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Abstract—The proliferation of digitally altered images across
social media platforms has escalated the urgency for robust image
forgery detection systems. Traditional detection methodologies,
while varied, often fall short in addressing the multifaceted
nature of image forgeries in the digital landscape. Recognizing
the need for advanced solutions, this paper introduces a novel
deep-learning approach that leverages the architectural strengths
of GNNs, CNNs, VGG16, MobileNet, and ResNet50. Our method
uniquely integrates these architectures to effectively detect and
analyze multiple types of image forgeries, including image splicing
and copy-move forgeries. This approach is groundbreaking as
it adapts these networks to focus on identifying discrepancies
in the compression quality between forged and original image
regions. By examining the differences between the original and
compressed image versions, our model constructs a feature-rich
representation, which is then analyzed by a tailored deep-learning
network. This network has been enhanced by removing its origi-
nal classifier and implementing a new one specifically designed for
binary forgery classification. Very few researchers have explored
the application of deep learning techniques in copy-move and
splice image analysis for detecting digital image forgeries, making
our work particularly significant. A comprehensive comparative
analysis with pre-trained models underscores the superiority
of our method, with the GNN model achieving an impressive
accuracy of 98.54 percent on the CASIA V1 dataset. This not
only sets a new benchmark in the field but also highlights the
efficiency of our model, which benefits from reduced training
parameters and accelerated training times.
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I. INTRODUCTION

In the digital age, the authenticity of photos shared on
platforms like Facebook and Twitter has become a major con-
cern. The manipulation of digital images poses a threat to the
integrity of visual information, creating discrepancies from the
original characteristics and features of the images. This kind
of forgery often goes unnoticed and contributes to the spread
of false news and misinformation. Advanced image tampering
technologies like GNU, GIMP, and Adobe Photoshop have
aggravated this problem [1], [2]. There are active and passive
ways to overcome above-mentioned issues. Active detection
uses means or median to implant a digital signature or message
digest into an image during creation. The image’s validity is
verified by decrypting this data. However, passive detection
methods modify an image’s statistical features to verify its

*Corresponding author, email: ajitkumar@vit.ac.in

structure and content without leaving visual indications. Copy-
move, splicing, and retouching forgeries are examples of
passive methods. Picture splicing and copy-move forgeries are
highlighted in the former [3]. While image splicing connects
two or more images, copy-move forgery copies a portion of an
image within the same image. Due to the similar characteristics
of duplicated pieces and different post-processing techniques
like rotation and JPEG compression, copy-move forgeries are
puzzling to identify. However, splicing forgeries incorporates
pieces from several photos, needing extra processing to match
the target image’s visual features.

Traditional detection methods in this area use frequency
domain attributes or statistical information to identify authen-
tic and counterfeit pictures [4]. These approaches’ principal
drawback is the difficulty of determining the most important
traits for counterfeit detection. Digital image forgery is a
major problem in our digital era. Technological developments
in manipulation need increasingly advanced approaches to
recognize and battle picture forgeries.

Copy-move and splicing forgeries are particularly challeng-
ing to locate and identify [5]. Localization locates counterfeit
portions in a picture, whereas forgery detection verifies its va-
lidity. Many methods have been developed to solve these issues
separately [6]. These approaches must be tested for robust-
ness, dependability, and correctness, especially in modelling
structural changes caused by copy-move and splicing forgeries.
Since most imaging equipment cannot contain signatures or
watermarks to prove authenticity, passive or non-intrusive
forgery detection methods are needed. These algorithms don’t
need picture content signatures or watermarks.

Deep learning (DL) has advanced the image forensics
profession. Any DL model like a convolutional neural net-
work (CNN) relies on feature extraction, where database size
matters. In small database sizes, transfer learning such as
AlexNet, MobileNet, VGGNet, and ResNet are effective. It
applies information from a huge dataset like ImageNet to a
new target domain. This method reduces training time and lets
the model cope with fewer datasets. With these technologies,
the fight against digital picture counterfeiting is growing more
advanced, offering better digital authenticity [7]. The current
landscape of digital image forensics lacks robust and com-
prehensive methods for simultaneously detecting both image
splicing and copy-move forgeries.

The motivation behind this research is the vast number of
manipulated images circulating daily online, making it difficult
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to verify their authenticity. From medical images to biometric
data, nothing seems safe from manipulation nowadays. A
framework that not only identifies but also localizes the forgery
in an image is needed.

This research significantly advances the field of image
forensics by investigating DL models for accurate forgery
localization and classification. Our study meticulously analyzes
DL and transfer learning architectures, including Graph Neural
Network (GNN), CNNs, VGG16, MobileNet, and ResNet50,
specifically targeting copy-move and splicing image forgeries.
The findings highlight the exceptional accuracy of the GNN
model and illustrate the robust potential of these architectures
in the domain of digital forensics.

Our suggested approach presents numerous enhancements
compared to traditional detection methods. The following are
the highlights of the paper’s primary contribution:

e  Focuses on a copy-move and splicing type of forgeries.

e Leverages the strengths of diverse architectures such
as CNN,GNN and pre-trained models.

e Tailored deep learning network,specifically designed
for binary forgery classification.

e  Reduced training complexity by leveraging pre-trained
architectures.

To articulate the structure and flow of our paper clearly, we
have organized it into coherent, well-defined sections, each
designed to progressively build upon the information pre-
sented. The paper begins with an introduction that establishes
the significance of the research and outlines the challenges
and innovations in image forgery detection (IFD). This is
followed by a comprehensive literature review that situates
our work within the broader academic discourse, identifying
gaps that our research aims to fill. We then detail our novel
methodologies, which introduce unique analytical techniques
and leverage advanced DL models to address the complexities
of image forgery. The experimental design section describes
the dataset used and the parameters of our testing framework,
ensuring reproducibility and clarity in our methods. Following
this, the results and discussion section critically assesses the
performance of the proposed models, providing a deep dive
into the empirical evidence that supports our conclusions.
Finally, the paper concludes with a summary of our findings
and offers a forward-looking perspective on potential future
research avenues and technological advancements in the field
of IFD. Each section of the paper is integral to the narrative,
contributing to a comprehensive and educative exposition
tailored for both specialists and novices in the field.

II. RELATED WORK

In recent years, there has been progress in the detection of
image forgeries, with several methods proposed by researchers.
Traditionally, this field extracted handmade characteristics and
classified them using feature matching to identify real and
counterfeit pictures. While successful, these strategies lack
flexibility and scalability.

Recently, researchers have tried to identify copy-move and
splicing frauds concurrently. A new approach uses a fully
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convolutional network with multi-resolution hybrid features
[8]. Tamper-guided dual self-attention module in this net-
work distinguishes tampered regions from unaffected ones.
For pixel-level picture fraud detection, the hybrid features
and semantic reinforcement network (HFSRNet) uses LSTM
encoding-decoding [9]. Next, U-Net, a unique picture segmen-
tation model with L2 regularization is used for IFD [10]. In
another research double image compression was employed to
train a model that could recognize both kinds of forgeries.
These advances in picture fraud detection show a strong trend
toward DL such as CNNs [11]. These approaches can identify
and localize fabricated portions in photos, making them a
more effective solution to digital image forging. As these
technologies advance, they will help preserve digital pictures
in forensic science, media, and other fields.

A multimodal approach was presented to identify splic-
ing and copy-move forgeries using deep neural networks to
classify and localize forgeries and part-based picture retrieval.
This system utilizes InceptionV3 for feature extraction and the
Nearest Neighbor Algorithm for donor and nearly duplicate
picture retrieval. Error Level Analysis (ELA), VGG16, and
VGG19 models were used on CNN in another unique way [12].
This approach employed pre-processing to collect pictures at a
certain compression rate to train the model to categorize photos
as legitimate or fake. These transfer learning-powered IFD
advances improve digital picture forgery detection and local-
ization. Pre-trained models and advanced algorithms improve
accuracy and efficiency, creating a new benchmark in digital
picture manipulation detection. As technology advances, these
approaches will be developed, strengthening digital imaging
fidelity in numerous sectors [13]. A different work utilized a
CNN pre-trained on labelled pictures to extract features and
train an SVM model [14]. This showed how CNNs and SVMs
work together in feature extraction and classification. Mask R-
CNN with the Sobel filter [15] improved forgery detection and
localization by identifying gradients like genuine masks.

Another method [16] used image manipulation and pre-
trained CNNSs to classify pictures as legitimate or fake, improv-
ing transfer learning. It used ELA for image modification and
pre-trained VGG-16 weights for CNN initialization. Although
DL techniques have improved the IFD, very few research fo-
cused on the combination of copy-move and splicing forgeries.
Moreover, the potential advantage of combining several DL
and transfer learning techniques has been left unexplored.

It is crucial to delineate the boundaries of prior approaches
used to identify photo fraud and explain how our proposed
strategy differs to address the existing gaps in the ongoing
discussion. Although feature matching and manual character-
istic extraction are successful, they lack flexibility and can not
handle the increasing complexity and volume of digital image
alterations efficiently. While each solution is creative, they
individually focus on either copy-move or splicing forgeries
and do not possess the adaptability required to tackle emerging
forms of digital fraud. Our research presents a comprehensive
framework for analyzing copy-move and splicing forgeries,
which have seldom been examined in conjunction. CNNs and
transfer learning enhance forgery detection and localization by
using advanced DL models, resulting in improved accuracy and
dynamic capabilities. Our multimodal approach incorporates
advanced algorithms such as the tamper-guided dual self-

www.ijacsa.thesai.org

1300 |Page



(IJACSA) International Journal of Advanced Computer Science and Applications,

attention module and hybrid feature systems, resulting in
enhancements over earlier methods. Enhancements enhance
the accuracy of detection and augment the knowledge and
skills in critical areas such as forensic science and media
integrity. This succinct elucidation of the subject matter and
our approach emphasizes our distinctive contributions to the
detection of digital image counterfeiting.

III. PROPOSED METHODS

Our research presents an architectural framework that can
precisely detect, identify, and assess the degree of forgeries
to tackle the complex issues of copy-move and splicing ma-
nipulations in digital photos. With the use of sophisticated
bounding boxes and semantic segmentation techniques, this
novel method is specially designed to identify and accurately
localize forged regions, guaranteeing that every pixel inside an
area of concern is carefully classified. Unlike other systems,
this one can identify areas that have been altered, but it can also
determine the proportion of the image that has been altered,
providing a numerical assessment of the degree of fabrication.

A digital image is fed into the model to begin the process,
which is then followed by a reliable feature extraction stage.
The next step is to identify possible regions of interest that
could include faked or changed objects using the Region
Proposal Network (RPN). To guarantee consistency in analysis,
these selected regions which range in size to 128 pixels are
standardized via Region of Interest (ROI) pooling. During
the next detection stage, the system marks each object it
finds as copied or spliced and uses exact bounding boxes to
define the forged object. This stage is critical in identifying
the type of counterfeit and offers a good understanding of
the manipulation method used. Our strategy’s last phase,
segmentation, is especially creative. By creating a precise mask
around the manipulated object, it successfully separates the
manipulated region from the original image. The suggested
design determines the percentage of the image area impacted
by forgery to measure the various levels of forgery. To do
this, one must analyze the segmentation masks, which are
binary pictures in which the unaffected black backdrop is
marked as false, and the fabricated portions are marked as
true white. We determine the percentage of the image that has
been compromised by forgery by counting the number of white
pixels inside these masks.

This technique, which aggregates the white pixel count
across all masks, enables reliable assessment even in pho-
tos containing several forged areas. The architecture is
demonstrated in Fig. 1, which highlights our system’s all-
encompassing approach to forgery detection and localization.
Through a seamless approach that combines feature extraction,
object identification, and pixel-wise segmentation, our model
cannot only recognize and categorize forgeries but also provide
an objective indicator of their size. This development in digital
image forensics provides a reliable method for confirming the
authenticity of images in a range of applications, marking
a substantial achievement in the battle against digital image
tampering.

The proposed methodology harnesses CNN’s power to
process high-resolution images across multiple channels, cap-
turing the nuanced spatial and color information crucial for

Vol. 15, No. 5, 2024

Input Image

=2 5%

[

Compressed
Image

'}

. Region of
o . o—md— Interest FC Bounding
Mask Align [ Layers Box -
T J

Original
or
Fake

Fig. 1. Proposed frameworks.

detecting subtle manipulations in forged images. The archi-
tecture of our CNN consists of an input layer designed to
accommodate high-resolution imagery, enabling the extraction
of detailed spatial and color features. As the image progresses
through CNN, it encounters a series of convolutional layers
equipped with specialized filters. These filters are good at
seeing spatial linkages and local patterns, which is important
for identifying real from altered areas in a picture.

This model employs convolutional layers (Conv2D) and
max pooling layers (MaxPooling2D) for feature extraction.
Our proposed work embarks on refining the capabilities of
CNNs to address the intricate task of detecting digital image
forgeries, with a focus on copy-move and splicing forgeries.
Recognizing the computational demands and the challenges in
designing an optimal CNN architecture, we propose a strategic
approach to streamline the process, ensuring efficiency and
accuracy in forgery detection.

The CNN architecture includes convolutional layer with a
limited number of filters (32 filters with a size of 3x3). Every
filter is assigned a specific area of the input image to scan,
which enables a thorough examination of the image’s color and
spatial details. The Rectified Linear Unit (ReLU) function is
used to activate these convolutional layers, adding the required
non-linearity to the model, and improving its capacity to detect
subtle forgeries. Our model uses max pooling layers after the
convolutional layers in order to decrease the processed image’s
spatial dimensions. This reduction is pivotal, as it not only
diminishes computational load but also preserves the most
salient features essential for accurate forgery identification.
The culmination of convolutional and pooling layers yields a
compact representation of the image, which is then untraveled
into a one-dimensional vector.

In tackling the computational intensity and the architec-
tural optimization challenges, our proposed work leverages
advanced techniques in model optimization, regularization, and
efficient computational strategies. This includes the exploration
of transfer learning as a means to capitalize on pre-trained
models for initial feature extraction, significantly reducing
the requirement for large, labelled datasets and computational
resources.

Despite their effectiveness, CNNs pose significant chal-
lenges, notably the requirement for extensive labelled datasets
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to train the models adequately. We avoid this by implementing
sophisticated techniques that maximize training effectiveness
and improve the model’s capacity to learn from sparse data
sets. This includes data segmentation techniques to artificially
expand the training dataset and transfer learning approaches to
leverage pre-trained models for feature extraction.

This work analyzes pre-trained transfer learning models
such as VGG16, MobileNet V1, and ResNet-50 in parallel. Our
proposed work aims to set a new benchmark in the detection
and classification of digital image forgeries, providing a robust
tool against the proliferation of manipulated media.

In the context of detecting digital image forgeries, GNNs
offer a proposed approach by treating the problem as one of
analyzing and learning from a graph of image features and their
relationships. A GNN operates by learning representations for
nodes (which could represent image segments or features) in
a way that the representation of a node is informed by its
neighbours. This process iteratively aggregates and transforms
neighbour information, allowing each node to have a repre-
sentation that captures both its local features and its context
within the larger structure. This method is especially useful
in the detection of picture forgeries since it can be important
to comprehend the context and interaction between various
image components in order to spot irregularities that may
indicate manipulation. The key to GNN'’s effectiveness lies in
its image segment framework, where nodes exchange segment
information along edges, gradually updating their states based
on both their attributes and the segment information received
from their neighbours. This allows GNNs to propagate and
refine feature information across the graph, leading to rich,
contextualized node embeddings that reflect the structure of the
data. For IFD, this means that GNNs can help uncover subtle,
complex patterns of manipulation that might not be apparent
when considering image regions in isolation. In our proposed
architecture for advancing digital IFD, we envision leveraging
GNNs to analyze the graph of relationships between image
segments. By constructing a graph where nodes represent
segments of an image and edges encode relationships such
as spatial proximity or similarity in texture or color, GNNs
can be used to identify irregularities and discrepancies in the
graph structure that could indicate fraud. For example, in copy-
move forgery, duplicated segments might exhibit unusually
high similarity to non-adjacent regions, a pattern that GNNs
can be trained to recognize. Relying solely on the original
GNN goal might lead to the creation of another graph/subgraph
that falls short of elucidating the GNN’s reasoning. To craft
explanations that embody both accuracy and concreteness,
we’ve refined the generative component’s goal function.

While CNNs excel at extracting local visual features from
images, GNNs can enhance the analysis by considering the
broader context and relationships among these features. The
individual performance of each model and the suggested GNN
model performance is discussed in result section. By using the
DL approach, digital picture forgery detection systems could
have much higher accuracy and resilience. The incorporation
of GNN into our proposed work represents a promising direc-
tion for enhancing the detection and analysis of digital image
forgeries.

To address the critique regarding the theoretical founda-
tion of our results, it is crucial to clarify the mathematical
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underpinnings that substantiate the efficacy of our proposed
methods in digital IFD. The effectiveness of our architecture is
not merely an isolated occurrence but is grounded in the well-
established principles of CNNs and GNNs, both of which are
renowned for their robust performance in pattern recognition
and feature extraction tasks. The mathematical models for
CNN involve convolution operations that leverage learned
filters to identify and enhance salient features within images,
which are crucial for detecting subtle forgeries. Similarly, the
GNN framework is based on the principle of node feature
aggregation, where the representation of each node (or im-
age segment) is iteratively refined based on its neighbours,
thus capturing both local and global contextual information
effectively. Our results are derived from rigorous empirical
testing and validation against benchmark datasets, ensuring
that the observed high performance is replicable and consistent
across various scenarios. Furthermore, by integrating these
networks, our approach benefits from the synergy between
CNNs’ ability to extract detailed local features and GNNs’
capacity to analyze relationships within the data structure,
which is mathematically supported by the operations of graph
convolution and pooling. This combination allows for more
comprehensive and precise detection of digital forgeries than
would be possible using either technique alone.

A. Data Set and Experimental Setup

The CASIA V1 dataset stands as a pivotal resource in
the field of digital IFD, offering a comprehensive collec-
tion of images specifically curated for the classification and
analysis of various forms of image tampering. Comprising
1,754 images, the dataset is meticulously organized into three
distinct categories: 800 authentic images, serving as a baseline
for comparison; 480 images subjected to copy-move forgery,
and 474 images manipulated through splicing. The authentic
images in CASIA V1 provide a wide range of scenes, subjects,
and lighting conditions, establishing a robust foundation for
models to learn the characteristics of genuine, untampered
images. This diversity ensures that the dataset can challenge
and evaluate the performance of digital forgery detection
systems across a variety of scenarios, making it a valuable asset
for developing and testing algorithms designed to discern the
subtleties between authentic and forged content. The dataset’s
copy-move fabricated images are created using a range of
sophisticated approaches, including scale, rotation, and differ-
ent JPEG compression levels to mask the forging. Similarly,
the spliced images within CASIA V1 are constructed by
combining elements from multiple sources, creating composite
images that can be particularly challenging to analyze.

The experimental setup for our research, leveraging the
computational power of google colab. The experiments were
facilitated by a robust hardware configuration including an
NVidia Tesla K80 GPU, which boasts 2,496 CUDA cores
and 16GB of GDDR5 VRAM, providing the necessary com-
putational prowess for DL tasks. The processing unit was
complemented by a hyper-threaded single-core Xeon Processor
@2.3Ghz, equipped with 16 GB of RAM, ensuring efficient
data handling and processing speed.
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IV. RESULTS
A. Performance Measures

The suggested GNN model’s performance is evaluated
with the individual model performance using a wide range of
metrics, such as the Fl-score, accuracy, recall, and precision.
With the use of these metrics, we were able to carefully
assess how well the model identified manipulated photos. In
particular, precision examined the model’s accuracy in the
cases it identified as forgeries, recall demonstrated the model’s
capacity to recognize manipulated images, the F1-score gave a
fair assessment of both precision and recall, and accuracy gave
a comprehensive picture of the model’s overall performance.
The formulas of performance metrics are mentioned below:

Precisi TruePositive 0
recision =
TruePositive + Falsepositive
Recall — TruePositive @)

TruePositive + FalseNegative

2 x (Precision * Recall)

3)

F1— =
seore Precision + Recall

TruePositive + TrueNegative

Accuracy =
4 Total Prediction

“)

B. Training and Validation Insights

The accuracy curves underscored the models’ capacity to
learn from the training data effectively, while the validation
curves provided crucial information about the models’ gener-
alizability. Notably, the divergence or plateauing of validation
curves from the training curves signified potential overfitting,
prompting us to halt training to preserve the models’ ability
to generalize.

C. Dataset Division and Validation

We were able to prevent overfitting, optimize model perfor-
mance, and fine-tune hyperparameters by carefully splitting the
dataset into training and validation sets at an 80:20 ratio, which
kept the models reliable and useful in practical situations.
Throughout the training, an early stopping mechanism was
used to keep track of training and validation losses. We
were able to quickly stop training when this method let us
detect when the models started to overfit the training set.
This strategy significantly enhanced our models’ generalization
capabilities, ensuring they remained effective and reliable
in detecting digital image forgeries. Our studies’ outcomes
highlight the possibility of using GNN in the field of digital
IFD. Our thorough analysis shows that these models may be
improved to identify complex forgery methods with excellent
recall, accuracy, and precision, providing useful resources for
the digital forensics community. Through tackling the issues
of overfitting and fine-tuning model architectures, we have
established the foundation for next investigations that seek to
improve the identification and categorization of digital image
forgeries. Fig. 2 showcases the comparative performance of
various DL models applied in the field of digital IFD.
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D. Performance Analysis

The graph illuminates an upward trajectory in detection
accuracy, signifying substantial strides in model efficiency
and reliability. Notably, the GNN model exhibits remark-
able improvement, underscoring the effectiveness of advanced
architectures in discerning complex patterns within image
data. The progression from traditional CNN to more intricate
systems like VGG16, MobileNet, and ResNet50 indicates a
consistent enhancement in accuracy. For instance, the leap
from CNN’s initial accuracy of approximately 51.51 percent
to GNN’s commencement point at about 28.14 percent may
appear as a decline. However, GNN’s rapid ascension to over
98 percent accuracy by the 99th epoch delineates a significant
leap in performance. Such an advancement underscores the
transformative impact of transfer learning and the layered
sophistication it brings to image analysis tasks. The MobileNet
and ResNet50 models also display a steady climb in accuracy
percentages, reaching the high 80s and low 90s, respectively.
This gradual increase corroborates the hypothesis that depth
and complexity in neural networks, managed adeptly, can
yield superior results in detecting nuanced manipulations in
digital imagery. Fig. 3 delineates a compelling narrative of
progressive improvement across diverse DL models throughout
100 epochs. The data traces the F1 scores—a harmonic mean
of precision and recall, considered a more robust measure than
accuracy alone—of five models: CNN, VGG16, MobileNet,
ResNet50, and GNN.
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The GNN architecture, which started at an F1 score of
approximately 60.13 percent, shows an impressive ascent,
culminating at nearly 98.93 percent. This trajectory highlights
the efficacy of GNN in the nuanced detection of image
forgeries, likely due to its ability to model complex patterns
and relationships within the image data. When we compare
the increment from CNN'’s initial F1 score of roughly 44.79
percent to GNN’s ending score, it is evident that there’s an
absolute improvement of around 54 percent. Such a stark
progression implies that GNNs are significantly more adept at
handling the intricacies of IFD tasks. VGG16 and MobileNet
also exhibit substantial enhancements, with VGG16 starting
at about 44.31 percent and closing at 95.25 percent, and
MobileNet commencing at 51.86 percent and concluding at
nearly 86.70 percent. These increases suggest that depth in
network architecture can lead to improved feature extraction,
which is critical in differentiating between genuine and forged
pixels. ResNet50’s performance, initiating at an F1 score of
55.87 percent and reaching 91.01 percent, further corroborates
the advantages of leveraging deeper networks with residual
connections to enhance learning from image data.

The Table I presents a comparative analysis of five ad-
vanced DL models—CNN, VGG16, MobileNet, ResNet50,
and GNN—across a spectrum of performance metrics includ-
ing Accuracy, F1 Score, Precision, and Recall throughout 100
epochs. After a hundred epochs, the GNN model emerges
as the front-runner, boasting an accuracy and F1 Score of
approximately 98.55 percent and 98.93 percent, respectively.
This performance is particularly noteworthy when considering
its recall rate reached a perfect score, a clear indication of
its superior ability to identify true positive cases of forgery.
The GNN’s precision score, standing at roughly 98.70 percent,
reinforces its status as the most reliable method among those
tested. VGG16 also shows remarkable results, with an accuracy
of about 81.70 percent and an F1 Score of 95.25 percent, a sig-
nificant leap from its initial F1 Score of approximately 44.31
percent. This demonstrates a solid balance between precision
and recall, highlighting VGG16’s proficiency in classifying
forged image content. MobileNet, known for its efficiency
on mobile devices, achieves a notable accuracy of around
94.37 percent and an F1 Score of 86.70 percent. These figures
represent its robustness in the context of IFD, particularly
in environments where computational resources are limited.
ResNet50, with its deep residual learning framework, attains
an accuracy of nearly 94.85 percent and an F1 Score of
91.01 percent, underscoring the strength of deep networks
in extracting nuanced features that are crucial for identifying
forgeries. The CNN model, while not outperforming the GNN,
still demonstrates substantial growth from an accuracy of 51.51
percent to 90.17 percent and an F1 Score increase from 44.79
percent to 90.72 percent.

The Table II indicates that the proposed methods out-
perform many of the traditional approaches, suggesting the
superiority of GNNSs in capturing the complex relational and
structural dependencies characteristic of image forgeries. By
combining these cutting-edge neural networks with the CNN
base layer, the model’s capacity to accurately distinguish
between real and fake images is improved. This combination is
particularly effective for feature extraction and classification.
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TABLE I. VARIOUS MEASURES OF THE VARIOUS METHODS WITH
DIFFERENT EPOCHS FOR THE DETECTION OF IMAGE FORGERY

Method Epochs Accuracy F1 Score Precision Recall

0 0.5151 0.447951 0.370166 0.36413

CNN 50 0.8732 0.678501 0.410526 | 0.429348
100 0.9017 0.90721 0.524217 1

0 0.5158 0.443105 0.443662 | 0.342391

VGGl16 50 0.7971 0.706724 0.493776 0.61413

100 0.817 0.952479 0.521127 0.695652

0 0.4643 0.518566 0.422906 | 0.402708

MobileNet V1 50 0.8922 0.647673 0.46535 0.476089

100 0.9437 0.867047 0.580204 | 0.560648

0 0.5341 0.55867 0.53202 0.434783

ResNet50 50 0.8978 0.717949 0.55618 0.608696

100 0.9485 0.910085 0.620253 0.798913

0 0.281439 0.601307 0.53023 0.233751

GNN 50 0.810762 0.845913 0.786547 0.850627
100 0.98549 0.989284 0.986976 1

V. DISCUSSION

It elucidates the pivotal contribution of transfer learning in
advancing the detection of digital image forgeries. Harnessing
the analytical might of pre-trained neural networks, fine-
tuned for the nuanced task of forgery detection, this study
showcases the potential to benefit from DL’s power without
necessitating substantial labelled forensic data. This prudent
approach streamlines resource expenditure and forges new
pathways for the development of robust solutions against the
scourge of digital forgery. In an era where the authenticity of
digital content is under constant scrutiny, the study accentuates
the superior performance of GNN. GNN’s architectural design
is adept at mapping the intricate relational and structural
nuances that are crucial for identifying forged elements in
images. The empirical evidence presented underscores the
sophistication of GNNs in discerning subtle discrepancies that
allude to tampering, thus bolstering the integrity of visual
information. It reflects the remarkable ingenuity integrated
within these systems, empowering them to scrutinize layers
of digital data to authenticate its veracity. The discernible
improvements in accuracy and reliability not only corroborate
the current direction of research within this sphere but also
lay a solid foundation for the future of digital forensics.
The implications of these advancements extend beyond the
academic, offering a beacon of trust and reliability as we
navigate through an age rife with digital manipulation. Table II
showcases a comparative analysis of different methodologies
employed for the detection of passive image forgery mainly
copy-move and splicing. The forgery type column has four
section which include splicing forgery, either copy-move or
splicing forgery, copy-move forgery, and both copy-move and
splicing forgery. The table examining the efficacy of various
feature extraction and classification techniques across several
well-recognized datasets. The table delineates the performance
of these methods primarily in terms of accuracy except in one
instance where precision, recall, and Fl-score highlights the
evolution and refinement of detection capabilities.

In earlier research, traditional CNNs served as the founda-
tion for feature extraction, with methods varying from CNN-
based local descriptor construction to hybrids that integrate
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TABLE II. COMPARE VARIOUS METHODS FOR THE DETECTION OF
IMAGE FORGERY WITH OUR PROPOSED METHOD

Feature Classificat-
g‘;;‘iery Enecf:r- g::lrac- ion Dataset Evaluation
Methods Methods
CNN-
pased CASIA | CASIA V2: 9697
N [17] De- SVM V2, percent, DVMME
Splicing scriptor DVMM 94 percent, DSO-1:
eonp DSO-1 97.5 percent
Construc-
tion
CASIA V1@ 91
CASIA percent, CASIA
V1 and A
V2 V2: 99 percent,
CU’HK CUHK: 95
[18] CNN CNN > percent, NIST16:
NIST16,
COV- 98 percent,
COVERAGE: 97
ERAGE ercent, CUISDE:
CUISDE. | P ’ :
100 percent
RGB Endto- | CASIA, | SASIA pmznlt’
Splicing, 8] stream end fully COLUMB- COLUMBIA- 97'4
Copy- + noise CNN + 1A, i
opy tream (TDAS) NIST16 percent, NIST16:
Move strea 86 percent
Separately Hybrid
Hybrid features NIST16: 98.68
Encod- and NIST16, percent, CASIA
[9] ing+ semantic CASIA V1: 92.76 percent,
Decoding reinforce- V1 COVERAGE:
CNN ment 91.21 percent
network
. USCISI, CoMoFoD:
(SEI::‘ CoMo- | P=59.11,
[19] DCNN léPpD) + FoD, R=57.62, F=57.77.
Copy- DCNN CASIA CASIAV2: P=90.48
Move V2. R=51.25 F=48.06
CNN
CoMoFoD:  98.39
[20] (En- CNN CoMoFoD, percent, CMFD:
coder+ CMFD. 9778 percent
decoder) e p
Regulariz- | Regulariz- | MICC-
1| ing NN | ing U-Net | F2000. 97:52 percent
Splicing | 221 | DCT SVM SASIA 1 96 percent
;\'AC"W' SVM
ove .
with
DCT and Radial CASIA
[23] LBP Basis Vi 97.5 percent
Function
(RBF)
VGG 16
+ Mo-
Propo-| . GNN + CASIA
sed bileNet CNN Vi 98.54 percent
Vi +
ResNet50

encoding and decoding processes. Classifications were per-
formed using a variety of techniques, including SVM and
CNNs themselves, among others.

The proposed method in the current paper pivots from
these traditional approaches by integrating CNNs with ad-
vanced neural network architectures like ResNet and VGG16,
alongside GNNs and MobileNet. These methods are applied
to the CASIA V1 dataset. Notably, the proposed GNN method
achieves a remarkable accuracy of 98.54 percent, which is
significantly higher than many previously referenced methods.
Similarly, the combined use of MobileNet and ResNet50 yields
an impressive accuracy of 94 percent.
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VI. CONCLUSION

The conclusion of our study underscores the significant
advancements made with GNNs in the field of digital IFD.
GNNs have demonstrated exceptional proficiency, achieving
accuracy rates that exceed 98 percent in identifying digital
forgeries. This impressive performance is not just a testament
to their capability but also showcases their potential as critical
tools in digital forensics. However, it is essential to ground
these findings within a theoretical framework to fully articulate
the scientific contribution of our research. The effectiveness
of GNNs in our study is anchored in their inherent ability to
process and analyze complex patterns through node and edge
analyses, which are particularly effective in understanding and
identifying manipulated image data. This theoretical underpin-
ning is supported by the structure of GNNs, which integrates
node information with neighbourhood data, allowing for a DL
model that is highly adept at detecting anomalies indicative of
digital tampering.

Looking forward, we aim to enhance the precision and
computational efficiency of these models. Our future research
will expand the variety of training datasets to include a wider
array of forgery techniques, which will further test and improve
the robustness of our models. Additionally, we plan to explore
the integration of GNNs with other DL architectures through
transfer learning, which could lead to even more powerful
systems capable of combating advanced forgery methods. The
increasing complexity of digital forgeries requires that our
forensic methods evolve concurrently. The ultimate goal of
our research is to develop a comprehensive suite of forensic
tools that are sophisticated yet user-friendly enough for public
use, ensuring that digital media can be authenticated across
various platforms. This commitment supports the integrity of
information within our digital society and contributes to the
maintenance of truth in visual media. As this study lays a
solid foundation with high accuracy rates, it paves the way
for a future where digital forensic science is an effective
guardian against the intricacies of digital forgery, ensuring
the authenticity of digital media in an era where truth is
paramount.
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