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Abstract—Graph Neural Networks (GNNs) have emerged as
a state-of-the-art approach in building modern Recommender
Systems (RS). By leveraging the complex relationships among
items, users, and their attributes, which can be represented as
a Knowledge Graph (KG), these models can explore implicit
semantic sub-structures within graphs, thereby enhancing the
learning of user and item representations. In this paper, we
propose an end-to-end architectural framework for developing
recommendation models based on GNNs and KGs, namely Hy-
bridGCN. Our proposed methodologies aim to address three main
challenges: (1) making graph-based RS scalable on large-scale
datasets, (2) constructing domain-specific KGs from unstructured
data sources, and (3) tackling the issue of incomplete knowledge
in constructed KGs. To achieve these goals, we design a multi-
stage integrated procedure, ranging from user segmentation and
LLM-supported KG construction process to interconnectedly
propagating between the KG and the Interaction Graph (IG). Our
experimental results on a telecom e-commerce domain dataset
demonstrate that our approach not only makes existing GNN-
based recommender baselines feasible on large-scale data but also
achieves comparative performance with the HybridGCN core.

Keywords—Large-scale dataset processing; recommender sys-
tems; graph neural network; knowledge graph construction; data
segmentation

I. INTRODUCTION

Recommender System (RS) has been playing a pivotal
role in enhancing user experience on e-commerce platforms. It
uses user historical interactions and item attributes to generate
personalized recommendations. Traditional approaches have
been developed and can be categorized into two primary
pillars: Content-based and Collaborative Filtering. However,
they may fall short in practical applications with higher rates
of sparsity and cold start [1].

Recently, graph-based modeling has been an emerging
trend in the field, as it can exploit and extend the relations
between users or items [2]. Graphs provide a natural way to
represent and model relationships, capturing complex inter-
dependencies and interactions that traditional methods might
overlook. Noteworthy, Graph Neural Network-based (GNN-
based) techniques have showcased exceptional performance
across a myriad of application domains, underscoring the po-
tential and adaptability of this approach. Despite the promising
performance, the implementation encounters limitations when
applied to large-scale datasets characterized by an extensive
volume of users and items, as well as diverse interaction
patterns, which can lead to neighbor explosion during graph

construction [3]. Many recent SOTA GNN-based RS [4], [7],
[17] have only experimented on popular benchmark datasets
with medium-to-small user bases, questioning their feasibility
on real-world systems with large-scale user data.

Incorporating Knowledge Graphs (KGs), which encapsu-
late domain-specific knowledge and semantic relationships,
can further support the recommendation process in the embed-
ding stage [12]. By integrating Graph Neural Networks with
Knowledge Graphs, recommender systems can harness both
the structural relationships and semantic insights, resulting
in more accurate, context-aware, and personalized recom-
mendations [16]. However, a problem lies in the reliance
on open sources, which creates challenges in constructing
complete Knowledge Graphs for domain-specific private data,
thereby limiting the model’s applicability and effectiveness
in diverse and complex environments. Indeed, recent GNN-
KG-combined models [17], [18] have only been evaluated
on popular datasets with easily extractable KGs from Open
Knowledge Bases, without considering their performance on
narrowly specialized domains, thus ignoring issues that may
arise in post-synthesized KGs like incomplete knowledge.

In this paper, we propose a new recommender system
model, HybridGCN, which will address all of the above
problems. Particularly, our main contributions are as follows:

1) Propose a semi-automatic procedure for constructing
our domain-specific knowledge graph in a niche
domain that is highly RS-compatible, with support
from Large Language Model (LLM).

2) Achieve scalable Graph Convolutional Network
(GCN) on empirically large-scale datasets through
user behavioral segmentation.

3) Tackle the practical issue of incomplete knowl-
edge integration in GNN-based recommender models
leveraging KGs, in which HybridGCN stands as
our state-of-the-art (SOTA) approach. We empirically
compare HybridGCN with other SOTA methods and
demonstrate substantial improvements.

The remainder of this paper is as follows. Section II
overviews the related work. Then Section III describes our
proposed method, which includes the overall pipeline, model
architecture, and training strategy. The experiment evaluation
and discussion are detailed in Section IV. Finally, we conclude
and discuss our work in Section V.
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II. RELATED WORK

Traditional recommender systems primarily rely on two
main approaches: collaborative filtering and content-based
filtering. Collaborative filtering methods generate recommen-
dations by identifying patterns and similarities among users
or items, while the latter recommends items based on their
features or attributes, matching user preferences with item
characteristics. ALS [20] (Alternating Least Squares) is a
popular collaborative filtering algorithm that utilizes matrix
factorization to decompose the user-item interaction matrix
into lower-dimensional matrices (latent factors) representing
users and items similarities on new factors. However, ALS
tends to recommend popular items frequently, leading to a lack
of diversity and personalization in recommendations.

More advanced techniques have been developed to address
those issues, including the use of Neural Networks. One such
approach is Mult-VAE [21], which leverages deep learning
to build recommender systems. Mult-VAE employs multiple
layers of Variational Autoencoders (VAEs), which are gen-
erative models capable of learning complex data distributions
and capturing underlying patterns in user-item interaction data.
Another powerful tool for modeling and analyzing complex
relational data, including recommender systems, is Graph
Neural Networks (GNNs). NGCF [4] was the first popular
GNN model applied to recommender systems, introducing the
concept of message passing. This approach enables NGCF to
learn enriched representations of users and items by aggre-
gating information from their neighboring nodes in the graph.
Inspired by simplified Graph Convolutional Network (GCN)
design in SGCN [8], LightGCN [7] only focuses on linearly
combining the embeddings obtained from different propagation
layers in the graph. Additionally, GraphSAGE [11] offers a
more general framework for inductive representation learning
on graphs, which has also been adapted for large recommender
systems. It operates by sampling and aggregating features from
a node’s local neighborhood to learn node embeddings that
capture the structural properties and relationships. Building
upon that, PinSage [19] removes the limitation of storing
the entire graph by using random walks to sample graph
neighborhoods.

Knowledge Graphs provide a structured representation of
information, enabling recommender systems to understand
and leverage the semantic context and meaning behind user
interactions and item attributes. There have been recent studies
applying them to graph-based models, notably KGCN [17]. By
integrating domain-specific knowledge and structural insights
from Knowledge Graphs, KGCN addresses the limitations of
conventional recommendation models and achieves superior
performance in capturing user preferences and item charac-
teristics, particularly in complex and diverse recommendation
scenarios. However, the diversity and incompleteness of natural
knowledge pose practical challenges in customizing the inte-
gration process of KGs into graph-based models to effectively
take advantage of the provided semantics, while avoiding
the introduction of unpredictable noises that can conversely
degrade performance [13]. The major difference between our
HybridGCN core and the literature is that we will leverage the
KG propagation paradigm of KGCN and additionally employ
a semantic enrichment mechanism inspired by LightGCN-like
methods to utilize subgraphs within the interaction graph for

indirectly inferring more hidden connections, which is a cross-
graph propagation technique.

The construction of a Knowledge Graph is also a challenge.
In the context of recommender systems, integrating infor-
mation from a knowledge graph source with high semantic
consistency and low noise is crucial to ensure relevance,
and personalization, and enhance the overall quality of rec-
ommendations. This also means that each real-world entity
should have a unique identifying node within the integrated
KG. Typically, knowledge about entities can be collected
from various sources, each providing a KG that represents
its understanding of the queried entity set. From there, a
challenge arises in unifying the different aliases of the same
entity that appear in multiple asynchronous data sources [14],
[15]. This is accomplished through entity alignment tasks,
aiming to create an ultimate comprehensive KG for model
learning. For example, KGCN [17] uses an open knowledge
base (OKB) to extract item-related triples for constructing their
knowledge graphs and testing their model on popular datasets.
Due to the nature of OKB, which organizes knowledge in
a structured manner through metadata, Resource Description
Framework (RDF), or defined ontologies [5], extracting triples
and re-connecting them into a knowledge graph input is
relatively straightforward and does not heavily rely on the
entity alignment step. However, with domain-specific datasets,
the construction of semantic triples often requires a more com-
plicated process, involving the extraction and reorganization of
information from unstructured data sources [6]. In this paper,
we employ an innovative approach using LLMs to capture,
denoise, and enrich semantic entities and relations within our
Knowledge Graph.

III. PROPOSED METHOD

A. Overall Framework

The overall framework of the proposed system is illustrated
in Fig. 1(a). The customer base of a commercial system can
potentially encompass a large number of individuals, each with
diverse needs and usage patterns. Therefore, we propose an
initial stage involving segmenting users into distinct groups
based on their historical behaviors. Within our context of
telecommunication, this segmentation process will leverage
side behavior indicators, such as user revenue or historical
patterns of calling and data usage.

After the segmentation stage, each user is assigned to
a cluster that comprises other users with similar behavior
patterns. Personalized recommendations are then generated by
considering the items interacted with by users in the same
cluster. It is worth noting that in practical scenarios, the system
does not possess immediate access to the behavior history of
new users. Consequently, for such users, the system offers
diverse recommendations based on their initial needs. As the
behavior history of new users gradually accumulates, dynamic
assignment to existing clusters becomes feasible.

The graph construction stage for each cluster involves
transforming user-item interaction data into an interaction
graph (IG) and building an item-related KG. Specifically, to
construct the IG, we utilize subscription data as an implicit
feedback source from users to items. This data type is unary,
implying that we can only infer user preferences based on their
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Fig. 1. Overall framework of HybridGCN.

subscribed packages while assigning uncertain probabilities to
packages they have not interacted with. As for the item-related
KG, we implement an approach supported by a Language
Model (LM) to extract data from the internet. The procedure
for constructing our domain-specific knowledge graph is illus-
trated in Fig. 1(b).

In detail, our process consists of three steps, which take
place in a semi-automatic manner. Firstly, telecom package
descriptions are scraped and parsed from API sources or
relevant official websites. The semantic information of these
packages includes price, package type, minutes allowed for
domestic and international calls, or accompanying benefits.
The output of this step is unstructured text corresponding to
available packages. It is noted that information about a telecom
package may appear in multiple sources. We collect data from
various sources to ensure the completeness and diversity of
semantic descriptions for these packages. However, there are
also some packages for which their external information cannot
be found.

In the second step, we utilize the API provided by the
GPT-3.5 language model to extract information from the text,
returning the results in the form of semantic triples. Several
previous studies [23]–[25] have examined the capabilities
of generative Language Models in text understanding and
generation, demonstrating viable solutions for information
extraction tasks. However, when it comes to knowledge ex-
traction tasks, a conversational model that is not specifically
trained to recognize entities and relations may not be able
to provide an alignable set of entities [26]. To address these
challenges, we carry out two following tasks: (1) specify the

prompt engineering by providing the ontology of our domain-
specific KG, such as specifying the types of relations between
different entity types; and (2) pre-train the LM with some
labeled domain-oriented data samples. We also re-evaluate the
knowledge extraction capability of GPT-3.5 by using the CaRB
benchmark [27] through its information matching and scoring
framework on two specific evaluation scenarios. The results
from the general scenario on a subset of the TekGen dataset
[28] and the scenario on our handcrafted sub-knowledge base
(approximately 50 pairs of unstructured text and corresponding
extracted triple sets have been human-labeled) are 69.82%
and 100% in Recall, respectively, indicating the promising
performance of GPT-3.5 in this stage’s task.

In the final step, we perform the knowledge integration
task, which involves entity alignment and discretization for
groups of item-related entities with continuous values. It is
important to mention that the raw triples obtained from the LM
may contain ambiguous values for the same entity, requiring
NLP techniques to normalize its identification. Specifically,
we need to standardize the units for each numeric value and
establish common conventions for descriptions. For example,
for the attribute related to minutes allowed for domestic calls in
a package, we standardize the unit as ’days’ for packages with
daily/weekly cycles and ’months’ for packages with monthly
cycles and above, etc. Additionally, for extracted text chunks
(entities in raw triples) in natural descriptive language, such
as additional package benefits, we remove domain-specific
stopwords and cluster them based on their TF-IDF encoded
representations. This helps to unify phrases that refer to the
same entity but may appear in different text chunks because of
misspellings or redundant grammar elements. The final output
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of the entire process is a set of refined KG triples that can be
integrated into KG-based GNN models.

The indexed graphs serve as the main input for the pro-
posed core model of HybridGCN, whose detailed architecture
will be shown in Fig. 2.

B. Model Architecture

We combine the idea of graph convolution-based infor-
mation propagation on the intra-knowledge graph (intra-KG)
from KGCN [17] and intra-interaction graph (intra-IG) from
LightGCN [4]. Our HybridGCN core adds interconnective
paths to create a continuous information propagation flow
between the processing components in both types of graphs,
aiming to enhance the embedding learning process and address
the issue of incompleteness in practical KGs.

First, we note that in embedding spaces, nodes within
a graph are represented by finite-dimensional vectors, and
the relationship between any two nodes is quantified through
operations performed on the corresponding pairs of vectors.
Such representation is known as the ID embedding of a node.

The concept of intra-KG propagation involves calculating
the final representation of a given item entity by incorporating
its intra-KG neighborhood information as neighbor embedding
into its ID embedding via an aggregator (as presented in
(Eq.2)). The semantic propagation process is performed on
a knowledge graph from the outside to the inside through
multiple hops, based on receptive fields, which are selected
sets of neighboring nodes for each entity node. Through this
process, the structural topology of the proximity sub-graph
containing an entity node is embedded into the entity itself.

Neighbor embeddings are aggregated using a graph atten-
tion mechanism. Considering a node v and its set of neighbor
nodes N (v) at h-th hop, the importance of the relationship
between that node and its neighboring nodes is defined based
on a weight, which is the normalized inner product π̃u

r between
the ID embedding of the user u linked to the end target
item entity and the relation ID embedding r. Therefore, the
neighboring information of node v is weight-based linearly
combined and then integrated with node v itself to form the
resulting embeddings of the h-th hop, which also serve as
the input for its adjacent (h − 1)-th hop. During each hop,
user-relation weight πu

r , normalized user-relation weight π̃u
r ,

and neighbor embedding vuN (v) are respectively calculated as
follows:

πu
r = uT r;

π̃u
rv,e

=
exp(πu

rv,e
)∑

e∈N (v) exp(π
u
rv,e

)
;

vuN (v) =
∑

e∈N (v)

π̃u
rv,e

e

(1)

agg = AGG(v, vuN (v)) (2)

For each target item node i, we preserve the aggregated
neighbor embeddings Vu

N (i) from the innermost hop, which
is formed by combining adjacent nodes of this item node.
These final neighbor embeddings are then used as input for
our HybridGCN model.

On the other hand, the intra-IG propagation rule is defined
based on the user-item connections. The deeper the hops
(layers) in the graph neural network, the longer the propagation
paths within the graph, such as user-item, user-item-user, item-
user-item, etc. Embedding these propagation paths into an ID
user (item) embedding helps capture multi-order proximity
structure and improve the issue of sparse connections in the
graph. Given Ni, Nu as the set of neighbor nodes of item
(user) and e

(k)
i , e(k)u as the item (user) ID embeddings at layer

k, the graph convolution operation for calculating layer-(k+1)
embeddings from layer-k:

e(k+1)
u =

∑
i∈Nu

1√
|Nu| · |Ni|

e
(k)
i ;

e
(k+1)
i =

∑
u∈Ni

1√
|Ni| · |Nu|

e(k)u

(3)

Finally, the embeddings at K layers are weight-combined
to form the final representation of a user (an item):

eu =

K∑
k=0

αke
(k)
u ; ei =

K∑
k=0

αke
(k)
i (4)

Our HybridGCN designs facilitate communication between
intra-graph propagation components and combine the enriched
embeddings from each type of graph to enhance the em-
beddings in the inter-graph context. In HybridGCNa, prop-
agation occurs first in the IG space. The propagation also
simultaneously takes place in the KG to generate neighbor
embeddings for items with equivalent KG entities. The IG-
enriched item embedding resulting from the former process
and its corresponding neighbor embedding from the latter
are then combined using a sum aggregator to obtain the
final representation of an item. The combination operation in
HybridGCNa is defined as follows:

eui = SUM AGG

(
K∑

k=0

αke
(k)
i ,Vu

N (i)

)
(5)

In contrast, HybridGCNb allows the semantic propagation
on the KG and the combination of an item’s initial embedding
with its neighbor embedding to occur first (as presented in (Eq.
6)). This results in KG-based pre-enriched item embeddings
e
u(0)
i , which are then fed into the input embedding matrix

to perform the propagation rule on the IG for adopting K

representations at K layers e
u(1)
i , e

u(2)
i , . . . , e

u(K)
i , and the

final synthesized item embedding eui . Our experimental re-
sults show that utilizing a straightforward average aggregation
method, instead of relying on user-based weights for item-
related relations as the original intra-KG mechanism, simplifies
the compilation of neighbor information across our moderate-
sized domain-specific KG. Thus, it enhances performance and
improves the ease of learning in this version.

e
u(0)
i = SUM AGG

(
e
(0)
i ,Vu

N (i)

)
(6)

Our SUM AGG operation is designed to enable addition
between two vectors with different dimensions, based on the
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Fig. 2. Detailed architecture of our HybridGCN core model.

expansion of the vector with fewer dimensions on the right
side with zero elements. This allows HybridGCN models to
flexibly adjust the influence of intra-KG semantic information
on item learning.

Finally, the models predict the interaction probability by
calculating the inner product between post-propagated repre-
sentations of user u and item i:

ŷui = eTue
u
i (7)

To optimize the performance of our model, we utilize the
Bayesian Personalized Ranking (BPR) loss [29], which is also
employed by LightGCN. This loss function aims to ensure
that the predicted value for an observed item is higher than
the predicted values for unobserved items:

LBPR = −
M∑
u=1

∑
i∈Nu

∑
j /∈Nu

ln σ(ŷui − ŷuj)

+λ1∥E(0)∥2 + λ2(∥R∥2 + ∥A∥2)

(8)

where λ1, λ2 controls the L2 regularization strength for the
user-item embedding matrix, the batch’s existing inner-KG
attribute embedding matrix, and the relation embedding matrix.
Our optimization process utilizes the Adam optimizer in a
mini-batch fashion.

C. Model Analysis

We perform mathematical analysis to illustrate the reason-
ing behind the inter-graph design of HybridGCN. Initially, we
provide a theoretical discussion on how HybridGCN can tackle
the issue of unavailability of knowledge when integrating
real-world Knowledge Graphs. Subsequently, we highlight
the significance of learning the interconnections between two

graph types in enriching the semantics of inherently sparse
interaction data.

1) Alleviation of knowledge incompleteness: In practice,
there exist items that do not have corresponding entities in
the constructed Knowledge Graphs due to unavailability of
information, referred to as isolated items. This asymmetry
in information gives rise to bias or unexpected noise when
relying solely on KG-extracted semantics for learning item
embeddings. The reason is that there is uncertainty regarding
whether an isolated item in reality shares certain characteristics
with known item nodes.

Our inter-graph propagation in the HybridGCNb setting
helps address this incompleteness by inferring hidden rela-
tionships between isolated items and existing attribute-related
entities on the KG. As depicted in Fig. 3, through inter-
connected propagation on both the IG and KG, the embeddings
of attributes a1 and a2 are integrated into u1, and then the
u1 embedding is propagated to i3 (an isolated item) via the
pair connection u1− i3, thereby intuitively forming an indirect
connection i3 − a1, and i3 − a2.

To clarify, with the integration of intra-KG neighbor infor-
mation into the initial item embedding before propagating it
on the IG, we can expand the representation of an item in the
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Fig. 3. Inter-graph propagation in IG and KG facilitates inferring unknown
connections between isolated item and attribute-related entities.

second layer of IG-based graph convolution as follows:

e
u(2)
i

(3)
=
∑
u∈Ni

1√
|Ni| · |Nu|

e(1)u

(3)
=
∑
u∈Ni

1

|Nu|
∑
j∈Nu

1√
|Ni| · |Nj |

e
u(0)
j

(6)
=
∑
u∈Ni

1

|Nu|
∑
j∈Nu

1√
|Ni| · |Nj |

(
e
(0)
j + Vu

N (j)

)
(1)
=
∑
u∈Ni

1

|Nu|
∑
j∈Nu

1√
|Ni| · |Nj |

(
e
(0)
j +

∑
e∈

NKG(j)

π̃u
rj,ee

)

(9)

Considering (Eq. 9), we observe that in the case where item
i and item j both receive interactions from a user or a group of
users, the second-layer representation of i is proportional to the
KG-extracted neighbor embeddings of j through a coefficient:

cj,i =
1√

|Ni| · |Nj |

∑
u∈Ni∩Nj

1

|Nu| (10)

The aforementioned hidden connections (as illustrated in
Fig. 3) are established based on this coefficient, particularly
when item j is an isolated item. Following (Eq. 10), the
strength of these relationships is determined by:

(1) The greater the number of users jointly interacting
with both items i and j, the stronger these hidden
connections are. This is reasonable because a dense
collaboration of users regarding the pair (i, j) in-
dicates a higher likelihood of these items sharing
similar characteristics.

(2) The less popular item i and item j are, the larger the
magnitude tends to be. This also implies the group
that items i and j belong to exhibits a high degree of
personalization.

(3) User interaction engagement level is also considered.
A lower level of item interaction corresponds to a
higher level of confidence in hidden relationships’
existence.

In terms of the HybridGCNa setting, according to (Eq. 5),
the final item representation is a straightforward combination

of the results obtained from two propagation processes: intra-
IG and intra-KG. Specifically, it encompasses the IG-enriched
item embeddings and the KG-based neighbor embedding. As
a result, compared to KGCN, HybridGCNa can balance and
regularize semantic learning, moderating the over-dependence
on noisy knowledge triples and mitigating the asymmetry in
the availability of information across practical KGs.

2) Augmentation of sparse interaction data: In many rec-
ommendation scenarios, models may face sparse user-item
collaborative data or cold-start issues with new items that have
limited interactions from users, as well as a few highly special-
ized items. This causes challenges for multi-level propagation
based solely on graph convolution within the interaction graph,
as employed by LightGCN. Naturally, semantic structures
extracted from the knowledge graphs can be integrated into
collaborative information to provide more detailed and spe-
cialized representations for items. This resembles the paradigm
of traditional hybrid recommendation systems but within the
context of state-of-the-art graph-based models. Eq. (5) of
HybridGCNa once again provides a direct observation of this
combination, wherein external knowledge complements user-
item interaction data.

Regarding HybridGCNb, some transformations are needed
to observe how semantically rich connections from knowledge
graphs augment and enrich user-item collaborative data. Based
on (Eq. 4), (6) and (9), we can unfold the final embedding of
an item in the HybridGCNb setting as follows:

eui
(4)
=

K∑
k=0

αke
u(k)
i

= α0e
u(0)
i + α1e

u(1)
i + α2e

u(2)
i + . . .

(6)(9)
= α0

(
e
(0)
i + Vu

N (i)

)
+ α1e

u(1)
i

+ α2

(∑
u∈Ni

1

|Nu|
∑
j∈Nu

j ̸=i

1√
|Ni| · |Nj |

(
e
(0)
j + Vu

N (j)

)

+
1

|Ni|
∑
u∈Ni

1

|Nu|

(
e
(0)
i + Vu

N (i)

))
+ . . .

=

(
α0e

(0)
i + α1e

(1)
i + α2e

(2)
i + . . .

)
+

((
α0 + α2

1

|Ni|
∑
u∈Ni

1

|Nu|
+ . . .

)
Vu
N (i)

+ α2
1

|Ni|
∑
u∈Ni

1

|Nu|
∑
j∈Nu

j ̸=i

1√
|Nj |

Vu
N (j) + . . .

)

(11)

It is noted that eu(2k+1)
i = e

(2k+1)
i because the results of graph

convolution at odd layers can be easily unfolded all the way
to initial user embeddings (0-layer user representations).

Based on the expansion in (Eq. 11), we can observe that
the ultimate item embedding has been enriched with additional
blocks of external semantic information. In this way, not only
the structural topology of an item’s intra-KG neighborhood
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(denoted as Vu
N (i)) is encapsulated, but also the neighbor sub-

graph encodings of other items (denoted as Vu
N (j) with j ̸= i)

are included and indirectly related to the target item through in-
teraction data (explained in Section III-C1). Additionally, such
subgraphs are integrated with different levels of smoothness,
which are adjusted based on the size of the neighboring region
within the learned graphs.

IV. EXPERIMENTAL RESULTS

A. Dataset

In this study, we applied our proposed framework to
analyze behavioral data obtained from a prominent telecommu-
nications service provider. This data encompasses user activity
logs spanning three months, from November 2022 to January
2023. It includes anonymized information on user package
subscriptions, actual usage logs, and package metadata (see
Table I for dataset summary). To ensure user privacy, all
sensitive data has been encrypted.

TABLE I. SUMMARY OF THE DATASET’S KEY CHARACTERISTICS

Characteristic Value

Number of unique users (Subscription behavior) 10,630,045
Number of unique users (Usage behavior) 5,065,934
Number of packages 2,283
Sparsity 0.9986

B. Baselines

Our baseline models encompass a diverse range of ap-
proaches, including traditional, state-of-the-art, and graph-
based models.

• SVD [9]: A classic CF-based model that uses inner
product operations to represent user-item interactions.

• SVD++ [9]: SVD++ enhances its original version
of SVD by incorporating implicit feedback inferred
from user behaviors. We utilize the implementations
of SVD and SVD++ provided by Surprise library [10].

• ALS [20]: ALS is a matrix factorization method
that is common in many real-world recommendation
scenarios. ALS decomposes the original utility matrix
into two matrices by iteratively updating the values
of the user and item latent factor matrices, which is
achieved by solving a least squares problem at each
iteration. We use its implicit version in PySpark.

• Mult-VAE [21]: Mult-VAE is a deep learning model
that leverages variational inference to learn latent
representations of user-item interactions.

• PageRank: A Random Walk-inspired graph learning
technique ranks items based on their graph-based
importance, considering the global structure of the
user-item interaction network. It then generates top-
ranked recommendations for the N most important
products universally across all users. We implement it
based on the NetworkX library [22].

• LightGCN [7]: LightGCN is a lightweight graph-
based model, which simplifies the graph convolution
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Fig. 4. Evaluation of KMeans Clustering Algorithm
with (a) Sihouette Score and (b) Inertia

operation to focus solely on multi-hop user-item inter-
actions, making it efficient and effective for learning
from large-scale recommendation datasets.

• KGCN [17]: KGCN is a graph convolutional network-
based model that captures neighborhood structures
within knowledge graphs to improve personalized
recommendation capabilities.

C. Experimental Setup

a) Data Preprocessing: We removed any rows with
NULL or NaN values, which only occur at a mere 1% of
the dataset. Subsequently, a pivoting operation was performed
for each user, yielding two distinct pivoted datasets: Dataset
1 for all the packages that each user subscribes to, Dataset 2
for his/her historical usage behavior.

b) Feature Engineering: KMeans clustering was con-
ducted on Dataset 2. Based on cluster evaluations, an optimal
value of K = 20 was determined (see Fig. 4 for more detail).
Users who have subscribed but have not recorded any behavior
in Dataset 1 are categorized into a separate Cluster -1. Users
subscribing to only one package were also excluded from the
analysis for a more rigorous evaluation, and the IQR method
was then employed to remove outliers. The Final Dataset
comprises entries for both the subscribed packages and their
respective cluster indices. In Fig. 5, we show the historical
revenue from users for each cluster in December 2022, high-
lighting the differences in user behavior across the clusters.
Furthermore, from the knowledge graph constructed across all
possible packages, we extracted the subgraph corresponding
to each cluster. In Table II, we evaluated the proportion of
packages that have been interacted with by users belonging
to the cluster and have corresponding entities in the cluster’s
KG, defined as Hit rate. This rate reflects the incompleteness
of KG’s understanding of entities representing packages.

TABLE II. STATISTICS ON THE PROPORTION OF TELECOM PACKAGES
HAVING CORRESPONDING ENTITIES IN THE KG (A.K.A HIT RATE) FOR

EACH USER CLUSTER (%)

Cluster 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 -1
Hit rate 71 70 76 100 86 69 69 76 71 80 73 90 73 70 69 71 72 71 n/a 72 68

c) Train-Test Split: To ensure fairness for all models,
the data trained and tested must be the same. Furthermore,
we have also devised a strategy to capture personalization and
cold-start solving capability.
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Fig. 5. Boxplot representing historical revenue from users (a.k.a their sum of charges) in december 2022 across clusters in the final dataset.

• We divide the Final Dataset into two user groups:
those who are supposed to arrive earlier and those
who are supposed to arrive later, in a 1 : 1 ratio.

• We randomly hide some ”less popular” packages
of each user in the latter group to create a test set
(corresponding to the darker cells in Fig. 6). The
remaining user-item interactions (corresponding to the
white cells in Fig. 6) will form the training set. This
approach creates a realistic asymmetric scenario where
the model is forced to predict unpopular items. When
evaluating, we consider the model’s predictions for
hidden packages of all users in the latter group. More
specifically, we regard a package as ”less popular” if
it does not belong to the top two most subscribed pack-
ages. Based on our observations from statistics, these
two packages are interacted with by almost all users.
This implies that they might be free packages given
periodically by the service provider, so including them
in the evaluation does not provide much meaningful
insight.

Fig. 6. Half of the users belong to the group of ’earlier’ users, where all the
packages they have subscribed to are included in training set. The rest
belong to the group of ’later’ users, where some of their ’less popular’

packages (represented as darker cells) are randomly selected to form test set.

d) Hyperparameter Settings: Hyperparameters among
intra-cluster models in all baselines are set the same to ensure
fairness in the evaluation process. Regarding two versions
of HybridGCN and KGCN models, the intra-KG neighbor
sampling size is set between 2-4, depending on the size of
the cluster’s knowledge graph (KG), and the depth of the

receptive field is set to 1 due to the relatively low complexity
of our domain-specific KG. In HybridGCN and LightGCN,
the number of intra-IG layers is set to 1-5, with a larger
number of layers chosen when the number of users in the
cluster increases, enabling the learning of longer propagation
paths. The layer weights in HybridGCN and LightGCN are
uniformly set as α0 = α1 = α2 = . . . = αK = 1

K+1 ,
following the configuration specified in the LightGCN paper.
The regularization coefficients in HybridGCN’s loss function
are set as λ1 = λ2 = 10−4, which are also equivalent to the
corresponding hyperparameter λ chosen in LightGCN.

D. Results

In this paper, the results were obtained using standalone
Colab Pro1 (51GB RAM, NVIDIA A100 GPU). We evaluate
our approach through top-K recommendation, where trained
models predict the probability of user-item interactions to
select K items with the highest scores for each user in the test
set. We employ a rank-based metric set for model evaluation.
Due to the significantly smaller number of packages (items)
compared to the number of users, we find that using K = 5
and K = 10 provides a sufficiently objective assessment in
our study.

• Precision (P@K) measures how many items with the
top K positions are relevant.

• Recall (Recall@K) measures the share of relevant
items captured within the top K positions.

• Mean Reciprocal Rank (MRR@K) quantifies the rank
of the first relevant item found in the recommendation
list.

• Normalized Discounted Cumulative Gain (nDCG@K)
focuses on the relevant item’s position in search
results. It assigns higher scores to items that are
ranked higher and gradually decreases the score as
the position decreases.

1Google Colab is a cloud-based service provided by Google that allows
users to write, execute, and share Python code in a web-based Jupyter
Notebook interface.
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• Mean Average Precision (mAP@K) averages the P@K
metric at each relevant item position in the recommen-
dation list.

In both scenarios, whether integrated with clustering or
not, both SVD and SVD++ exhibit poor recommendation
performance due to the extremely high sparsity of collaborative
data. Without clustering, GNN-based baseline models (namely
KGCN and LightGCN) cannot perform as large-scale graphs
use much more memory than other methods for storing the
interaction matrix and embedding spaces, while Implicit ALS
is the best possible model in this scenario. Mult-VAE performs
fairly well in recall but shows lower ranking-quality scores
compared to ALS. This is particularly evident in the case of
PageRank, as it solely relies on item popularity and disregards
their ranking (as presented in Table III).

TABLE III. COMPARISON OF RECOMMENDATION MODELS WITHOUT
CLUSTERS ON OUR DATASET (%)

Method K = 5 K = 10

P Recall MRR nDCG mAP P Recall MRR nDCG mAP

SVD 0.11 0.50 0.38 0.37 0.27 0.25 1.96 0.61 0.87 0.27
SVD++ 0.11 0.44 0.37 0.36 0.27 0.22 1.76 0.58 0.80 0.27
ALS 4.14 16.45 10.38 11.03 4.58 3.25 25.87 11.76 14.23 4.70
Mult-VAE 3.61 14.58 7.00 8.40 1.61 3.66 29.05 9.17 13.38 1.70
PageRank 3.93 14.98 5.10 7.22 0.09 3.57 28.01 7.03 11.68 0.11

In intra-cluster predictions, the models marginally exhibit
higher performance. Notably, incorporating the user segmen-
tation stage into available GNN-based methodologies makes
it feasible in the setting of limited memory resources. Their
corresponding clustering-driven versions, named KGCN++ and
LightGCN++, demonstrate superior performance compared to
non-GNN-based approaches by a significant margin.

Our HybridGCN models achieve the highest level of
effectiveness across all metrics on this real-world dataset,
with HybridGCNa and HybridGCNb performing best intermit-
tently. In particular, HybridGCN significantly improves rank-
ing quality metrics (MRR, nDCG, and mAP) to a noteworthy
extent. It surpasses clustering-driven state-of-the-art models
such as LightGCN++ by approximately 1-2%, and KGCN++
by around 4-9% as shown in Table IV and Fig. 7. This
highlights the strong capability of our proposed model in
addressing the challenge of knowledge incompleteness in KG-
based GNN models such as KGCN (see Table II). More-
over, the improvement over LightGCN++ demonstrates that
additionally incorporating semantic structures through intra-
KG propagation enhances the personalization capabilities of
graph learning-based systems. Similar to traditional hybrid
approaches, our inter-graph propagation also aids in mitigating
the potential issue of sparse collaborative data and cold-start
problems.

Between the two variants of HybridGCN, HybridGCNa
performs slightly better in overall evaluation metrics such
as Precision and Recall, while HybridGCNb generally shows
a slight advantage in fine-grained ranking quality evaluation
metrics like MRR and mAP. These results indicate that Hy-
bridGCNa has better generalization ability, while HybridGCNb
excels in providing detailed and personalized recommendations
based on user preferences. This is reasonable considering the
mathematical interpretations of these two versions in Section
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Fig. 7. Detailed evaluation of graph neural network-based models
in top-K recommendation with (a) MAP@K and (b) Recall@K.

III-C. While the formula of HybridGCNa is a straightforward
combination of intra-KG and intra-IG propagation results,
HybridGCNb enables a smoother mechanism when integrating
different semantic structures from KGs into collaborative data.

TABLE IV. COMPARISON OF RECOMMENDATION MODELS WITH
CLUSTERS ON OUR DATASET (%)

Method K = 5 K = 10

P Recall MRR nDCG mAP P Recall MRR nDCG mAP

SVD 0.52 1.98 0.99 1.13 0.32 0.68 5.32 1.53 2.27 0.33
SVD++ 0.54 2.06 1.03 1.18 0.33 0.70 5.43 1.58 2.33 0.33
ALS 3.92 15.54 9.44 10.16 3.91 3.34 26.60 11.05 13.90 4.04
Mult-VAE 3.05 11.92 6.60 7.37 2.43 3.41 27.11 8.83 12.48 2.56
PageRank 3.96 15.08 4.97 7.15 0.04 3.68 28.96 6.98 11.85 0.04
KGCN++ 4.53 17.89 11.14 11.98 4.92 3.49 27.49 12.56 15.26 5.05
LightGCN++ 6.39 25.71 15.95 17.29 7.06 4.84 38.78 17.79 21.74 7.33
HybridGCNa 6.61 26.63 17.40 18.49 8.65 4.89 39.23 19.18 22.79 8.95
HybridGCNb 6.53 26.31 17.45 18.42 8.85 4.84 38.85 19.22 22.69 9.15
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V. DISCUSSION

Previous experiments on GNN-based RS [4], [7], [17]
have predominantly focused on comparing the effectiveness
of models on popular benchmark datasets, where user bases
are relatively small, and the setup, such as building KGs as
their input, is relatively straightforward. In contrast, we aim
to evaluate the feasibility and applicability of deploying such
graph-based approaches on a real-world, large-scale dataset
where all relevant practical issues need to be considered. Our
experiments cover a wide range of evaluations, from global
recommendations to recommendations within specific user
clusters. We compare some existing efficient methods, exam-
ining whether simpler methods can outperform more complex
ones in real-life scenarios. We also compare modern GNN-
based methods that incorporate knowledge graphs with those
that do not. Through experiments, our proposed method has
shown better results, taking advantage of hidden information
from data based on the graphs we have built. However, to
further ensure the practical capacity of our method across
various domains, more experiments need to be conducted on
datasets from different fields, where KG construction and user
behavior can vary.

VI. CONCLUSION

We propose a comprehensive approach leveraging Knowl-
edge Graphs (KGs) and Graph Neural Networks (GNNs) to
address graph-based recommender system problems. Through
clustering, our framework shows the feasibility of applying the
GNN paradigm to large-scale data. Combining two innovative
graph learning structures, our core HybridGCN model adopts a
GNN-based technique on cross-graph propagation effectively.
It overcomes the limitations inherent in each approach by
effectively handling knowledge incompleteness within prac-
tical Knowledge Graphs and addressing the sparse connection
density in Interaction Graphs. Furthermore, we successfully
tackle the challenge of constructing a Knowledge Graph from
domain-specific unstructured data by harnessing the capabil-
ities of LLMs, resulting in competitively high Knowledge
Graph completion rates across different clusters. We evaluate
our approach on a real-world telecommunications dataset using
a rigorous assessment strategy. Our methodology successfully
applies GNN-based methods to a dataset with millions of
users. Specifically, for ranking-centric scores, HybridGCN has
demonstrated its effectiveness in personalized recommendation
tasks, outperforming other GNN-based models and state-of-
the-art methods.
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