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Abstract—As the digital economy flourishes, the use of
blockchain technology for data trading has seen a surge in
popularity. Yet, previous approaches have frequently faltered
in harmonizing security with user experience, culminating in
suboptimal transactional efficiency. This study introduces a per-
sonalized local differential privacy framework, adeptly tackling
data security concerns while accommodating the individual pri-
vacy preferences of data owners. Furthermore, the framework
bolsters transaction flexibility and efficiency by catering to needs
of data consumers for detailed queries and enabling data owners
to effortlessly elevate their privacy budget to achieve greater
financial returns. The efficacy of our approach is validated
through a comprehensive series of experimental validations.
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I. INTRODUCTION

The ongoing shift towards informatization in society has
resulted in a tremendous increase in data volume. Data trading,
evolving as a novel business model, is gaining pivotal impor-
tance in today’s digital economy. A notable number of users
are inclined to offer their personal data in return for access
to online services. Nevertheless, as individuals become more
aware of the ramifications of companies utilizing their data,
understanding the potential consequences and recognizing the
intrinsic value of personal data, there is a growing trend
towards expecting compensation for the usage of such data
[1].

To facilitate this model of data trading, private data trading
has emerged as a significant research field, prompting the
development of various innovative solutions like FairQuery
[2], FairInnerProduct [3], SingleMindedQuery [4], and Smar-
tAuction [5]. These methods utilize Differential Privacy (DP)
[6, 7] to safeguard data while providing query results to data
consumers (DC), instead of directly handing over the data.
Commonly, these solutions engage three key stakeholders:
Data Owners (DO), Data Consumers, and a data broker (DB).

DO are individuals who possess data and are interested in
commercializing it. This group includes people with diverse
types of data, such as social, financial, location, or health-
related data. Entities like advertisers, software developers, and
retailers represent DC—those in search of external data to
support their decision-making processes. They aim to query
aggregated information tailored to certain demographics, all
within a specified budget. DB collaborates with DO, collects
data, and provides query results to DC, thereby benefiting
financially from this process.

The depicted transaction model is fundamentally seg-
mented into two principal components: Value Exchange and
Information Processing, as delineated in Fig. 1. Within the
Value Exchange phase, inputs include DO’ data valuation,
privacy requirements, and DC’ budget. The consequent out-
puts encompass the remuneration for DO partaking in the
transaction, along with the privacy compensation accorded to
them. The Information Processing segment entails furnishing
DC. with query outcomes, augmented with noise, which
typically conform to differential privacy standards to guarantee
robust protection of DO’ privacy. The architecture of these so-
lutions customarily incorporates several essential attributes to
ascertain equity in data trading, such as incentive compatibility,
individual rationality, and budget feasibility.

Fig. 1. Data trading.

However, previous models depend on a trusted third party
for storing the original data of DO. While centralized storage
enhances data integration and processing efficiency, it intro-
duces potential security vulnerabilities. For instance, should
the central server be compromised by hackers or if internal
staff illicitly access data, the confidentiality of sensitive in-
formation cannot be assured. Such uncertainties undermine
privacy and integrity of data, impacting the viability and
trustworthiness of data transactions. Despite efforts to address
these issues through local differential privacy (LDP) [8] and
blockchain-based data trading, these approaches have not ad-
equately accounted for the unique privacy preferences of DO
and the budgetary limitations of DC, making the process less
user-friendly and decreasing transaction efficiency.

To navigate these challenges, personalized local differential
privacy (PLDP) [9] emerges as a refined strategy. In this
framework, DO are not required to upload their raw data to
DB’s database. Instead, they apply PLDP measures tailored to
their privacy needs and upload the altered data. This method
not only safeguards individual privacy but also accommodates
the varied privacy demands of different DO, maintaining data
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usability and enabling DC to perform statistical analyses.
Essentially, this technique eliminates the risk of data exposure
since only data that has been processed for PLDP is shared,
keeping the original datasets confidential and securely with the
DO.

Moreover, to ensure transactions are both fair and adapt-
able, DC must be empowered to request additional conditions,
such as more detailed queries, thus filtering out data not
meeting specified privacy standards. This provision fosters a
balanced data trading ecosystem and encourages DO to supply
data of higher quality and relevance.

As DO engage in multiple transactions and see tangible re-
wards, their confidence in the data trading system grows. Even-
tually, they might be inclined to increase their privacy budgets
for better compensation. However, frequent data re-uploads
can significantly hamper transactional efficiency. Therefore, we
introduce a solution enabling DO to effortlessly raise their
privacy budgets with the assistance of DB under suitable
conditions. This arrangement not only streamlines transactions
but also guides DO in aligning their data more accurately
with its real-world value, thus reinforcing the reliability and
steadiness of data exchanges.

In summary, we have developed a data security and user-
friendly data trading model that innovatively employs PLDP
technology. This method ensures that the original data of
DO does not need to be uploaded, fundamentally prevent-
ing privacy risks associated with data breaches. Additionally,
we provide DO with a convenient method to increase their
privacy budgets. However, due to the current limitations of
PLDP technology, this method is currently only applicable to
numerical data, which represents a limitation of this study.

Overall, the principal contributions are summarized as
follows:

• The deployment of PLDP technology markedly bol-
stered data security and minimized leakage risks while
adeptly catering to DO individual privacy preferences.

• The refinement of query mechanisms to accommodate
DC requirements for granular inquiries, thereby ele-
vating data precision and pertinence, which in turn
enhances the utility of data and improves the consumer
experience.

• The formulation of a scheme enabling data owners
to augment their privacy budgets in pursuit of greater
compensation, thereby fostering the dissemination of
superior data.

• we have made our entire source code and the detailed
experimental procedures available on GitHub [10]
(https://github.com/cjh20000613/User-Friendly-Privacy
-Preserving-Blockchain-Based-Data-Trading).

II. RELATED WORK

A. Private Data Trading

Our research includes a comprehensive review of privacy-
preserving data queries. The seminal work by Ghosh and
Roth [2] established fundamental frameworks in this domain,
notably the Value Exchange and Information Processing, and

introduced the FairQuery (FQ) concept. FQ utilizes a greedy
algorithm for reverse auctions, aiming to maximize the selec-
tion of DO in value exchanges. Additionally, it employs the
Laplace mechanism [11] for information processing, facilitat-
ing count queries on binary data (0/1 values).

Danderkar et al. [3] extended this research to more gen-
eral query types, specifically linear predictors, and developed
FairInnerProduct (FIP). FIP employs a knapsack problem-
solving mechanism for value exchange and provides extra
compensation to DO with the highest data value. This model
effectively deters DO from underreporting their data value to
gain compensation.

Nget et al. [12] proposed two distinct compensation mech-
anisms: a logarithmic function for conservative approaches
(low risk, low return) and a sub-linear function for liberal ap-
proaches (high risk, high return). Their goal was to engage DO
with varied privacy expectations. Additionally, they tackled the
issue of DC arbitrage by employing sampling before querying
and imposing restrictions on DC to prevent repetitive queries.

Mengxiao Zhang et al. [4] introduced a pivotal assumption
that DO are single-minded, agreeing to sell data only if their
privacy demands are met. Building on this, they developed the
SingleMindedQuery (SMQ), which incorporates the Bayesian
static game approach in its value exchange mechanism and
an enhanced exponential mechanism [13] for information
processing, thus achieving genuine personalized differential
privacy protection. Further, [5]they adapted this mechanism
to the blockchain, integrating RSA encryption and signature
technology to secure data transmission processes.

Wang et al. [14] and Fallah et al. [15] presented the
PDQS, enabling data owners to locally distort their private data
to guarantee LDP. Nonetheless, they overlooked the budget
limitations of DC. Li et al. [16] proposed a perturbation
mechanism that permits DO to submit either accurate values or
randomized values with a specific probability. This approach,
by weaving together the facets of value exchange and informa-
tion processing, seeks to refine the precision of query results.

B. Blockchain-based Data Trading

Blockchain-based data trading presents solutions to sev-
eral issues inherent in traditional centralized data platforms,
adeptly addressing concerns such as privacy violations, ele-
vated transaction costs, and limited interoperability. Thanks to
blockchain’s distributed architecture, data trading activities are
decentralized, occurring across various nodes in the network,
which diminishes the dependence on DB.

Xiong et al. [17] developed a data trading platform that
harnesses smart contracts. DO store their data with dedicated
data storage entities. Upon completion of a transaction, DO
transfer tokens to DC, who in turn utilize these tokens to
access the data. To ensure transactional fairness, an arbitration
entity is implemented. If DC discover that the downloaded
data fails to meet their criteria, they can seek arbitration.
The arbitration entity leverages similarity learning technology
to evaluate the consistency of data. In cases of identified
inconsistencies, DC are compensated with a refund, while the
deposits of DO are seized.
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Dai et al. [18] developed a Data Exchange Ecosystem
(SDTE) grounded in Ethereum and Intel SGX technologies. In
their system, buyers are not granted direct access to raw data.
Rather, they receive only the analytical results or processed
outputs of the specific data elements they require. Enhanced se-
curity is achieved through SGX’s authentication mechanisms,
which facilitate the secure exchange of keys necessary for
encryption. The use of enclaves ensures that both data and key
codes remain shielded from external access. This architecture
not only guarantees data security and privacy protection but
also adeptly addresses the challenges faced by DC and DB
in the data transaction process.

III. PRELIMINARIES

A. Personalized Local Differential Privacy

Local Differential Privacy (LDP) [8], recognized as a
robust privacy protection mechanism underpinned by a solid
mathematical foundation, negates the necessity of trusting any
third party and effectively safeguards user data privacy. In LDP
algorithms, users apply randomization techniques to introduce
noise into their sensitive data at a local level. This altered data
is then transmitted to the server, rendering it infeasible for
attackers to ascertain the original data of any individual user.

Definition 1. Local Differential Privacy: Considering a spec-
ified privacy budget ε > 0, a random algorithm A : D → G
adheres to ε−LDP for users. For any pair of inputs d ∈ D
and d′ ∈ D, and for any resultant output g ∈ G, the algorithm
meets the ensuing inequality:

Pr(A(d) = g) ≤ eε × Pr(A(d′) = g) (1)

Here, Pr denotes the probability derived from the coin toss in
mechanism A.

While LDP offers robust privacy protection, it may not
always align with the diverse privacy preferences of indi-
vidual users in practical scenarios. For instance, celebrities
and students might have different sensitivities towards their
address data. To address this, PLDP [9] model is proposed,
providing customization to meet varied user privacy needs. In
PLDP, users are required to define two parameters: the security
parameter τ and the privacy budget ε.

Definition 2. Personalized Local Differential Privacy: For
any two privacy parameters ε and τ of a user, a random
algorithm A : D → G is considered (τ, ε)−PLDP compliant
for that user. For any output g ∈ G, user records d ∈ τ , and
any other value d′ within τ , τ ∈ D, the model adheres to the
following inequality:

Pr(A(d) = g) ≤ eε × Pr(A(d′) = g) (2)

Here, Pr denotes the probability generated during the coin
toss in mechanism A.

In the (τ, ε)−PLDP framework, the parameter τ specifies
the range within which user records are indistinguishable from
one another. For example, if a user’s data is 0.5 and they select
τ as [0, 1], then under PLDP, the value 0.5 is indistinguishable
from any other values in the [0, 1] range. The parameter ε
signifies the level of indistinguishability. If all users set D
as their security region and standardize the privacy budget ε,
then PLDP effectively becomes equivalent to the standard LDP
model.

B. Smart Contract

A smart contract[19], as embedded in blockchain technol-
ogy, operates in a manner akin to traditional contracts. It is
essentially a code that outlines a set of predetermined rules
and autonomously enforces them through its execution. On
the Ethereum platform [20, 21], a smart contract represents a
compilation of code and data situated at a specific blockchain
address, often referred to as a contract account. Notably, smart
contracts maintain their own balance and can receive transac-
tions, yet they remain beyond the control of any individual
entity.

Once deployed on the blockchain, a smart contract is
rendered immutable, making it impervious to removal. This
feature implies that all interactions with the contract are
permanent and irreversible. Such immutability is a fundamen-
tal attribute of blockchain technology, ensuring that records
inscribed onto the blockchain are resistant to alteration. Con-
sequently, this enforces the reliability and security of the
contract’s execution.

C. Symmetric Encryption

Symmetric Encryption (SE) [22] is a cryptographic method
where the same key is employed for both the encryption and
decryption processes. In this approach, both the sender and
receiver must possess the same key in advance. This key
is utilized to encrypt data for transmission and subsequently
decrypt it upon receipt.

Definition 3. Symmetric Encryption:

• Setup(1λ) → k: The initialization algorithm. It takes
a security parameter 1λ as input and generates the
encryption key k.

• Encrypt(k,M) → C: The encryption algorithm.
Given the key k and plaintext message M as input, it
produces the corresponding ciphertext C.

• Decrypt(k,C) → M : The decryption algorithm. Us-
ing the key k and ciphertext C as inputs, it reconstructs
the original plaintext message M .

In the selection of a symmetric encryption algorithm,
factors like the encryption process and key length play pivotal
roles. In this context, the Advanced Encryption Standard (AES)
[23, 24] emerges as a superior option. Consequently, we have
chosen the AES128 symmetric encryption algorithm to assure
the security of data during its transmission and storage phases.

D. Elliptic Curve Cryptography

Elliptic Curve Cryptography (ECC) [25, 26] is a form
of public-key encryption, with its security hinging on the
complexity of solving the Elliptic Curve Discrete Logarithm
Problem (ECDLP) [27]. The core challenge in ECC is to
identify an integer k for which Q = kP holds true for two
given points P and Q on an elliptic curve, a task that is
computationally demanding. The robustness of ECC lies in the
inherent difficulty of efficiently resolving the ECDLP within a
finite timeframe.

Definition 5. Elliptic Curve Cryptography:

www.ijacsa.thesai.org 1376 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 5, 2024

• KenGen(1λ) → (pk, sk): The key generation algo-
rithm.

◦ Input the security parameter 1λ.
◦ A random elliptic curve E and a generator

point G on it are selected. A large prime
number n is chosen as the order of points on
the curve.

◦ A private key k ∈ [1, n− 1] is picked.
◦ The public key Q = [k]G is calculated.
◦ The outputs are the public key pk = (E,G,Q)

and the private key sk = k.

• Enc(M,pk) → C: The encryption algorithm.
◦ Takes the plaintext message M and public key

pk = (E,G,Q) as inputs.
◦ A random number r ∈ [1, n− 1] is generated.
◦ The elliptic curve point C1 = [r]G is com-

puted.
◦ The elliptic curve point S = [r]Q is calculated.

If S is the point at infinity, a new k is selected
and recalculated.

◦ The ciphertext C2 = M ⊕ H(S) is formed,
where ⊕ represents the XOR operation and H
is a hash function.

◦ The ciphertext C = (C1, C2) is produced.

• Dec(C, sk) → M : The decryption algorithm.
◦ Inputs the ciphertext C = (C1, C2) and private

key sk = k.
◦ Computes S = [k]C1.
◦ Derives the plaintext M = C2 ⊕H(S).
◦ Outputs the plaintext message M .

The choice of appropriate elliptic curve parameters is
critical for the security of ECC. Hence, in this paper, we have
selected the SM2 [28] elliptic curve standard.

E. InterPlanetary File System

The InterPlanetary File System (IPFS) [29] represents a
paradigm shift in file storage and sharing, designed as a dis-
tributed system that contrasts sharply with traditional central-
ized storage approaches. Unlike conventional systems where
files are stored on a single central server, IPFS distributes files
across multiple network nodes. It utilizes content addressing,
where a file’s unique identifier is derived from its content’s
hash value. Consequently, even minor alterations in the file
content lead to a drastically different hash, thereby assuring
the file’s uniqueness and integrity. This architecture positions
IPFS as a decentralized, secure, and reliable alternative for
data storage and distribution.

IV. TRADING FRAMEWORK

The process of our private data trading framework, as
depicted in Fig. 2, integrates the value exchange within the
blockchain, ensuring that DB computation and publication of
results are transparent and subject to user oversight. This place-
ment combats the potential underutilization of DC’ budgets by
the DB. DB still processes information locally to retain the
efficiency of data handling.

In our framework, the transactions are not limited to one-
on-one interactions but involve multiple DC and DO, with

Fig. 2. private data trading.

DB facilitating transactions between them. For simplicity, we
will first describe a single transaction before expanding on
the broader mechanics of value exchange and information
processing within the scheme.

A. Value Exchange

In every transaction within our framework, a single Data
Consumer (DCj) engages with multiple Data Owners (DO).
For each Data Owner (DOi), where 1 ≤ i ≤ n, the following
principles are applied:

• DOi commits to active participation in the transaction
once they receive sufficient compensation, which is
calculated based on their personal data valuation,
denoted as θi. This valuation θi indicates the worth
of DOi’s data and is bounded within 0 < θ ≤ θ ≤ θ,
where θ and θ represent the minimum and maximum
value limits, respectively.

• For data privacy, DOi specifies a secure region τi ⊆
[−1, 1] and a positive privacy budget εi before entering
the value exchange process. They apply Personalized
Local Differential Privacy (PLDP) to their data, guided
by these two parameters. The actual value of DOi’s
data is thus a function of its privacy protection. A
narrower τi yields less deviation from the original
data and retains a higher true value, whereas a wider
τi increases data variation post-PLDP, reducing its
overall value. For the privacy budget εi, a smaller
value leads to heavily noised data and lower actual
value, while a larger εi brings the value closer to
the data’s original state, signifying a user’s consent
to limited information disclosure.

Therefore, the actual value of user data, denoted as vi =
f(θi, τi, εi), is expected to conform to certain correlation con-
ditions. Specifically, when a user’s data value θi is established,
the actual value vi tends to decrease with an increase in the
range of the secure region τi. Conversely, as the privacy budget
εi increases, vi should correspondingly increase. This dual
effect ensures that under the umbrella of privacy protection, the
real value of user data is optimized, maximizing the extraction
of useful information in the value exchange.

In parallel, the valuation θi of DOi’s data may inad-
vertently reveal sensitive information. For instance, a higher
valuation in medical health data might suggest a more severe
medical condition. Concerns about such privacy breaches
might lead some DOi to underreport their data valuation θi
intentionally. To counteract this, DB implements incentive
measures to encourage DOi to disclose their true valua-
tions. Specifically, a portion of DCj’s budget is reserved for
compensating privacy losses. The compensation received by
DOi is proportionate to the privacy loss θi they incur. This
additional privacy compensation mechanism is designed to
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alleviate DOi’s concerns, encouraging more honest reporting
of data valuations, thereby ensuring fairness and transparency
in the transaction process.

During the data trading process, DCj can tailor their
resource allocation to align with specific needs and privacy
preferences, enabling more nuanced and precise data queries.
Specifically, when initiating a transaction, DCj proposes a
privacy requirement εdc, stipulating that the privacy budget
of DOi involved in the transaction must exceed this value.
The lower limit of εdc requires no additional expenditure
from DCj. However, as εdc approaches the upper limit of
the privacy budget, the cost escalates significantly, potentially
reaching infinity. This framework allows DCj to flexibly
balance the privacy level and cost of queries, thereby catering
to personalized information needs more effectively.

Integrating these conditions, we conceptualize the value
exchange as a 0-1 knapsack problem, where the knapsack’s

capacity is defined as B′ = B − (ε̄− ε)e

εdc−ε

ε̄−ε

ε̄−εdc
(Fee+ fee),

each item’s weight is given by θi, and the value is vi =
4εi

4e
wi
4 (εi+1)

θi. With n items in total, qi denotes the inclusion of

item i in the knapsack. In this scenario, Fee is the intermediary
fee by DB, fee is the privacy compensation for DOi, εdc is
the privacy requirement of DCj , wi is the size of the secure
region τi for DOi, and ε and ε̄ represent the lower and upper
bounds of the privacy budget. The goal is to maximize the
actual value of the data, ensuring the total value does not
surpass DCj’s budget.

Definition 7. The optimal value exchange, aimed at maxi-
mizing the actual value of data, must adhere to the ensuing
equation:

maximize
qi,vi,θi

n∑
i=1

qivi

subject to
n∑

i=1

qiθi ≤ B′

θ ≤ θi ≤ θ

εi > 0

ε ≤ εdc ≤ εi ≤ ε̄

(3)

By resolving this equation, we can deduce a solution
that maximizes the actual value of the data while adhering
to budgetary constraints. This solution exhibits the following
characteristics:

(1) Incentive Compatibility (IC): This attribute ensures
that DOi is motivated to truthfully declare their
valuation θi. This approach guarantees they re-
ceive the maximum privacy compensation qiθi +

(ε̄− ε)e

εdc−ε

ε̄−ε θifee

(ε̄−εdc)
∑n

i=1
θi

.

(2) Individual Rationality (IR): This principle ensures
each Data Owner’s willingness to participate, as
the benefits of participation outweigh those of non-
participation. Assuming non-participation yields a
profit of zero, participation results in no privacy

breach and entitles them to privacy compensation of
(ε̄− ε)e

εdc−ε

ε̄−ε θifee

(ε̄−εdc)
∑n

i=1
θi

.

(3) Budget Feasibility (BF): This criterion guarantees that
the aggregate compensation awarded to DO remains
within the fiscal limits of DCj . Specifically, the
total compensation should not surpass the budget B,
expressed as

∑n
i=1 qiθi ≤ B′ < B.

Satisfying these three properties—Incentive Compatibility,
Individual Rationality, and Budget Feasibility—ensures the
fairness, effectiveness, and sustainability of the data value
trading process. Moreover, it also safeguards the privacy rights
of DO and facilitates the smooth progression of data trading
activities.

B. Information Processing

In real-world data trading scenarios, DC often face bud-
getary constraints that prevent them from incorporating data
from DO. Consequently, the value exchange mechanism in-
volves a comparatively smaller group of DO than the total
number available. This limitation poses challenges in acquiring
a comprehensive understanding of the entire dataset through
subsequent counting queries. In practical terms, this restriction
might lead to queries that diverge significantly from the actual
data, obscuring the overarching trends and characteristics of
the dataset.

To address this issue, we propose a strategy where DCj’s
query requests focus primarily on mean queries and linear
predictors. This method enables DCj to discern the general
trends and characteristics of the dataset and facilitates reason-
able predictions about the unexplored segments of the data.

In this framework, the Piecewise mechanism with Person-
alized Local Differential Privacy (PWP) [30] is recognized
as a highly effective PLDP algorithm. PWP builds upon the
original Piecewise Mechanism [31], adapting it to support
PLDP and introducing constraints to ensure the parameters in
the probability density function achieve an integral of 1 across
the entire range.

According to the predefined data boundaries, the data of
each Data Owner (DOi) is normalized to a specific value
within the [−1, 1] range, denoted as di. The size of the secure
region τ , represented by wi, and the center point of τi, denoted
as hi, are determined based on the privacy parameters (τi, εi).

The perturbation process within the PWP is outlined in
Algorithm I. Initially, DOi shifts their secure region to a zero-
centered symmetric region, effectively moving hi to the zero
point. Consequently, di is transformed into ti = di−hi. PWP
then processes ti to produce a sanitized value t̃i within the
range [−Ci, Ci], where

Ci =
wi

2
· e

εi
2 + 1

e
εi
2 − 1

(4)

The probability density function (pdf ) of t̃i is a piecewise
function as follows:
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Pr
(
t̃i = x | ti

)
=

p, if x ∈ [li, ri)

e
εi
2

e
εi
2 +1

, if x ∈ [−Ci, li) ∪ [ri, Ci]
(5)

where

p =
eεi − e

εi
2

wi(e
εi
2 + 1)

(6)

li =
2ti · e

εi
2 − wi

2(e
εi
2 − 1)

(7)

ri =
2ti · e

εi
2 + wi

2(e
εi
2 − 1)

(8)

Upon determining t̃i, DOi reverts the region to its original
position and computes the noisy version of di, designated as
d̃i = t̃i + hi, which is then expanded to match the data range
(Table I).

TABLE I. PWP: PIECEWISE MECHANISM WITH PLDP

Input: Personal privacy parameters (τi, εi), data di of doi.
Output: sanitized values d̃i.
1. wi = |τi|, hi is the center point of τi, ti = di − hi.
2. Sample a random variable a uniformly from [0, 1].

3. If a < e

εi
2

e

εi
2 +1

:

3.1 Sample t̃i uniformly from [li, ri).
4. Else:

4.1 Sample t̃i uniformly from [−Ci, li) ∪ [ri, Ci].
5. d̃i = t̃i + hi.

Definition 8. Algorithm I adheres to the (τ, ε)-PLDP stan-
dards for each data owner DOi with their respective
(τ, ε)parameters. Moreover, with an input value of di, the
algorithm generates a perturbed value such that the expected
value E[d̃i] = di, and the variance is given by:

Var[d̃i] =
(di − hi)

e
εi
2 − 1

+
w2

i (e
εi
2 + 3)

12(e
εi
2 − 1)2

· 1

eεi + 1

Subsequently, DOi uploads the perturbed data along with
certain non-perturbed feature data to DB. Based on the
requests of the data buyer, DB performs queries and sends
the encrypted results to the data buyer.

Property 1. Sequential Compositionality: Consider two
random algorithms, A1 and A2, each conforming to
(τ, ε1)−PLDP. When these algorithms are sequentially com-
posed as A = (A1, A2), the composite satisfies (τ, ε1 +
ε2)−PLDP. A fundamental condition for this property to be
valid is that the data d must remain within the secure region
τ after being processed by the random algorithm A1.

Proof
Pr (A(d) = g)

Pr (A(d′) = g)
=

Pr (A2(g
′) = g)

Pr (A2(g′) = g)
× Pr (A1(d) = g′)

Pr (A1(d) = g′)

≤ eε2 × eε1

= eε1+ε2

(9)

Thus, A = (A1, A2) satisfies (τ, ε1 + ε2)−PLDP.

After DOi submits their data, DB reviews it to assess
whether further PLDP processing is feasible. Should it be prac-
tical to proceed, DOi, after engaging in multiple transactions,
has the option to enhance their privacy level without needing
to reapply PLDP with a higher privacy budget and resend the
data. Instead, they can authorize DB to apply additional PLDP
on the data that has already undergone initial PLDP processing.
This approach is designed to minimize costs associated with
data retransmission and revalidation, simultaneously reducing
the risk of information leakage during the data transfer process.

V. PROTOCOL DETAILS

Prior to examining the specifics of smart contracts and the
scheme’s overarching process, it is essential to understand the
security strategy employed by DO. DOi may hold various
types of data, such as credit card information and health
records. Utilizing a single encryption key for all data types
presents inherent risks, given that data stored on IPFS is
accessible to all, and a key compromise could expose all
associated information. To bolster security, DOi elects to
use distinct symmetric keys k for encrypting each data type.
This approach ensures that even if one data type’s key is
compromised, the other data types remain secure. DOi then
amalgamates all the symmetric keys and encrypts them using
DB’s public key before sending them to DB for data verifi-
cation. This encryption strategy effectively mitigates potential
risks, thereby elevating the overall security level of the data.

With a comprehensive understanding of the DO’s security
strategy in place, we can now explore the detailed function-
alities of smart contracts. These include their pivotal roles in
data transactions and the verification process.

A. Smart Contract Functionalities

The smart contract S̃C offers the following key function-
alities:

Data Broker:

1. ‘constructor( fee)‘: A constructor function that sets
the contract owner, intermediary fee (Fee), and pri-
vacy compensation (fee).

2. ‘DO data()‘: This function enables DB to access
information and locations of the first Data Owner in
the request queue and integrate them into the DO
array.

3. ‘update DO( site, i, change, introduction)‘: It al-
lows DB to tag whether the data of DOi is eligible
for subsequent PLDP and includes data introductory
details.

4. ‘delete DO( site, i)‘: Used by DB to remove the
corresponding DOi at a given position in instances
where data fails verification or when DOi resubmits
data, determining if they should be extracted from the
DO array.

5. ‘tx generate()‘: This function facilitates DB in gen-
erating transactions based on the queue and retrieving
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query request information from the initial Data Con-
sumer.

6. ‘tx process( es, choose, num, budget, fee)‘:
Enables DB to conclude transactions, dispatching
ciphertext and the residual budget to DCj . Should the
count of participating DO be zero, the transaction is
considered unsuccessful, and the budget is refunded.

Data Owner:

7. ‘dataOwner Join( value, cid, ek, privacy, tao)‘:
This function permits DOi to apply for participation
but restricts them from joining directly via the
contract address.

8. ‘dataOwner Withdraw()‘: Enables DOi to withdraw
their earnings, employing a check-influence-swap pat-
tern to mitigate the risk of reentrancy attack vulnera-
bilities.

9. ‘dataOwner Update( privacy, j)‘: This function al-
lows DOi to request an increase in privacy budget
for a specific record, signaling that the corresponding
data is eligible for another round of PLDP. DB then
executes the requisite data adjustments locally.

Data Consumer:

10. ‘dataConsumer Purchase( privacy, request)payable‘:
Facilitates Data Consumers (DCj) in submitting
purchase requests while prohibiting direct joining
through the contract address and barring repeat
purchases before the completion of an ongoing
transaction.

11. ‘dataConsumer Result()‘: This function enables
DCj to access the ciphertext of their query results.

B. Overall Process

Now, we will delve into a comprehensive understanding of
our solution’s operational process by examining the intricacies
of data transmission and processing, as well as the pivotal
role played by DB. The detailed steps of our solution’s
overall process are outlined below, with the corresponding
sequence diagram depicted in Fig. 3. This thorough exploration
will provide insights into how each component interacts and
contributes to the efficient functioning of the system.

During the initialization phase, DOi executes the key
initialization algorithm Setup(1λ) to generate their symmet-
ric encryption key ki. They then apply PWP, informed by
their selected privacy parameters (τi, εi). The data intended
for encryption, post-PWP processing, is encrypted using the
algorithm Encrypt(ki, d̃i|Di), creating the ciphertext Ci. This
ciphertext Ci is then uploaded to IPFS, generating a unique
hash hashi. Concurrently, DCj and DB each run the key
initialization algorithm KenGen(1λ) to obtain their respec-
tive pairs of encryption keys (pkj , skj) and (pkDB , skDB).
Following this, the smart contract S̃C is deployed to the
blockchain, establishing the intermediary fee (Fee) and pri-
vacy compensation (fee).

Data Collection: In the data collection phase, DOi, having
acquired the public key pkdb from DB, executes the encryption

algorithm Enc(ki, pkdb) to produce the encrypted key eki.
DOi then applies to join the data trading platform via the
smart contract S̃C, uploading details (hashi, eki, θi, εi, τi)
while awaiting verification from DB. Upon receipt of the
information (hashi, eki, θi, εi, τi), DB utilizes the decryption
algorithm Dec(eki, skdb) to retrieve DOi’s symmetric key
ki. Following this, DB, referencing hashi, downloads DOi’s
ciphertext Ci. Subsequently, by executing Decrypt(ki, Ci),
DB acquires the perturbed data d̃i and the feature data Di

post-PLDP. This data, upon inspection, leads to the approval
of DOi’s membership application, coupled with an assessment
of the feasibility of further PLDP and inclusion of data
introduction details.

Data Purchase: DCj , utilizing the functionality of the smart
contract S̃C, submits a data query request φ along with their
privacy budget εj , allocating the budget B for the transaction.

Exchange And Processing: Upon receipt of the query details
(B, εj , φ) from DCj , DB implements the value exchange
mechanism E(θ, ϵ, τ, B, εj , F ee, fee), resulting in the selec-
tion of a set q and the number n′ of participating Data
Owners for the transaction. This also includes the calculation
of the remaining budget b. Following this, based on the query
request φ, the operation P (d̃, D, q, φ) is performed to derive
the query result sj . The result sj is then encrypted using DCj’s
public key pkj through Enc(sj , pkj), generating the ciphertext
esj . DB subsequently transmits the ciphertext esj and the
remaining budget b to DCj via S̃C. Upon receipt of esj ,
DCj executes Dec(esj , skj) to retrieve the query result sj .

Withdraw And Update: After a specified period, DOi can
withdraw their earnings from prior transactions (qiθi +

(ε̄− ε)e

εdc−ε

ε̄−ε θifee

(ε̄−εdc)
∑n

i=1
θi

) via the S̃C contract. Additionally, DOi can

augment their privacy budget through the smart contract S̃C.

VI. IMPLEMENTATION AND EVALUATION

In this section, we conduct an experimental evaluation of
our scheme by deploying the smart contract on the Sepolia
testnet and simulating interactions between the Data Broker,
Data Owners, and Data Consumers. A critical aspect of this
evaluation involves testing the relative error between the results
received by Data Consumers and the actual data outputs.

A. Security Analysis

In the transactions, all cryptographic algorithms used, in-
cluding SE, ECC, and the hash algorithms of the IPFS, have
been extensively validated and are secure. The PLDP algorithm
used for data processing also meets the (τ, ε)−PLDP security
standard. The smart contracts employed have undergone unit
testing. Therefore, the transaction process is secure. DO’
original data is retained locally, and only perturbed data is
uploaded. This ensures that DB cannot access the true data
of any specific data owner, providing good confidentiality and
preventing Man-In-The-Middle (MITM) attacks. Blockchain
technology offers tamper-resistance and traceability; events
occurring on the blockchain are fully recorded in logs. Thus,
the operation information of all entities during the data trading
process is completely documented, ensuring good integrity and
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preventing any entity from denying their actions during the
transaction.

B. Gas Consumption

Within the smart contract framework, DB bears the respon-
sibility for deploying the contract and managing its function
executions. Other participants in the network, serving as users
on the Ethereum platform, have the flexibility to join at any
time. The gas fees associated with deploying the smart contract
and executing its various functions are contingent on the
specific operations being performed. These costs are compre-
hensively outlined in Table II, offering a detailed breakdown
of the gas consumption for different actions.

TABLE II. TRANSACTION FEE

Function Transaction Fee (ETH) Gas Price (Gwei)

Deployed 0.0064124 1.58120

dataOwner Join 0.0031329 1.59848

dataOwner Withdraw 0.0000554 1.61893

dataOwner Update 0.0000630 1.73067

dataConsumer Purchase 0.0003310 1.61856

DO data 0.0004541 1.60607

update DO 0.0002137 1.62734

tx generate 0.0001068 1.60340

tx process 0.0027604 1.59467

C. Experimental Design

Experimental Environment. The components for value ex-
change and information processing, computed locally, are
implemented using Python. These components are operated
on a computer equipped with an AMD Ryzen 5 5600 6-Core
Processor and 32GB of RAM. Each experimental iteration is
conducted 50 times to ensure accuracy, with the average results
being reported for consistency.

Query Types. Our testing encompassed various query types,
including average queries and linear predictors. For average
queries, we determined the participating Data Owners through
the value exchange mechanism, comparing the perturbed mean
with the actual mean. In the case of linear predictors, the last
row of data was treated as the predictive value, with other
rows representing existing Data Owners. We chose a sensitive
attribute as the label and other attributes as features. A linear
model was constructed using the least squares method, and its
predictive outcomes were compared against actual values.

Metrics. One of the key metrics employed is the Relative Error
(RE). This metric is crucial in evaluating the scheme’s accuracy
in mean estimation, measured as follows:

RE =
|Tm − Em|

|Tm|
(10)

Here, Tm denotes the actual value result, while Em signifies
the perturbed value result.

Dataset. For our experiments, we selected four real-world
datasets: the Obesity dataset [32], Student Performance dataset

[33], Job Salary dataset [34], and the Obsessive-Compulsive
Disorder (OCD) dataset [35]. The details of these datasets are
as follows:

• Obesity Dataset: The sensitive attribute selected is
age, ranging from [15, 56]. Other attributes are treated
as feature attributes and encoded accordingly. After
processing, there are a total of 1552 records.

• Student Performance Dataset: Here, the sensitive at-
tribute is the math score, within the range of [0, 100].
Other attributes are designated as feature attributes and
are similarly encoded. After processing, there are a
total of 964 records.

• Job Salary Dataset: The sensitive attribute, Salary,
is compressed to the range of [100, 000, 180, 000].
Attributes other than the job title are considered
feature attributes and are encoded accordingly. After
processing, there are a total of 1654 records.

• OCD Dataset: For this dataset, Duration of Symp-
toms is the sensitive attribute, with a range of [6, 240].
The remaining attributes are classified as feature at-
tributes and encoded as such. After processing, there
are a total of 1497 records.

Privacy Parameters(τi, εi) and Data Value θi. The values of
the secure region’s upper and lower bounds, τi, are restricted
to the range of [−1,−0.5, 0, 0.5, 1], with specific values being
the two closest to di, resulting in wi being set at 0.5. For
instance, if di = −0.35, the secure region would be [−0.5, 0].
For the privacy budget εi, values are uniformly distributed
within [1, 5], randomly selected and rounded to two decimal
places. The data value θi is randomly determined, selecting
integers within the range of [1, 50].

Experiment 1. In our first experiment, we focused on as-
sessing the efficiency of the data processing component. We
conducted a thorough comparison between our method and the
Laplace mechanism, both of which support continued PLDP.
This comparison aimed to highlight the performance disparities
between these two data processing approaches under various
conditions.

Experiment 2. The second experiment was designed to eval-
uate the efficiency of the value exchange component. We
compared our method against the value exchange mechanisms
of FQ and SMQ. The objective of this comparison was to
delve into the performance differences among these diverse
value exchange methods.

In both experiments, the budget B′ allocated by DC for
purchasing data varied within the range of [1000, 20000],
without any additional privacy budget expenditures.

D. Experimental Result

Experiment 1

As depicted in Fig. 4, the mean query results across the
Obesity, Student Performance, Job Salary, and OCD datasets
highlight the enhanced precision of our BPPDT method over
the LAP approach. Notably, the RE diminishes progressively
with the increase in budget B′, underscoring our method’s
ability to leverage additional resources to improve accuracy.
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The linear predictor results displayed in Fig. 5 reveal
distinct trends across various datasets. In the Obesity and
Student Performance datasets, there is a gradual reduction
in RE as the budget increases, with the trend eventually
plateauing. Our BPPDT method shows superior performance
over the LAP-based scheme in these datasets. In the Job Salary
dataset, although the LAP scheme starts with an advantage,
it experiences significant fluctuations in RE with increased
budgets, whereas our method shows a consistent decline in RE.
The OCD dataset presents challenges for both methods, with
poor performance hinting at weak linear correlations within
the data.

Experiment 2

The total value exchange efficiency of our approach is
depicted in Fig. 6, where it is evident that our method excels
in the value exchange component, attaining the highest level
of value exchange efficiency.

The mean query results presented in Fig. 7 demonstrate
that across all datasets—Obesity, Student Performance, Job
Salary, and OCD—our BPPDT approach consistently yields
smaller RE when compared to the FQ and SMQ methods.
This advantage is substantial and becomes more pronounced
as the budget increases, indicating the superior efficiency of
our method in managing value exchange.

The results for the linear predictor as illustrated in Fig.
8 indicate a distinct trend across different datasets. In the
Obesity dataset, while the FQ scheme initially exhibits smaller
RE at lower budgets, our BPPDT approach surpasses all other
schemes with increasing budget. In the Student Performance
dataset, the BPPDT method shows competitive REs similar to
the SMQ scheme and outperforms other methods, especially
at moderate budget levels. Notably, as the budget nears 20000,
the SMQ scheme’s REs start to decrease significantly. For
the Job Salary dataset, the SMQ scheme demonstrates better
performance. In contrast, in the OCD dataset, our BPPDT ap-
proach maintains commendable performance at lower budgets,
showcasing its efficiency.

According to the results of two experiments, the accuracy
of mean queries is significantly higher than that of linear
queries. This is because linear queries reduce the correlation of
the data after submitting perturbed data, whereas mean queries
are not affected by this. The more budget DC have, the more
data they can purchase, and the higher the accuracy of the data
will be. Additionally, the smaller the range of data values, the
smaller the added perturbation, and the higher the accuracy of
the data. Therefore, this trading model performs better when
processing datasets such as grades and salaries.

VII. CONCLUSION

We introduce a data trading model employing PLDP to
achieve a harmonious balance between user-friendliness and
privacy protection in data transactions. Our innovative ap-
proach not only complies with IC, IR, and BF but also satisfies
(τ, ε)−PLDP requirements. It adeptly caters to DC’ demands
for more detailed queries and fulfills DO’ inclination towards
augmented privacy budgets. Our experimental findings confirm
that our method delivers superior accuracy, even when operat-
ing under identical budget constraints. However, the current

PLDP algorithms can only operate on numerical data. As
future work, we will discuss the selection of privacy parameters
in relation to the value of data owners and aim to expand the
trading model by incorporating PLDP algorithms suitable for
other types of data, as well as addressing more complex query
types.
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Fig. 3. System sequence diagram.

Fig. 4. Experiment 1 mean.

Fig. 5. Experiment 1 linear.
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Fig. 6. Experiment 2 value.

Fig. 7. Experiment 2 mean.

Fig. 8. Experiment 2 linear.
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