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Abstract—Nowadays, the wheat plant has been considered a
crucial source of protein, energy, and micronutrients for people.
The motivation behind this study comes from how to increase
the wheat crop growth and prevent wheat diseases as this plant
plays a significant impact on food security all over the world.
Wheat plant diseases can be divided into fungal, bacterial, viral,
nematode, insect pests, physiological and genetic anomalies, and
mineral and environmental stress. Digital images containing the
wheat plant disease are collected from different public sources
like Kaggle and GitHub. In this study, an adaptive deep-learning
model is developed to classify and detect various types of wheat
diseases collected digitally in an efficient accurate manner. The
dataset is split into two sets: approximately 80% of the data (
8,946 images) for the training set and 20% (2,259 images) for
the validation set. The training set is composed of 1445, 1478,
1557, 1510, 1424, and 1532 images of healthy, leaf rust, powdery
mildew, septoria, stem rust, and stripe rust while the validation
set contains 357, 360, 404, 402, 353 and 383 images respectively.
The suggested method achieved 97.47% validation accuracy on
the training set of images and a testing accuracy of 98.42%
on the testing set. This study offers a method of training for
the classification and detection of wheat diseases using a mix of
recently established pre-trained convolutional neural networks
(CNN), DenseNet, ResNet, and EfficientNet integrated with the
one-fit cycle policy. In comparison to the current state of the art,
the proposed model is accurate and efficient.
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I. INTRODUCTION

Recently, there have been many production and economic
losses around the world due to several agricultural crop diseases.
Indeed, the wheat plant is one of the primary crops grown
worldwide and a major source of food for humans, considering
that it is the second largest crop in the world, providing 19%
of people’s calorie intake [1], [2]. In study [3], the authors
emphasized that between 26 to 30 percent of the world’s
yearly wheat crop is lost to wheat diseases. Additionally, they
mentioned that wheat disease losses can account for up to 70%
of the wheat output if plant protection technologies are not
used to manage fields.

Indeed, this paper is motivated by the desire to handle
and detect wheat disease which can lead to high crop
growth increase by using deep learning techniques. This paper
demonstrated how deep learning ideas in artificial intelligence
and computer vision have become a potential remedy for a
variety of issues in agriculture. Convolution neural networks
(CNN) have recently studied the use of digital imagery for
autonomous disease detection in crops. By using a convolutional

neural network (CNN), the characteristics and features will
be learned automatically rather than by human presence, and
this will save time, and costs and help the farmer take quick
action to treat the wheat disease in the early stage. CNNs apply
several convolutions to extract important features from images
[4], [5], [6], [7], [8], [9].

This paper addressed only the fungal wheat diseases which
include the following: Powdery Mildew, Leaf Rust, Stem Rust,
Stripe Rust, and Septoria. Table I is a summarized table of
discussed wheat fungal diseases, their pathogens with scientific
names, and the visual symptoms observed on infected plants.
This table is designed to provide a quick reference for readers
interested in wheat pathology.

This paper proposes a revolutionary model that utilizes the
transfer learning concept rather than training CNN from scratch
which requires a massive amount of data and robust computer
hardware (GPUs) to be trained. A CNN model is trained on a
sizable dataset to become a pre-trained model in the proposed
method. Next, learned features by this pre-trained model are
transferred to the new model. After that, the fit-one-cycle
policy technique is used to adjust deep learning models’
hyperparameters. Tuning CNN hyperparameters is a challenge
because it requires more time and experience to tune them. A
fit-one-cycle policy shortens the training period while enhancing
performance[4].

1) Contributions: The following is a summary of this
paper’s significant contributions:

• We develop a deep learning model that identifies
wheat plant fungi diseases with the best accuracy
achievement.

• The proposed model utilizes a real dataset collected
from various sources which contain five types of wheat
fungi diseases and healthy ones.

• The proposed model handles the data imbalance
common issue which is a known issue in several
deep learning techniques by using a robust data
augmentation technique.

• A detailed comparison between different CNN
pre-trained models applied on the real dataset to
demonstrate the performance differences, evaluating
the generalization ability and training error of these
models.

• Finally, the proposed model employs the fit-one-cycle
policy method which automates hyperparameter
learning to select the best value in the learning
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TABLE I. OVERVIEW OF WHEAT FUNGAL DISEASES

Disease Name Scientific Name Visual Symptoms on Wheat Plants
Powdery Mildew Blumeria graminis f.sp. tritici White, powdery spots on leaves and stems; can lead to yellowing and

drying of the tissue.
Leaf Rust Puccinia triticina Orange-red pustules on leaves and stems; leads to premature leaf

senescence and dropping.
Stem Rust Puccinia graminis f.sp. tritici Large, brick-red pustules on stems and leaves; severely infected plants

may produce less grain.
Stripe Rust Puccinia striiformis f.sp.

tritici
Yellow-orange stripes or streaks on leaves; can cause significant yield
loss.

Septoria Zymoseptoria tritici
(formerly Septoria tritici)

Brown spots with yellow halos on leaves; spots often coalesce causing
large areas of dead tissue.

process. This leads to high-performance achievement
and optimal training time.

2) Roadmap: Following is the breakdown of the remaining
sections: Section II discusses some related work and previous
studies in this domain. Section III describes the proposed
model and a detailed description of the work methodology.
Presentation of the experimental findings and analyses in
Section IV. Finally, the paper is concluded in Section V.

II. BACKGROUND

According to the study in [10], fungal, bacterial, viral,
nematode, insect pests, physiologic and genetic abnormalities,
and mineral and environmental stress are some of the several
categories of crop pathogens. These pathogens can lead to
damage to any part of the plant whether above or below the
ground. Indeed, the major challenge is to identify symptoms
and know when and how to effectively control diseases. For
this reason, diagnosis of wheat diseases and managing the
spread of disease in the early stage is essential for producing
healthy wheat products and improvement of wheat yield and
quality. Indeed, there is another notable challenge which is
to diagnose wheat disease the expert or farmer depends on
observing the symptoms of the disease manually, so it takes
more time and cost to diagnose a large space and treat the
disease. The accuracy of the manual prediction depends upon
the experience and knowledge of the person so the unavailability
of experts can obstruct the accurate diagnosis and treatment of
the diseases in the early stages [11].

One of the risky diseases infecting the wheat yield is
fungi diseases. The fungus diseases include powdery mildew,
rust, and septoria of the leaves and ears [12]. Fungi indeed
represent a separate kingdom of life, distinct for their unique
biological and ecological characteristics beyond the absence
of photosynthesis. This kingdom encompasses a diverse range
of organisms, including molds, yeasts, and mushrooms, which
play crucial roles in natural ecosystems and have significant
implications for agriculture. The fungi can develop in a variety
of ways, including from seeds or soil, or they can be spread
by wind, water (either rain or irrigated), and other insects and
animals. The overwatering of the host plant region, the host’s
weak density, and the ambient temperature all affect the fungal
infection. Additionally, the fungi did not always destroy the
entire crop but rather affected its growth, and the interplay
between diseased and healthy plants determines how quickly
the disease spreads [13].

Furthermore, there is another risky disease infecting the
wheat yield which is Wheat rust disease. This disease can be
divided into three rust categories: leaf, stem, and stripe. Indeed,
rust diseases can be distinguished from each other based on
some symptoms like the color, size, and arrangement of blisters
on the plant surface and the plant part that is affected [14].
The rust diseases can be described as follows:

• Small, orangish-brown spots on leaves are symptoms of
the disease leaf rust. The leaf sheath, which stretches
from the base of the leaf blade to the stem node,
can develop round or oval lesions, which are most
frequently found on leaves.

• Stem rust disease is characterized by reddish-brown
lesions that are oval and extended with tattered edges
clearly, on leaves, leaf sheaths, and stems, Stem rust
creates lesions that are more extensive than those
caused by leaf rust.

• Stripe rust disease is most prevalent on leaves, and it
produces yellow blister-like lesions that are grouped
in stripes.

Additionally, one of the fungal diseases that infect wheat
yield is Powdery mildew which is caused by the fungus
Blumeria graminis, and it is most commonly overwinters.
Powdery mildew is characterized by white to gray lesions
on leaves, and leaf sheaths, It has several quick life cycles
over a growing season and, once established, can be quite
challenging to control. Septoria is considered a fungal disease
that causes tan that is extended on wheat leaves. Although the
degree of yellowing varies between kinds, lesions may have a
yellow edge [15], [16].

Fig. 1 describes the five types of wheat fungi disease.

III. RELATED WORK

This section describes earlier research using deep learning
and machine learning methods to evaluate, segment, and
categorize illnesses of wheat crops using digital images.

The prior work in this direction may be divided into three
categories: segmentation techniques for Wheat Crop disease,
deep learning models to classify Wheat Crop diseases, and
machine learning models to classify Wheat Crop diseases.
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Fig. 1. Examples of wheat fungi diseases.

A. Deep Learning Models to Classify Wheat Crop Diseases
from Digital Images

Overall, this section describes the deep learning methods,
techniques, and approaches that are proposed to classify the
different Wheat diseases from digital images.

In research [17], the classification of Powdery Mildew
Wheat Disease was offered by the authors using 450 wheat
photos that were gathered from primary (using a camera)
and secondary (websites) sources. They used a normalization
technique for data preprocessing, and The preprocessed
normalized images were input to CNN achieving an accuracy
of 89.9% for Powdery Mildew wheat disease. Next, the
pre-trained model is applied to the CIAGR pictures dataset
using the transfer learning technique, and it achieves 86.5
percent classification accuracy.

In research [18], the authors demonstrated a brand-new
deep-learning model that has been trained to categorize
10 different wheat illnesses. The model outperforms two
well-known pre-trained deep learning models, VGG16 and
RESNET50, in terms of testing accuracy, with a score of
97.88%.

In [19], using 2000 photos of wheat plants for training
and testing, the authors presented a Deep Convolutional Neural
Network (DCNN) to classify Wheat Rust illnesses. This DCNN
obtains an accuracy of 97.16% for wheat rust diseases.

In research [20], the authors presented multi-task and the
pre-trained model VGG16 to distinguish between two types of
wheat leaf diseases and three types of rice leaf diseases. The
multi-task learning method is alternate learning. The idea of
alternate learning makes use of various data sets, each of which
has a distinct objective. Mutual training is used to train each job
within an epoch, and each time, the parameters of the common
layer are modified. Data augmentation is necessary to increase
the variety because the data sets for wheat leaf disease and
rice leaf disease are both modest and independently collected.
For rice leaf diseases, the model’s accuracy is 97.22 percent,
and for wheat leaf diseases, it’s 98.75 percent.

In study [21], the authors described different CNN Models
such as ResNet50, DenseNet121, MobileNet, and MobileNetV2
to classify four classes of wheat images: (1) tan spot,
(2)fusarium head blight, (3) stem rust, and healthy wheat. They
applied Data augmentation to expand the dataset. The maximum
accuracy of ResNet50 is 98%.

In study [22], based on the CGIAR dataset, the authors
presented the VGG16 model to classify three types of wheat rust
diseases: stem rust, leaf rust, and healthy wheat. With an initial
learning rate ranging from 0.01 to 0.0001, the suggested model
has a classification accuracy of 99.54 percent during training
and 77.14 percent during validation on 80 epochs. The authors
explain that even though the model had acceptable training
accuracy, classifying stem and leaf rust was not appropriate
since certain photos in this dataset contained several diseases,
which meant that one image comprised the characteristics of
both leaf and stem rust.

In study [23], the authors suggested a brand-new CNN
model called CerealConv that is trained using a dataset
of wheat photos captured in actual growth conditions and
divided into five categories: “healthy,” “yellow rust,” “brown
rust,” “powdery mildew,” and “Septoria leaf blotch.” With
batch normalization, maximum pooling, and dropout, the
CerealConv’s 13 convolutional layers were able to achieve
an accuracy of 97.05%. Four pre-trained networks were used
in their experiments: MobileNet, InceptionV3, VGG16, and
Xception. On a portion of the dataset’s photos, they performed
tests against experienced pathologists. In conclusion, the model
produced an accuracy score that was 2% greater than that of
the top pathologist. Finally, they employed image masks to
demonstrate that the model was generating its classifications
using the right data.

In study [24], to automatically identify Wheat rusts, the
authors presented the EfficientNet model. They created a
dataset known as WheatRust21 that included 6556 pictures
of healthy and three different types of Wheat rust infections.
The EfficientNet-B4 model has a testing accuracy of 99.35%
even though they tried many CNN-based models.

In study [25], five fungal diseases of wheat crops, including
(1) leaf rust, (2) stem rust, (3) yellow rust, (4) powdery mildew,
and (5) septoria, were proposed by the authors. These diseases
may be recognized both individually and in cases of multiple
infections. In this work, duplicate photos were removed from
the training data using the image hashing algorithm. The
recognition process makes use of the EfficientNet pre-trained
model. The accuracy of the model is (0.942). The recognition
strategy was created as a bot for Telegram.

In study [26], for their UAV to be able to recognize
three different forms of wheat leaf diseases, the authors
developed a two-stage classifier. They first found individual
plant leaves using an object detection model, such as the
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YOLOV4 or EfficientDet models, and then cropped the image
using bounding box coordinates. The cropped photos are
then fed into the classification network in the second stage,
which will identify the type of disease on the leaf. The
EfficientNet-B0 model performs with an accuracy of 99.72
percent, outperforming the YOLOV4-tiny model in object
detection.

B. Machine Learning Models to Classify Wheat Crop Diseases
from Digital Images

Generally, this section presents the different machine
learning techniques that are proposed to classify and analyze
the different Wheat diseases from digital images.

In research [27], by combining spectral vegetation indices
data from spectrum sensors in Random Forest models,
the authors proposed a high-throughput plant phenotyping
technique to automate disease scoring of yellow rust in a large
plant breeding field trial.

In study [28], for diagnosing wheat leaf diseases and their
severity, the authors suggested a method based on Elliptic
Maxima Margins Criteria metric training learning. They used
information on wheat leaf diseases such as powdery mildew
and stripe rust. The gradient rise approach and the greatest
margin criteria are used to alter the feature space and decrease
feature correlation before creating the elliptical metric matrices.
Additionally, using photographs of wheat leaves, the Otsu
method is utilized to separate the disease spots according
to the characteristics of disease distribution. Their technique
outperforms other learning algorithms and conventional support
vector machines. They were 94.16 percent accurate.

In research [29], the effectiveness of various Machine
Learning and Deep Learning algorithms for identifying plant
disease was compared by the authors. In terms of disease
prediction accuracy, Deep Learning models surpass Machine
Learning models as follows: The following models were
successful: VGG-16, Inception-v3, VGG-19, SVM, SGD, and
RF (89.5, 89, 87.4, 87.5, 86.5, and 76.8%, respectively).
According to the findings, VGG-16 has the highest classification
accuracy, while random forest has the lowest.

In research [30], the authors suggested using machine
learning to identify the illnesses that cause brown-and-yellow
streaks in wheat harvests. By shrinking and segmenting the data,
this study pre-processed it. Additionally, to extract elements
including shape, texture, and color, they used three feature
descriptors: Histogram of Oriented Gradient (HOG), Local
Binary Pattern (LBP), and Hue- Moment (HM). They used a
number of different models, but the RFC performance delivered
the best results when compared to the other models, which
had an accuracy rate of 99.8%. A two-stage classifier was also
suggested by the study to help the UAV detect plant diseases.
After cropping the image with the bounding box coordinates
and finding individual plant leaves using an object detection
network, the model then utilizes a second classifier to identify
the type of illness on the leaf.

In research [31], the authors used classification methods
(Artificial Neural Network, Support Vector Machine (SVM), and
k-Nearest Neighbor (k-NN) are trained based on morphological
features like shape and size to identify wheat crop seed that

was derived from the singleton wheat kernel images to identify
wheat seeds from three different types: (1) Canadian, (2) Rosa,
and (3) Kama. The k-NN classifier outperformed the other
two classifiers, producing the greatest classification accuracy
of 94.23 percent.

C. Segmentation Methods for Wheat Crop Diseases

This section describes several segmentation methods that
are used to extract interest regions from digital images and
generate segmented data.

In study [32], the authors demonstrated a deep
learning-based semantic segmentation method for Wheat Stripe
Rust pictures. They tested four different models: PSPNet,
DeepLabv3, U-Net, and Octave-UNet. The Octave-UNet model
produced the greatest results of all the models; its accuracy was
96.06 percent, its mean pixel accuracy was 94.58 percent, and its
mean intersection over a union was 83.44 percent. The original
images were roughly 1000 x 4000 pixels; to avoid significant
information being lost due to direct resizing, each original
image was divided into several 512 x 512 pixels local images
to increase the amount of data, followed by filtering images.
They divided the image into three categories: (1) background,
(2) leaf, and (3) spore.

In study [33], by using a variety of segmentation techniques,
such as Watershed, Grab Cut, and U2-Net, the authors explored
the classification of wheat stripe rust into three infection
kinds, including healthy, resistant, and susceptible. Multiple
segmented datasets are created using these techniques, and the
region of interest is then extracted by cropping the segmented
images. Then segmented data is produced using the pre-trained
ResNet-18 model. On the U2-Net-segmented dataset, the
maximum classification accuracy (96.196%) is attained.

In study [34], the authors suggested a Res-capsule network,
which was designed to be a segmentation model by replacing
the AveragePooling layer of the upgraded ResNet34 with
a Capsule network, which can preserve deeper semantic
information. This network can segment wheat plantation rows
that were photographed by a UAV. They create a threshold
after the convolution operation, which they refer to as threshold
convolution, in addition to decreasing redundant features and
improving effective features. By extracting the textural features
(TF), grayscale features (GF), and hue saturation value features
(HSV), they increase the accuracy of segmentation. They then
input the three extracted features into their enhanced ResNet34.

Table II shows the main characteristics of the reviewed
work.

D. Summary

To sum up, this paper differentiates itself from the previous
studies by the following: (1) we employed the one-fit cycle
to adapt the hyperparameters in an efficient manner which
improved the learning process, (2) we studied major types of
wheat diseases, and investigated the collected images from
different data sources which make our study comprehensive,
(3) we prevented the imbalance data issue from occurring
in the model developed by introducing a data augmentation
approach to fix this, (4) we experimented a large number of
different types of deep learning models, and compared them
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from different perspectives like; accuracy, precision, and recall.

IV. MATERIALS AND METHODS

This section presents the methodology and phase for the
proposed solution.

A. Datasets

This study categorized the images that were gathered into
healthy and five different forms of fungal infections, including
powdery mildew, septoria, leaf rust, stem rust, and yellow rust
types of wheat rust disease.

The following are the many image sources:

• Five fungal diseases of wheat crops are included in
the dataset (leaf rust, stem rust, yellow (stripe) rust,
powdery mildew, and septoria), both individually and
when several diseases are present [35].

• The dataset contains images of yellow-rust(stripe rust),
brown-rust (leaf rust) wheat leaf diseases, and healthy
wheat leaf[36].

• Images from the CGIAR (Computer Vision for Crop
Disease) dataset are included. This collection includes
pictures of wheat leaf diseases like stem rust and leaf
rust as well as healthy ones.[37], [38].

• There is a wheat leaf dataset on Kaggle that includes
pictures of both diseased and healthy wheat leaves,
including those with stripe rust and septoria [39].

Table III lists the classes that are gleaned from various
sources, along with the number of images gleaned from each
source.

B. Data Preprocessing

This phase is a major step in building the proposed
learning model. This step includes several tasks which are
fundamentals to build a learning model with high accuracy
and best performance. These tasks include: data ingest, data
cleaning, and data standardization. The data ingest means
collecting raw data from diverse sources for further processing.
The data clean means removing inconsistencies from collected
datasets, handling missing values, and addressing any quality
issues. Finally, data standardization means transforming data
into a consistent format for seamless processing and Organizing
and structuring data for effective feature engineering and model
development.

A crucial stage in a model pipeline to find diseases is image
pre-processing. as images could contain noise or different sizes.
Because the images in the collected dataset come from many
sources and have varying sizes and formats, all of the images
were initially reduced to 224×224 pixels (resolution) and saved
as (.jpg).

There are some images have The height is greater than the
width or vice versa, so when resizing this image, the image will
expand, and maybe some important features will be lost like
the leaf shape which may cause low accuracy, so adding the
black border to the image may save the image presentation Fig.

2 describes these stages. Some images of the collected dataset
have noises that cause the loss of some important features,
contain human hands, or have multiple diseases in the same
image which impacts the model accuracy, so the dataset was
filtered from these images which give high accuracy.

1) Data augmentation: Because there are more images in
certain classes than others (some classes have extremely few
occurrences compared to other classes), the suggested dataset
is unbalanced. The deep-learning models’ performance would
be impacted and overfitting would result from this mismatch in
the amount of photos in the classes. When a model performs
well on the training dataset but poorly on new data, it is said
to be overfit. Consequently, a data augmentation strategy is
applied to avoid this issue. Data augmentation is the process of
creating additional samples from existing datasets by modifying
the original images, which enlarges the dataset or increases
its volume. To create new photos for the classes of fewer
photographs, transformation techniques such as rotation (90
degrees), flipping, and zooming between [0.5,1.5] range were
applied.

After pre-processing (filtering) the dataset and adding further
data, the suggested dataset has a total of (11,205) images. The
proposed dataset was divided into two sets: a training set with
about 80% of the data (8,946 photos) and a validation set
with around 20% (2,259 images). The validation set includes
357, 360, 404, 402, 353, and 383 images of healthy, leaf rust,
powdery mildew, septoria, stem rust, and stripe rust while the
training set consists of 1445, 1478, 1557, 1510, 1424, and 1532
images of these conditions.

The number of images in the suggested dataset after
pre-processing and data augmentation is displayed in Table IV

C. Proposed Model

1) Convolutional Neural Network (CNN): CNN is
frequently utilized in computer vision applications like
segmentation, pattern identification, and classification issues.
CNN reduces the number of neurons and achieves better
learning. Indeed, CNN recognizes the content of the images
in three-dimensional volume without converting it to a
one-dimensional vector such as multi-layer perceptron(MLP)
which becomes computationally expensive because of the huge
number of neurons that are needed to recognize small images.

The convolutional layer, activation layer, and pooling layer
are the three layers that make up a CNN in general. These
layers primarily extract characteristics, which are later used for
classification by fully connected layers.

• One of the components of a CNN, the convolutional
layer, is used to extract significant information from
an image using a convolution process. One value is
produced by the convolution process, which is a dot
product between two matrices. Every input image is
represented by a matrix of pixel values and another
matrix called the filter matrix. The filter matrix is also
known as a kernel, or a filter made up of learnable
weight values. The kernel is a small matrix, and it is
sliding over the input matrix by one pixel which creates
a new matrix called a feature map or activation map
that represents the extracted features. Utilizing many
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TABLE II. PRIMARY CHARACTERISTICS OF THE RELATED WORK THAT WAS REVIEWED (SUMMARY)

Paper Method Accuracy Dataset Volume
[18] CNN architecture. 97.88% LWDCD2020 (10 classes) 12000
[17] Normalization technique for preprocessing

and CNN
89.9% and 86.5% CIAGR
images

CIAGR images 450 wheat
images, 101
(CGIAR)

[19] Deep convolutional Neural network
(DCNN)

97.16% CGIAR dataset & secondary
resources

2000

[20] Alternate learning and VGG16 98.75% for wheat leaf
diseases

public data sets in the UCI
machine learning database
and public images found on
the Internet

200

[21] AResNet50, DenseNet121, MobileNet, and
MobileNetV2

998%, 90%, 91% and 89% Kaggle dataset 2015

[22] VGG16 99.54% in training and
77.14% in validation

CGIAR dataset 863

[23] CNN deep learning model 97.05% from several different sites
throughout the UK and
Ireland

19160

[32] Octave-UNet 96.06% (CDTS) dataset and collected
images using mobile devices

33238

[24] EfficientNet-B4 99.35% WheatRust21 dataset 6556
[29] Various models of ML and DL The high accuracy 89.5% of

VGG16
wheat seed dataset 2700

[31] (k-NN), (BPNN), and (SVM) 94.23% of K-NN Citrus leaf disease dataset 609
[25] EfficientNet 94.2% WFD2020 2414
[26] YOLOV4 EfficientNet 99.72% Wheat Disease Detection 3672

TABLE III. OVERVIEW OF THE SOURCES OF IMAGES IN DATASET (SUMMARY)

Dataset Classes Images
Count

Wheat Fungi Diseases (WFD2020) Septoria, yellow rust, powdery mildew, leaf rust, stem rust,
and healthy

1695

Wheat Disease Detection healthy, brown rust (leaf rust), and yellow rust (stripe rust) 3672
CGIAR (Computer Vision for Crop
Disease)

healthy, stem rust, and leaf rust 876

Wheat leaf stripe rust, Septoria, and healthy 407

TABLE IV. OVERVIEW OF PROPOSED DATASET

Classes Number of Images
Healthy 1807
Leaf Rust 1848
Stem rust 1796
Yellow rust 1915
powdery mildew 1947
Septoria 1912
Total 11205

filters in the convolutional layer, numerous feature
maps are produced by extracting various features from
the image. The starting values of the filter metrics are
chosen at random, then backpropagation is used to
learn the best values for the filter matrix, which may
then be used to extract the most crucial characteristics
from the photos. After the convolutional layers, an
activation layer is added to use an activation function
to introduce non-linearity to the output.

• The feature maps are created following the convolution
layer. The feature maps have an excessively wide

dimension. Because of this, the pooling procedure is
used to minimize the size of feature maps, maintaining
only the pertinent information and deepening feature
maps to produce a highly compressed feature vector in
the end. Different pooling operations exist, including
average and maximum pooling. When using maximum
pooling, the filter is slid over the matrix and the
maximum value from the slid filter is used.

• After collecting the features from the convolution
network, fully connected layers are built to classify
the image and train the network. A 2D tensor
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(a) (b) (c)

Fig. 2. Example of images with different height and width.

is created by flattening the final feature map. In
multiclass situations, the softmax activation function
transforms the neural network’s outputs into a vector
of probabilities, each probability belonging to a certain
class, and deep feedforward networks for classification
utilizing cross-entropy loss.

2) Transfer Learning: Transfer learning is a method where
a model is created and trained on one task, then utilized as the
basis for another task [40].

This method transfers the weights that a network has learned
at one task to another rather than starting the learning process
from scratch by first training a base model on a particular
task or dataset, and then applying the knowledge of an already
trained model to a different task or dataset. As a result, this
technique shortens the time needed to train such models, which
can be laborious.

In this study, pre-trained CNN models EfficientNetB0,
ResNet152, and DenseNet161 were trained.

• EfficientNet is a CNN model that is an efficient
computationally and achieved state of art results on the
ImageNet dataset. the core idea of this model is Model
scaling. Model scaling is about scaling the existing
model depth-wise, width-wise, or scaling input image
resolution to get better results. Model scaling is used to
enhance the model’s performance. The most common
is depth-wise scaling. To effectively scale up the model,
EfficientNet employs a method called compound
coefficient. It equally scales each dimension using a
set of predetermined scaling factors. The architecture
makes use of a larger MobileNet-V2-like mobile
inverted bottleneck convolution. EfficientNet’s creators
created seven models with varied dimensionalities.
The baseline network of the EfficientNet family is
EfficientNetB0 [41].

• Building CNN deeper by increasing the number
of layers may cause a common problem
called the Vanishing/Exploding gradient. The
Vanishing/Exploding gradient causes the gradient
to become 0 or too large a value, which causes an
increase in training and test error rate. So, to solve
the problem of the vanishing/exploding gradient, the
ResNet [42] convolutional neural network model was
introduced which is based on the concept called

Residual Blocks that used a technique called skip
connections. The skip connection takes the output
from one layer and adds it to others by skipping some
levels in between; regularization will skip any layers
that have poor performance. The network can now
reach considerably deeper thanks to this. For image
recognition and classification, the model took home
the ILSVRC ImagNet-2015 and MS COCO 2015
awards.

• DenseNet is used to solve the vanishing while going
deeper but at the same time avoiding the vanishing
problem by using shorter connections between the
layers. ResNet and DenseNet vary in that ResNet
uses summation to connect all previous feature maps,
whereas DenseNet concatenates them all. Each layer in
DenseNet obtains inputs from all the previous layers
and passes on its output to all the layers that will
come after it. DenseNet consists of Dense blocks
that are composed of composition layers that contain
batch normalization, RELU activation function, and
3*3 conv layer these Blocks are connected by 1×1
Conv followed by 2×2 average pooling layers that are
used as the transition layers between blocks. DenseNet
achieved the greatest classification performance in 2017
on ImageNet and CIFAR-10 datasets [43], [44].

3) One Fit policy cycle method: CNN hyperparameters are
parameters that are used to regulate the model’s behavior. It is
crucial to improve the performance of the model. The Learning
Rate is one of the hyperparameters, and it may be the most
significant hyperparameter in deep learning.

How many gradients will be back-propagated will depend on
the learning rate. The model slowly diverges when the learning
rate is high, but it quickly converges when it is low. To find the
right learning rate, the learning rate must be tweaked, which
takes some time and effort.

The typical approach is to experiment with various learning
rates and select the one that results in the minimum loss value,
allowing the model to swiftly adapt to the situation. In study
[45], this study established a new method called fit-one-cycle
which is a way of tuning the learning rate.

After each mini-batch, the learning rate should be increased
from a low starting point. The formulae below in Fig. 3 update
it following each mini-batch:
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Fig. 3. Maximum learning rate and lower learning rate.

Max lr and Init lr stand for the maximum learning rate
and lower learning rate, respectively, where n is the number of
iterations. The test range’s initial value is the lower learning
rate. Let q be the agent that raises the learning rate after each
mini-batch. The research also suggests that for a full run, the
learning rate should cycle between the lower bound and the
higher bound. An iterative process where we move from a
lower bound learning rate to a higher bound and then back to
the lower bound is called a cycle.

To conclude, this method saves the time and effort
of running multiple full cycles with different momentum
values. Additionally, it yields more stable results and requires
fewer epochs to train our model to completion. This study
[46] confirms the improvement in validation accuracy when
comparing the naive learning rate policy with the one-cycle
policy. Besides that, using this strategy avoids having to
conduct numerous full cycles with various momentum levels.
Additionally, it produces more consistent results and takes fewer
training epochs to fully train our model. The improvement in
validation accuracy when contrasting the one-cycle policy with
the naive learning rate policy is supported by the study [46].

V. RESULTS AND DISCUSSION

Five different models were used in the experiments
presented in this section, two of which are extensions of
EfficientNet (EfficientNetB0 and EfficientNetB1), two of which
are extensions of DenseNet (DenseNet161 and DenseNet169),
and one of which is ResNet152. These models were trained
using data from five different types of fungal infections as well
as healthy leaves from wheat. A training set of 8,946 photos
and a validation set of 2,259 images make up this dataset,
which is used to test and validate procedures.

A. Experimental Settings

This paper employed the Fast ai framework[47] in building
learning models. It is a high-level framework over Pytorch for
training machine learning models and achieving state-of-the-art
performance. This framework is mostly employed for image
classification, object recognition, and image segmentation. It
offers faster computations than rivals and comes with data
purification widgets, providing a very user-friendly workflow
and making debugging easier. Additionally, Google Colab was
used to conduct the trials.

B. Evaluation Criteria

Along with the receiver operating characteristic (ROC) curve
and the area under the curve (AUC), the accuracy, precision,
and recall/sensitivity are the performance measures chosen to
assess and analyze the performance of the created model.

The performance of classification models is evaluated using
a matrix called the confusion matrix. The True positive (TP),
True negative (TN), False positive (FP), and False negative (FN)
factors are computed for each class using the confusion matrix.
The metrics for evaluation can be summed up as follows:

• The percentage of all samples that were properly
identified by the classifier is used to determine the
accuracy number.

• The true positives are divided by the total samples that
were projected to be positive (TP + FP) to determine
the precision value.

• The true positives are divided by samples that should
be predicted as positive (TP, FN) to get the recall
value.

• The F1-score is regarded as the harmonic average of
recall and precision.

• By averaging the metrics that are obtained for each
class, the Macro-F1 (macro-averaged F1-score) is
calculated.

• A graphical depiction called the ROC curve (receiver
operating characteristic curve) shows how well a
classification model performs at every classification
threshold. The True Positive Rate (TPR), which
stands for the recall measure, and the False Positive
Rate (FPR), are plotted on this curve at various
categorization levels. AUC (Area Under the ROC
Curve), a sorting-based algorithm, is used to calculate
the points in a ROC curve. The probability that a
model would rank a random positive instance higher
than a random negative instance is shown by the AUC,
which offers an overall measure of performance overall
potential classification thresholds.

The following section describes the evaluation of these
parameters against the learning model.

C. Accuracy and Loss Evaluation Results

In this study, the following five models are evaluated
EfficientNetB0, EfficientNetB1, DenseNet161, DenseNet169,
and ResNet152 across several experiments. As a result of
experiments, it is discovered that these models achieved 97.37%,
96.84%, 98.42%, 97.89%, and 95.2% classification accuracy
in the validation stage and 94.15%, 93.86%, 93.76%, 93.33%,
and 93.10% in the testing stage, respectively.

In conclusion, the DenseNet161 model had the best
validation accuracy, at 98.42 percent, but EfficientNetB0 had
the highest testing accuracy, at 94.15 percent, as opposed to
DenseNet161, which had a testing accuracy of 93.76 percent.
During the training and validation operations, the accuracy and
loss plot curves are built as a function of epochs.

Fig. 4 shows the validation accuracy for each model.

Fig. 5 shows the loss through the training and validation
process.

Table V demonstrates the validation accuracy, precision,
and Recall values measured during the validation process and
testing. These values are calculated over all classes for each
model and the number of epochs.
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(a) (b) (c) (d) (e)

Fig. 4. Validation accuracy.

(a) (b) (c) (d) (e)

Fig. 5. Validation loss.

TABLE V. ACCURACY, PRECISION, AND RECALL MEASURES OVER ALL CLASSES FOR EACH MODEL (SUMMARY)

Classifier Accuarcy Recall Precision
EfficientNetB0 97.37% 97.37% 97.53%
EfficientNetB1 96.84% 96.84% 97.11%
DenseNet161 98.42% 98.42% 98.48%
DenseNet169 97.89% 97.89% 97.97%
ResNet152 95.26% 95.26% 95.22%

D. Confusion Matrix Parmatters Evaluation Results

Indeed, the main role of the confusion matrix parameters
is to show how the model detects instances correctly and the
relatively incorrect classifications of the instances. This matrix
identifies confusion between classes of datasets.

The relevant performance measures that have been
calculated based on the confusion matrix are precision, Recall,
F1-Score, and Macro average of each measure. These values are
calculated for each class to determine how well the classifier
can identify different classes.

True positive, True Negative, False positive, and False
Negative are regarded as a one-vs-all problem in multi-class
classification problems. As a result, the positive class is a
certain class, while the negative class is every other class.

The evaluation of the confusion matrix parameters for
each model is shown in Fig. 6. The graphic demonstrates that
the EfficientNetB0 model correctly identified just two healthy
samples as powdery mildew, but it incorrectly identified 12
samples as stripe rust, which is higher than other models did.

Fig. 7 presents the precision, recall, and f1-scores for models
used in the experiment.

Fig. 8 describes the ROC curves for these models are shown.
This demonstrates that both EfficientNetB0 and DenseNet161
had similar AUC for all the given classes except the healthy
class EfficientNetB0 had the highest AUC of l00%. All
models had the same AUC of 95% of the leaf rust class

except EfficientNetB1 had the lowest AUC of 94% but
EfficientNetB1 had the highest AUC of 97% of the stripe rust
class. DensNet169 and DensNet161 had similar for all the given
classes except powdery mildew and septoria, DensNet161 AUC
is higher. Also, ResNet152 had a similar AUC to DensNet161
except for stripe rust and powdery mildew, DensNet161’s AUC
is higher.

In this experiment, EfficientNetB0 is compared with the
work of study [26], [33] by applying EfficientNetB0 on (leaf
rust, stem rust, and healthy) classes from the proposed dataset
in study [33] and on (leaf rust, stripe rust, and healthy)
classes as [26]. The results concluded that EfficientNetB0 is a
high-performer model with high accuracy.

E. Impact of applying fit-one-cycle policy Results

This experiment studied the impact of not applying the
fit-one-cycle policy on accuracy scores. Table VI presents
the accuracy results without using a fit-one-cycle policy. By
comparing the results highlighted in Table V and the results
presented in Table VI, the overall accuracy is decreased by 4%
without applying a one-fit-cycle policy.

F. Summary

This study compared different CNN learning models to
classify five wheat fungal diseases based on RGB images. This
work uses three classes of diseases: stripe rust, leaf rust, and
healthy, the dataset captured from [1]. Additionally, the CGIAR
and wheat leaf datasets were captured from this study and used

www.ijacsa.thesai.org 1295 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 5, 2024

(a) (b) (c) (d) (e)

Fig. 6. Confusion matrix of the models.

(a) (b) (c) (d) (e)

Fig. 7. Recall, precision, and F1-score measured.

(a) (b) (c) (d) (e)

Fig. 8. ROC curve of the models.

TABLE VI. ACCURACY MEASURES OVER ALL CLASSES FOR EACH MODEL WITHOUT FIT-ONE-CYCLE

Classifier Accuarcy
EfficientNetB0 93.68%
EfficientNetB1 91.58%
DenseNet161 89.47%
DenseNet169 92.63%
ResNet152 95.26%

in this work[2]. The CGIAR contains three classes which are
leaf rust, stem rust, and healthy, while the wheat leaf dataset
contains (stripe rust, Septoria, and healthy). Moreover, Wheat
Fungi Diseases (WFD2020) presented in [3] are used also in
this work which contains classes of five types of wheat fungi
diseases and healthy wheat leaf, but the number of images is
small containing 2414 images through all classes of the dataset.
Finally, in this work, the experimental dataset was collected
from all the mentioned datasets and contains six classes of five
types of wheat leaf fungal diseases and healthy ones.

In this work, there are five CNN pre-trained models
constructed based on datasets collected from various
sources. These models include: EfficientNetB0, EfficientNetB1,
DenseNet161, DenseNet169, and ResNet152. This work
employs the one-fit-cycle method to enhance the proposed
models’ accuracy and reduce the time needed to train

the models. Overall, the EfficientNetB0 and EfficientNetB1
achieved a high testing accuracy, however, DenseNet161
achieved a high validation accuracy.

VI. CONCLUSION

Eventually, to sum up, this paper discusses the different
wheat diseases that can impact wheat crop growth and therefore
will harm food security all over the world. Mainly, the
paper describes how wheat disease can be detected and
recognized efficiently. For this purpose, this paper employs
convolutional neural network models as deep learning models.
Moreover, this work compares different learning models such
as ResNet, DensNet, and EfficientNet to select the best model
that achieves the highest accuracy. Additionally, this study
used a one-fit-policy method that automates the selection
of the best value of hyperparameters, this led to a great
performance achievement. Experimental evaluation for all
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models performed on different real datasets collected from
various. Experimental results proved that the EfficientNet
learning model is an effective model more than ResNet and
DensNet and the justification behind that is that EfficientNet
needs fewer hyperparameters to train and learn than ResNet
and DensNet.
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