respectively. ResNext’s feature extraction process can
be stated as follows:

Xhigh—dim = ReSNeXt(Xraw; eResNext) (5)

The mapping function that ResNext performs with learn-
able parameters Ogesnexe 1S denoted as ResNext(-) in this
case. Hierarchical representations are captured by the high-
dimensional feature tensor Xpighgim, Which is the output.
ResNext uses a sequence of convolutional layers to extract
features. The convolutional process with parameters Ocoyy can
be represented as Conv(-). ResNext is hierarchical and consists
of L convolutional layers followed by activation and normal-
ization routines. The general procedure may be represented
numerically as follows [24]:

Y, = ReLU(BN(COHV(Yl_l; 0C0nvl)

GBNZ)Q l=1,2,...,L (6)
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In this case, Yo = X, and the notations ReLU(-), BN(+),
and Conv(-) stand for batch normalization, convolutional
operations, and rectified linear unit activation, respectively.
Concatenating the output tensors from each layer yields the
final high-dimensional feature tensor Xpigh-dim [24]:

Xhigh-dim = COIICEIt(le,YVQ7 c.. ,YL) @)

The resultant Xyign.gim provides a rich and informative fea-
ture representation for further classification tasks, encapsulat-
ing complex spatial hierarchies and semantic representations.

D. Classification by Jaya Optimization-based TCN-GRU

The core of our proposed model lies in the fusion of
Temporal Convolutional Networks (TCN) and Gated Recur-
rent Units (GRU), optimized through the Jaya optimization
algorithm. Although TCN-GRU is highly adept at recognizing
historical connections in data presented in sequence, it acts
as an appropriate preference for assessing variations in elec-
tricity consumption continuously. Jaya optimization adjusts the
model’s assumptions for its greatest accuracy for recognizing
cases of electrical theft, improving it’s convergence and flexi-
bility.

The set of inputs at time i will be expressed by A;, though
the stored state with time ¢ is represented by B;. The GRU
equations are given by [25]:

Ci =0(DapAi + EapBi—1 + Fap) (8)

G, =0(DgpAi + EgpBi_1+ Fgp) )

H; = tanh(DgpA; + C; ® (EgpBi_1) + Fgs)  (10)
Bi=(1-G;)©0H;+G;®B;_1 (11)

Within each GRU problem, Dap,Dgp,Dyp iden-
tify updated, reset, and candidate state hidden vectors.
FEap,Eqp, Fnp represent associated weight matrices. o is
the sigmoid function, and © indicates element-wise multipli-
cation. Collectively, these elements impact GRU dynamics and
sequential input processing. The TCN component generates Y;
using:

Y; = softmax(Mpy H; + Bry) (12)

When Y, is added in the classification, it signifies the
model’s prediction at time ¢. The softmax function processes
H; to determine the output. The weight matrix Mpyy and
bias term Bpy link the hidden state to the output, crucial for
confidence and probability shaping. Jaya optimization reduces
the cross-entropy loss in TCN-GRU parameter modification
[26].

N C
L==3"%"ILy,log(Py;) (13)
k J

In this context, C' represents the total number of classes,
and N signifies overall instances. Binary indicator Ly, ; dis-
cerns whether instance k corresponds to correct class j.
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Predicted probability Py ; expresses the model’s estimation
for k£ in class j. These facilitate comprehensive evaluation
of TCN-GRU model’s accuracy in identifying energy theft.
Formulas govern iterative parameter adjustments through Jaya
optimization [26].

M;=M; +N -0 - (B; — |A;]) (14)

Al = A + M, (15)

In our optimization method, symbols like M;, N, O, and
P; are crucial. M; represents present mobility, indicating
solution change speed. Variable /N controls acceleration, skill-
fully organizing modifications. O adds controlled randomness,
injecting uncertainty. P; guides the best solution domains. The
TCN-GRU model, employing Jaya optimization, converges
for accurate energy theft recognition. Fig. 3 shows TCGR-JA
model.

\jlnpul Sequence (Ai): \:Random Number (O)j\ [Acce]el‘alion Coefficient (N)j\

(Ci= 6(DABAi + EABBi-1 + FAB))

(Reset Gate (Ci))

(Gi= 6(DGBAi + EGBBi-1 + FGB))

\/Update Gate (Gi)

(Hi = tanh(DHBAI + Ci @ (EHBBi-1) + FHBA)
Candidate Hidden State (Hi)|

(Bi=(1-Gi) ® Hi+Gi @ Bi-l

\Hidden State (Bi)

\li = softmax(JIBBi + KIB)
Output (Ii)

\/Loss (L):
;17

(£=-Xi"N ¥D"E Li.D log(li.D) ) (Best Solution Position (i)} A'i = Ai + Mi)

(Mi=Mi+N @ 0 @& (Bi-|Ai])]
[Currem Velocity (Mi)J

Fig. 3. TCGR-JA Model.

E. Significance of Statistical Analysis and Results Validation

Utilizing critical metrics including log loss, ROC-AUC,
MCC, and PR-AUC, the efficacy of our method in averting
energy theft in smart cities is meticulously evaluated [27],
[28]. ROC-AUC and PR-AUC assess the predictive capability
of the framework across various thresholds, whereas metrics
such as MCC offer comprehensive insights into classification
performance through the integration of specificity and sensitiv-
ity. In situations where probabilistic predictions are prevalent,
the progressive increase in log loss indicates the precision of
stochastic approximations. In order to substantiate the claims
made, we utilize Pearson correlation tests to identify linear
relationships, ANOVA tests to examine group variance, and
Student’s t-tests to identify pairwise comparisons. Our model
endeavors to decrease energy theft and set a standard for cyber-
secure urban infrastructures by placing immense importance
on these validation measures and performing comprehensive
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comparisons with prior related research. In order to make
a significant contribution to the advancement of smart city
technologies, we aim to empirically validate the model’s
dependability in real-world scenarios.

V. SIMULATION AND RESULTS

This section outlines our use of TensorFlow’s powerful
GPU in Google Colab to enhance ETDPS efficiency. Testing
the architecture involved cloud-stored IoT datasets. Detailed
results follow in subsequent sections. The initial exploratory
data analysis (EDA) involves scrutinizing feature distribution,
using visual aids to uncover trends. Though complex, this
process equips decision-makers with deep insights, facilitating
informed decisions despite model-building challenges.

Correlation Analysis (IoT Devices Received Data)
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Fig. 4. Correlation analysis of the data received from IoT devices.

Quantitative dataset characteristics are depicted in Fig.
4, emphasizing patterns in IoT device data. The correlation
research systematically uncovers connections, displayed on the
heatmap. Ranging from -1 to 1, values indicate no link (0),
opposing alliance (-1), or a perfect connection (1). Warmer
tones denote more complex associations, enhancing the under-
standing of relationships.

Fig. 5 provides a clear visual depiction of the attribute dis-
tribution of the dataset, with each histogram corresponding to
a different feature and providing a numerical value frequency.
These histograms reveal the wide range of dataset features,
providing a complicated view. In addition to being visually
attractive, they serve as perceptive guides by highlighting
anomalies and deviations that reveal important subtleties in
the data. A brief summary of feature importance based on
the Random Forest method is shown in Fig. 5, which also
shows the effect of each variable on the prediction of theft.
Greater impact is shown by taller bars that stick out. Shorter
bars, however, have less of an impact. In order to effectively
mitigate energy theft in smart city infrastructures, decision-
makers may concentrate on key aspects by using this detailed
analysis to inform resource allocation and intervention tactics.

Fig. 6 depicts a comparison of confusion matrices between
our proposed model and existing methods. Our novel approach
excels in theft detection accuracy with faster execution times,
crucial for real-world responsiveness. Efficient cloud-based
processing is a key feature, streamlining data acquisition from
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IoT devices and reducing overall processing time for quicker
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theft identification.

The ROC curve with the highest AUC in Fig. 7 shows
that the TCGRJ Model excels at distinguishing theft from
normal situations. Using the IoT-SM dataset, Fig. 7 presents
the accuracy values of numerous methods used in energy theft
detection. Higher scores indicate better performance. Accuracy
measures how well each technique detects instances of harmful
behavior. Our proposed model TCGRJ performs in terms of
accuracy.

Table I evaluates the TCGRJ model, highlighting its im-
pressive 98.0% accuracy. This breakthrough positions TCGRIJ
as a highly effective approach for detecting theft activities in
the IoT-based SM dataset, outperforming established models
in multiple metrics.

Table II displays the average statistical analysis findings
for theft detection techniques for the IOT-SM dataset. The
proposed strategy, TCGRJ, performs better than current ap-
proaches on a number of statistical measures. With a Pearson
correlation of 0.86, a Spearman correlation of 0.32, and a
Kendall correlation of 0.89, TCGRIJ performs better than its
competitors. Moreover, TCGRJ demonstrates a strong corre-
lation with a Chi-Squared test score of 18.4. These results
validate the robust and dependable identification of stolen data
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TABLE I. PERFORMANCE EVALUATION RESULTS OF PROPOSED AND
EXISTING METHOD ON IOT-BASED SMART METER DATA

§ 3] =} 2 >

g 5 2 3 ] _

= (5] Rz 19} =
E g2 |28 |2 |2|2 |3
= & < = & ._1 < = -4
MCDM 0.69| 0.76| 0.65| 0.50| 1.06| 0.75] 0.31| 0.92
[10]

SVM 0.70| 0.77| 0.65| 0.50| 0.99| 0.55| 0.31| 0.92
[29]

LG [29] 071 0.79| 0.66| 0.51| 098] 0.56| 0.31| 0.93
XGB 0.69| 0.76| 0.65| 0.50| 1.06| 0.73]| 0.31| 0.92
[29]

DenseNet | 091 096| 091 0.86| 0.21| 0.90| 0.85| 0.90
[30]

CNN 0.56| 0.62| 0.55| 0.55| 1.62| 0.81| 0.31| 0.55
[20]

LSTM 0.89| 095| 0.89| 0.84| 0.27| 0.88| 0.83| 0.88
[31]

BERT 092 097| 091| 0.87| 0.20| 0.90| 0.85| 091
[32]

TCGRJ 098 099| 098| 097 0.06| 0.97| 098] 0.98

on IoT devices by the proposed strategy.

TABLE II. AVERAGE STATISTICAL ANALYSIS OF PROPOSED AND
EXISTING MODELS

g E -
§ 20, |8 | .
—_ w = = —
= g g 3|5 | & |3
= z 2 o o =
. S 2 Z ‘3 2 = 3]
Techniques | = M < & 7 @) ¥
MCDM 185.69 | 18.29| 7.89| 249 3.09| 21.39| 091
[10]
SVM [29] 109.99 | 10.79| 4.79| 1.59| 1.99| 13.19| 0.64
LG [29] 120.59 | 11.79| 5.29| 1.79| 2.29| 14.99| 0.66

XGB [29] 99.19 9.69 | 429| 1.49| 1.89| 12.39| 0.61
DenseNet 14279 | 13.89| 6.09| 1.99| 2.59| 17.29| 0.73
[30]
CNN [20] 94.69 929 | 409| 1.39]| 1.79| 11.79| 0.60

LSTM 11429 | 11.19] 4.99| 1.69| 2.19| 14.19| 0.65
[31]
BERT 191.89 | 18.79| 8.19| 2.69| 3.29| 22.69| 0.92
[32]
TCGRJ 15229 | 14.99| 6.49| 2.19| 2.79| 18.49| 0.87

VI. CONCLUSION AND FUTURE WORK

With a primary focus on the IOT-SM dataset, our study
advances intrusion detection in IoT systems. The TCGRJ
model, a novel TCN-GRU architecture employing Jaya Opti-
mization, holds promise for enhancing IoT security. Departing
from the conventional approach of treating theft as a singular
issue, we introduce a comprehensive categorization scheme
distinguishing eight theft forms. This detailed method im-
proves threat comprehension and fortifies the TCGRJ model’s
discriminatory capacity. Tailoring our ETDP to diverse theft
forms overcomes the limitations of generic security solutions,
making TCGRIJ an effective defense against potential vulner-
abilities. Our research contributes to malware detection in IoT
environments, impacting privacy considerations. Preventing
electricity fraud promotes safety, reduces hazards, and lowers
costs, particularly beneficial for individuals with disabilities.
Future work involves refining the TCGRJ model, exploring
optimization opportunities, and ensuring broader applicability,
scalability, and industry collaboration for comprehensive IoT
security solutions.
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