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Abstract—Breast cancer remains a significant illness around
the world, but it has become the most dangerous when faced with
women. Early detection is paramount in improving prognosis and
treatment. Thus, ultrasonography has appeared as a valuable
diagnostic tool for breast cancer. However, the accurate interpre-
tation of ultrasound images requires expertise. To address these
challenges, recent advancements in computer vision such as using
convolutional neural networks (CNN) and vision transformers
(ViT) for the classification of medical images, which become
popular and promise to increase the accuracy and efficiency of
breast cancer detection. Specifically, transfer learning and fine-
tuning techniques have been created to leverage pre-trained CNN
models. With a self-attention mechanism in ViT, models can
effectively feature extraction and learning from limited annotated
medical images. In this study3, the Breast Ultrasound Images
Dataset (Dataset BUSI) with three classes including normal,
benign, and malignant was utilized to classify breast cancer
images. Additionally, Deep Convolutional Generative Adversarial
Networks (DCGAN) with several techniques were applied for data
augmentation and preprocessing to increase robustness and ad-
dress data imbalance. The AttentiveEfficientGANB3 (AEGANB3)
framework is proposed with a customized EfficientNetB3 model
and self-attention mechanism, which showed an impressive re-
sult in the test accuracy of 98.01%. Finally, Gradient-weighted
Class Activation Mapping (Grad-CAM) for visualizing the model
decision.
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I. INTRODUCTION

Breast cancer stands as one of the most prevalent and con-
cerning malignancies affecting women globally. In addition,
breast cancer poses a significant health burden and remains
a leading cause of mortality among women. Breast cancer
is a formidable enemy, its impact reverberating through the
lives of countless individuals and families worldwide. It causes
extreme physical, emotional, and socioeconomic consequences
not only in women but also in men. The dangerous nature
of breast cancer is its potential to metastasize. Thus, the
patient needs to understand the mechanisms, risk factors, and
manifestations of breast cancer for effective treatment.

Because breast cancer is one of the most common diseases
in modern life, there have been many reports about the
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statistical indicators of this disease. Breast cancer is one of
the six most common cancers in the world [1] [2] [3] and it
is the leading cause of death in women [1]. In addition, there
will be 1,503,694 deaths worldwide from breast cancer in 2050
(i.e., 1,481,463 women and 22,231 males) [4]. Moreover, the
GLOBOCAN Cancer Tomorrow prediction tool predicts that
breast cancer will rise by more than 46% in 2040 [5]. However,
the incidence rates are not equal between countries around
the world. For instance, developed countries are higher than
developing countries at 88%, with 55.9 and 29.7 per 100,000
women, respectively. In the United States, breast cancer was
a cause of death among 909,488 women between 1999 and
2020 [6]. As estimated, the US will have 310,720 new cases
of female breast in 2024 [7]. In China, there were about 70,400
deaths and 303,600 new cases of breast cancer in 2015. From
2000 to 2015, the age-standardized incidence and mortality
rates rose by 3.3% and 1.0% annually, respectively. It was
estimated that these rates would rise by more than 11% until
2030 [8].

To resolve this problem, advancements in medical science
have assisted multiple approaches aimed at tackling breast
cancer from various angles. From surgery to chemotherapy
and radiation therapy, treatment strategies continue to develop
and help to improve patient treatment and quality of life.
Among these methods, ultrasound images have come out as
a valuable tool offering non-invasive and radiation-free breast
cancer treatment. Addressing breast cancer requires multiple
approaches integrating clinical, pathological, molecular, and
imaging aspects. Thus, continual improvements in medicine
and computer research are imperative to increase early detec-
tion, optimize treatment outcomes, and mitigate the impact of
this formidable disease on individuals and society.

Besides, computer vision appeared as a new way for
classification and segmentation of a lot of aspects of images. In
a subset of computer vision, transfer learning and fine-tuning
were used for extracting meaningful information from medical
images. These methods have gained considerable attention for
their effectiveness in adapting pre-trained convolutional neural
networks (CNN) to the specific task of breast cancer analysis.
Transfer learning employs knowledge from a pre-trained model
on a source task and applies it to a related task with a smaller
dataset [9] [10] [11]. On the other hand, fine-tuning requires
further refining the parameters and layers of the pre-trained

www.ijacsa.thesai.org 1386 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 5, 2024

model on the target task-specific dataset [12] [13] [14] [15].
This approach proves especially beneficial in scenarios where
annotated medical image datasets are limited, which facilitates
the development of robust classification models for breast
cancer detection and characterization.

The advent of Vision Transformer (ViT) architectures
represents a significant advancement in the field of medical
imaging analysis [16] [17] [18]. Unlike traditional CNN, which
relies on hierarchical feature extraction through convolutional
layers. ViT introduces a self-attention mechanism that allows
for direct interactions between image patches for capturing
long-range dependencies within the data. This innovative ap-
proach revolutionizes breast cancer classification by enabling
the network to dynamically weigh the importance of different
image regions, thereby increasing its ability to discern sub-
tle features indicative of malignancy. By using self-attention
mechanisms, ViT models demonstrate superior performance
in classifying breast cancer images and create more accurate
diagnostic outcomes and treatment planning.

Furthermore, a combination of self-attention mechanisms
and CNN architectures offers several advantages for breast
cancer classification. By selectively attending to relevant image
regions, these mechanisms facilitate the extraction of salient
features while suppressing noise and irrelevant information.
This adaptive focusing capability raises the power of CNN
and enables them to effectively differentiate between benign
and malignant lesions in breast cancer images. Moreover, self-
attention mechanisms enable the network to capture spatial
dependencies across multiple scales which allows for a more
comprehensive understanding of complex structures within
the breast tissue. As a result, CNN models augmented with
self-attention mechanisms improve accuracy and reliability in
breast cancer classification tasks.

Nowadays, computer technology gives a chance for users
a lot of convenience specifically in medical treatment. This
study applied several techniques for classifying breast cancer
ultrasound images. Begin with applied transfer learning and
fine-tuning in CNN and combine a self attention mechanism
in ViT. Furthermore, DCGAN was used to augment datasets
with new images that are similar to existing ones but slightly
different, they can help improve the generalization of machine
learning models. Moreover, Grad-CAM was used to explain the
classified outcome, which helps describe the model decision.

The contributions of this paper are as follows:

• By using the capabilities of deep learning architec-
tures, this research used DCGAN to facilitate the syn-
thesis of realistic ultrasound images, thereby expand-
ing limited datasets for training classification models.
This augmentation process not only raises the diversity
and richness of the dataset but also fosters the re-
silience and efficacy of machine learning algorithms in
accurately discerning pathological features indicative
of breast cancer.

• This study proposed a combination of CNN with self-
attention mechanisms from ViT. It presents a promis-
ing approach for classifying ultrasound breast cancer
images. By using the ability to extract hierarchical
features from CNN and attention mechanism from

ViT for capturing global dependencies. As a result,
this hybrid architecture increases accuracy and other
performance in breast cancer classification.

• Throughout scenarios, the proposed model demon-
strated the effectiveness of augmentation techniques
and a self-attention mechanism with an accuracy of
98.01%. It has an increase of 13.39% when com-
pared with do not apply any techniques. Thus, these
experiments show the AttentiveEfficientGANB3 (AE-
GANB3) framework works usefully, thereby indicat-
ing its practical capabilities in medical examination
and treatment.

• The utilization of Grad-CAM in classifying ultrasound
breast cancer images offers insightful interpretability
into the decision-making process of deep learning
models in this research. By highlighting regions of
interest within ultrasound images that contribute most
significantly to the classification outcome, Grad-CAM
aids clinicians in understanding the model’s reason-
ing, thereby enhancing trust and facilitating informed
decision-making in medical diagnostics.

The research paper includes six main parts. First, the
opening section offers an introduction. Next, the subsequent
section indicates an extensive review of related literature. The
third part elucidates the methodology and provides explana-
tions of the employed techniques. Following this, the fourth
section delineates the experiments and details their procedures
and assessments. Furthermore, the fifth section presents the
results of the most important experiment and compares them
with existing methods. Finally, the sixth section encapsulates
essential findings and offers an analysis.

II. RELATED WORKS

CNN and ViT are two prominent methodologies em-
ployed in the realm of medical image classification. By using
convolutional layers, CNNs can automatically learn relevant
features from the input data, which is crucial for discerning
between malignant and benign tissues in breast ultrasound
scans. In [19], Sathiyabhama Balasubramaniam et al. proposed
the LeNet model which applied to breast cancer data analysis
and reached a high accuracy of 89.91% when classifying
malignant and benign tumors. LeNet CNN is a promising
technique that could be used in the future to increase the
robustness and accuracy of breast cancer prediction. However,
the research did not apply data augmentation to increase the
training set and explanation techniques for the outcome to
understand the model decision. Besides, Hua Chen et al. used
ResNet50 and local binary pattern (LBP) to classify 874 breast
ultrasound images (i.e. 457 benign and 417 malignant) and
reached a great accuracy of 96.91% as reported in [20]. The
research demonstrates that the performance of breast tumor
diagnosis may be raised by integrating shallow LBP texture
characteristics and multi-level depth features. According to
[21]. Mohammed Alotaibi et al. employed the VGG19 model
to compare three different image preprocessing procedures
in dataset BUSI and gained a surprise mean accuracy of
87.8%. Thus, the study focuses on raising the predictions of
deep learning models by using image preprocessing. However,
the average accuracy is low which can grow by using and
demonstrating the effect of data augmentation techniques.
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The advancements in CNN are increasing day by day
and help to create a perfect system for the classification of
medical images. Clara Cruz-Ramos et al. proposed a DBFS-
GMI model based on DenseNet201 and various techniques in
[22]. It achieved an impressive accuracy on both datasets mini-
DDSM and BUSI of 92% and 96%, respectively. Moreover, a
combination of two datasets created an increase in accuracy
to 97.6%. As a result, the study has developed a hybrid
system that uses the CNN architecture for extracting deep
learning features and several classifiers including XGBoost,
AdaBoost, and MLP are applied to diagnose breast cancer.
In addition, Nasim Sirjani et al. improved the InceptionV3
model and achieved an accuracy of 81% in [23]. However,
these experiments run on the dataset combined on various
sources which can create an imbalance in the dataset. Thus,
this should be resolved by data augment techniques. In [24],
Hiba Diaa Alrubaie et al. proposed a new CNN architecture
which is combined by several layers such as Conv2D and
MaxPooling2D to attain an accuracy of 96% in three classes
classifying (i.e. benign, malignant, and normal). However, the
article does not mention visual explanation techniques, which
can help in the visualization of outcomes.

The versatility and adaptability of CNN make them well-
suited for handling the complexities and variabilities present
in ultrasound images, which facilitates robust and accurate
classification of breast cancer cases. Adyasha Sahu et al
proposed a model by combining the benefits of AlexNet,
ResNet, and MobileNetV2 and used Laplacian of Gaussian-
based modified high boosting filter (LoGMHBF) for prepro-
cessing. As a result, the proposed model achieved the highest
accuracy of 96.92% on the BUSI dataset as described in
[25]. Additionally, Shao-Hua Chen et al, demonstrated that
GoogLeNet and TV models have a huge effect on classifying
breast cancer ultrasound images. Through various experiments,
authors compare GoogLeNet, VGG16, and LeNet5 to indicate
that GoogLeNet has the best accuracy of 96.37% in [26].
Next to that, four different models with VGG-Net, DenseNet,
Xception, and Inception were combined to propose a fuzzy-
rank-based ensemble network for classifying breast cancer on
the BUSI dataset in [27]. Sagar Deep Deb et al. gained a
surprising accuracy of 85.25% and they also used Grad CAM
for visualization to understand the workings of the proposed
model.

Besides studies on the effectiveness of CNN models on
ultrasound images, other studies about breast cancer are also
provided on Magnetic Resonance Imaging (MRI) or Mam-
mograms. Quy Thanh Lu et al. illustrated the power of a
customized MobileNet in classifying multiclass of breast can-
cer and reached impressive accuracy in four-class classify of
97.24% as reported in [28]. In addition, the study demonstrated
the potential of Grad-CAM and other techniques such as data
augmentation and preprocessing which increased the model
performance and gave a chance to utilize MRI classification in
the real world. In [29], Kiran Jabeen et al. indicated enhanced
deep learning features and Equilibrium-Jaya controlled Regula
Falsi and attained a surprising accuracy on two publicly
available datasets CBIS-DDSM and INbreast with an average
score of 95.4% and 99.7%, respectively. Thus, the proposed
model demonstrated the power of classifying Mammogram
images and provided a framework to improve the accuracy.
Additionally, Our previous study [30] employed a fine-tuning

strategy, ensemble method, and extracting inherent features
to improve model reliability and classification accuracy. As
a result, the model obtained an accuracy of 76.79% for binary
classification.

On the other hand, Vision Transformers, a relatively novel
approach, has shown promise in image classification tasks by
attending to the global context of the image through self-
attention mechanisms. In an experiment of [31], Ishak Pacal
proposed a transformer model and compared it with other CNN
architecture to see that their model outperforms other models
with 88.6% accuracy. Thus, the author indicates deep learning
is effective at classifying ultrasound pictures and will soon be
able to be utilized in clinical trials. Besides. Behnaz Gheflati et
al. proposed a ViT model to classify breast ultrasound images
in the dataset BUSI and BUSI + B and achieved accuracies of
82.00% and 86.7% in [32]. In this article, the author tested
the B/32 and Resnet50 models and compared the model’s
outcomes with the corresponding performance of the state-
of-the-art. According to [33], Xiaolei Qu et al. also utilized
a CNN module to extract local features and a ViT module
to determine the global link between various areas to create
a VGGA-ViT network. As a result, the proposed gained the
highest accuracy 88.7% in dataset BUS-A and the largest
accuracy 81.72% in dataset BUS-B.

Despite their architectural differences, both CNN and
ViT offer valuable tools for automated diagnosis in medical
imaging, contributing to enhanced efficiency and accuracy in
breast cancer detection and classification. In addition, ViT
is a newer approach and shows promising results in breast
cancer classification tasks, albeit with slightly lower accu-
racies compared to CNN. Future research should focus on
addressing dataset imbalances, integrating data augmentation
techniques, and implementing visual explanation methods to
increase model interpretability. Additionally, exploring hybrid
architectures that combine CNN and ViT could further improve
classification accuracy.

III. METHODOLOGY

A. The Research Implementation Procedure

Fig. 1. The AttentiveEfficientGANB3 (AEGANB3) framework was
combined with multiple steps which were numbered in detail, including

applying GAN and customizing the CNN model.
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This research proposed a pipeline consisting of eight steps
from input to output shown in Fig. 1. The details of each step
are indicated as follows:

1. Dataset BUSI: There are three classifications in the
Breast Ultrasound Images Dataset (BUSI): normal,
benign, and malignant. The total amount of photos
is 780, with an average size of 500 × 500 pixels.
Moreover, the LOGIQ E9 ultrasound system and the
LOGIQ E9 Agile ultrasound system are tools utilized
in the scanning procedure. Additionally, all of the pho-
tos were cropped to various proportions to eliminate
unnecessary borders. Furthermore, Baheya Hospital
radiologists examined and verified every picture.

2. Data Preprocessing: In this step, the technique of
resizing and normalizing holds paramount importance.
Resizing relates to the transformation of input data to
a standardized dimension. Concurrently, normalization
scales the data to a common range. Together, these
preprocessing steps help to increase precision in model
training.

3. Data Augmentation: This augment methodology in-
volves training a DCGAN on existing data to generate
additional samples, thereby expanding the dataset size
and enhancing its diversity. The integration of GAN-
based data augmentation techniques has demonstrated
promising results in various domains which indicates
its efficacy in raising model generalization and robust-
ness.

4. Divide The Dataset: This scheme allocates 80% of the
dataset for training, 10% for validation, and 10% for
testing purposes. By following the 8-1-1 scale, this
research can effectively measure the performance of
breast cancer classification models ensuring reliable
results in the domain of medical image analysis.

5.1 Transfer Learning: In transfer learning, a pre-trained
CNN model is utilized as a feature extractor, typically
trained on a large-scale dataset like ImageNet. The
learned features are then used to initialize a new
CNN model, which is subsequently fine-tuned on the
target ultrasound breast cancer image dataset. This
approach allows the model to leverage the knowledge
gained from the source domain to effectively learn
discriminative features for breast cancer classification.

5.2 Fine-tuning: Fine-tuning updates the parameters of the
pre-trained model using backpropagation with the tar-
get dataset, thereby adapting the model to the specific
characteristics of ultrasound breast cancer images.
Furthermore, fine-tuning enables the optimization of
model performance by adjusting the hyperparameters
and architecture of the pre-trained model to better suit
the target task of ultrasound breast cancer classifica-
tion.

6. Validating and collecting performance: Validating and
collecting the performance of models in classifying
ultrasound breast cancer images requires the assess-
ment of various metrics including accuracy (ACC),
precision, recall, and F1 score. The study employs
annotated datasets of ultrasound images and partitions

them into training, validation, and testing subsets.
Subsequently, the model is trained on the training
dataset and fine-tuned using the validation set, while
performance metrics such as ACC, precision, recall,
and F1 score are computed using the testing set.

7. Applying Grad-CAM: Applying Grad-CAM for clas-
sifying ultrasound breast cancer images enhances in-
terpretability and understanding of deep learning mod-
els’ decision-making processes. Grad-CAM generates
heatmaps highlighting regions within ultrasound im-
ages for classification decisions. By visualizing these
regions, The study gives insights into which features
the model prioritizes when distinguishing between
benign and malignant lesions

8. Rerunning the cycle with other models to compare: In
this phase, the cycle was replayed with other models
to compare the performance including EfficientNetB3,
DenseNet169, Xception, ViT B16, and ViT B32.

B. Dataset

The BUSI dataset serves as a valuable resource in medical
imaging, specifically focusing on breast ultrasound images
acquired from female individuals aged between 25 and 75
years old. In addition, this dataset was collected from 600
female patients including 780 images. These images exhibit a
consistent average size of 500 by 500 pixels helping to analysis
and interpretation in the area of breast cancer detection and
diagnosis.

Fig. 2. The distribution between three classes including normal, benign, and
malignant in the dataset BUSI.

However, a challenge in the BUSI dataset stays in its class
imbalance, which could potentially skew the performance of
machine learning algorithms trained on it. The distribution
across the classes reveals a notable disproportion in Fig. 2,
with 437 instances classified as benign, 133 as normal, and
210 as malignant. Such an imbalance poses a significant ob-
stacle undermining their ability to accurately discern minority
classes.

To mitigate this issue and increase the richness of the data
set in machine learning applications. Thus, data augmentation
techniques prove helpful. By augmenting the minority classes,
the balance can be rectified and created equitable across all
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classes. Through augmentation in Fig. 3, the instances within
the benign, normal, and malignant classes can be increased to
1357, 1333, and 1330, respectively. This augmentation process
not only rectifies the class imbalance but also enriches the
dataset which improves performance in breast cancer detection
and classification endeavors.

Fig. 3. The distribution between three classes in the dataset BUSI after
augmentation

C. Data Preprocessing

Data preprocessing is important to ensuring the quality
and efficacy of subsequent classification tasks. In the context
of ultrasound images for breast cancer classification. Two
fundamental preprocessing techniques resizing Eq. (1) and
normalization Eq. (2) are integral steps in raising the inter-
pretability and efficiency of classification algorithms.

The resize technique is employed to standardize the dimen-
sions of ultrasound images. In detail, resizing from a larger
dimension, such as 500x500 pixels, to a smaller dimension,
like 244x224 pixels, is utilized in this study. In this resizing
process, each intensity values are recalculated to fit the new
dimensions while preserving the structural features essential
for accurate classification. Mathematically, Let Ioriginal Eq.
(1) denote the original ultrasound image with dimensions
500x500 pixels, and Iresized Eq. (1) indicates the resized
image with dimensions 244x224 pixels. The resizing operation
can be expressed as:

Iresized = resize(Ioriginal, (224, 224)) (1)

Where (224, 224) Eq. (1) illustrates the height and width
of the resized image. Moreover, the pseudo-code of the resize
algorithms is provided in Algorithms 1 which represents an
overview of the code flow.

On the other hand, normalization assists in standardizing
the pixel intensities in the ultrasound images increasing compa-
rability and mitigating the effects of variations in illumination
and contrast. By scaling the intensity values to a common
range, typically between 0 and 1, normalization facilitates
optimal convergence during the training phase of classification
models. Mathematically, the normalization process can be
represented as:

O(x, y) =
Iresized (x, y)−min(Iresized )

max(Iresized )−min(Iresized )
(2)

The normalization equation presented calculates the nor-
malized pixel value O(x, y) Eq. (2) at a specific position

(x, y) Eq. (2) in the resized image. It involves dividing the
pixel value of the resized image Iresized (x, y) Eq. (2) by the
range of pixel values in the resized image, which is determined
by subtracting the minimum pixel value min(Iresized ) Eq. (2)
from the maximum pixel value max(Iresized ) Eq. (2). This
normalization process Eq. (2) ensures that all pixel values in
the resized image fall within the range of [0, 1].

Algorithm 1 Resizing Algorithm

Require: Original Image, target size
Ensure: Resized Image

1: Load the Original Image:
2: Define the target size = (224,224)
3: Resize the Original Image to the target size using the

resize function:
4: ResizedImage = resize(OriginalImage, (224, 224))
5: return Resized Image

As outlined in Algorithm 2, the normalization algorithm
computes the minimum and maximum pixel values present
within the image. Subsequently, it iterates over each pixel
in the image, normalizing its intensity value to fall within
the range [0, 1]. This normalization process enhances the
comparability and interpretability of images across various
datasets and facilitates subsequent analysis, such as feature
extraction and classification.

Algorithm 2 Normalization Algorithm

Require: Image to normalize: image
Ensure: Normalized image: normalized image

1: min pixel value← min(image)
2: max pixel value← max(image)
3: for each pixel in image do
4: normalized image[x, y]← image[x,y]−min pixel value

max pixel value−min pixel value
5: end for
6: return normalized image

In conclusion, the integration of resizing and normalization
techniques in the preprocessing pipeline for ultrasound images
in breast cancer classification not only standardizes the data but
also enhances the robustness and performance of subsequent
classification algorithms. These preprocessing steps are essen-
tial for optimizing the accuracy and reliability of diagnostic
systems aimed at early detection and intervention in breast
cancer cases.

D. Data Augmentation with DCGAN

DCGAN have gained significant attention in recent years
for their ability to generate synthetic data closely resembling
real data. In medical imaging, DCGAN holds promise for
tasks such as image synthesis, data augmentation, and anomaly
detection. These images can then be used to augment the
dataset for training a classification model, thereby improving
its performance and generalization ability.

In Fig. 4, the Generator model is designed to generate
synthetic ultrasound images copying real breast tissue images.
The architecture comprises several layers, including dense,
convolutional, and upsampling layers. The input to the Gen-
erator is a latent vector, typically drawn from a Gaussian
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distribution, which is transformed into a high-dimensional
representation through dense layers. Subsequently, upsampling
layers increase the spatial resolution of the representation,
generating images of the desired size. Batch normalization and
activation functions such as ReLU ensure stable training and
introduce non-linearity, respectively. The final layer produces
synthetic images with pixel values normalized between 0 and
1.

Fig. 4. The generator model of DCGAN.

Fig. 5. The discriminator model of DCGAN.

According to the Fig. 5, the Discriminator model is respon-

sible for distinguishing between real ultrasound images and
synthetic images generated by the Generator. It consists of con-
volutional layers followed by batch normalization, leaky ReLU
activation, and dropout layers. The architecture progressively
downsamples the input images, extracting hierarchical features.
The final layer performs binary classification, outputting the
probability that the input image is real.

Fig. 6. The architecture of DCGAN.

During training in Fig. 6, the Generator and Discriminator
are trained simultaneously in a min-max game. The Generator
aims to generate images that are indistinguishable from real
images, while the Discriminator aims to correctly classify
between real and fake images. The two models are trained
iteratively, with the Generator trying to minimize the proba-
bility of the Discriminator correctly classifying fake images,
and the Discriminator trying to maximize this probability.

By iteratively updating the Generator and Discriminator
models, the DCGAN learns to generate realistic ultrasound
images, which can subsequently be used for tasks such as
breast cancer classification. Integrating GAN-generated images
into the training data can potentially improve the robustness
and performance of classification models by providing addi-
tional diverse examples for learning. Moreover, future research
directions include fine-tuning the DCGAN architecture, incor-
porating additional modalities, and expanding the dataset to
improve generalization performance.

The proposed approach leverages adversarial training to
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generate synthetic images that closely resemble real ultrasound
images of breast tissue. Experimental results demonstrate the
potential of DCGAN in enhancing the availability and diversity
of medical image data for improving diagnostic accuracy in
breast cancer detection.

E. Transfer Learning and Fine-tuning in AttentiveEfficient-
GANB3

Transfer learning and fine-tuning are powerful techniques
of deep learning, especially when dealing with tasks like image
classification and segmentation. These methods allow using
pre-trained models on large datasets and adapting them to
new tasks with smaller datasets, thereby saving computational
resources and time.

Transfer learning uses a pre-trained model which is usually
trained on a large dataset like ImageNet and applying it to a
new task. Instead of starting the training process from scratch,
the knowledge of a model is transferred to the new task,
particularly in extracting useful features from images. This
is often achieved by removing the final classification layer
of the pre-trained model and replacing it with a new layer
suited to the specific task. On the other hand, Fine-tuning takes
transfer learning a step further by not only adapting the final
layers but also fine-tuning some of the earlier layers of the
pre-trained model. This allows the model to adjust its learned
representations to better suit the new task while still benefiting
from the general features learned from the original dataset.

Fig. 7. The architecture of the proposed model.

In the research, transfer learning and fine-tuning can signif-
icantly improve model performance, especially when dealing
with limited medical image datasets. In Fig. 7, the proposed
model architecture utilizes EfficientNetB3 as the base model,
which is known for its effectiveness in balancing model size
and performance across various image classification tasks.
Moreover, the proposed architecture integrates custom layers
to further enhance its capabilities. One notable addition is the
MultiHeadAttention layer, which introduces a mechanism for
the model to focus on different parts of the input data inde-
pendently. In the context of ultrasound images, this attention
mechanism can help the model to effectively identify relevant
features associated with breast cancer, thereby improving clas-
sification accuracy.

Fig. 7 includes BatchNormalization layers to stabilize and
speed up the training process by normalizing the inputs to
each layer. GlobalAveragePooling2D layer is used to reduce
the spatial dimensions of the feature maps produced by the
base model before feeding them into the final classification
layers. The Dense layer serves as the final classification layer,
where the model outputs predictions regarding the presence or
absence of breast cancer based on the extracted features.

By using transfer learning from EfficientNetB3 and fine-
tuning with custom layers such as MultiHeadAttention, the
proposed model achieved strong performance in classifying
breast cancer on ultrasound images, even with limited labeled
and imbalanced data.

F. Visual Explanation with Gradcam

Grad-CAM is a technique used for visualizing the regions
of an image that are influential in the decision-making process
of a deep neural network model. It highlights the regions that
the model focuses on when classifying an image. In this study,
Grad-CAM can help identify the specific areas of an ultrasound
image that contribute most significantly to the model’s decision
regarding the presence or absence of cancerous tissue. The
process begins with a feedforward pass of the ultrasound image
through a CNN model. This leads to create the generation of
feature maps across various convolutional layers. Following
this, The gradient of the score of the target class for the
feature maps of the final convolutional layer is calculated.
Mathematically, this can be represented as (Fig. 8):

Fig. 8. The result of applying heatmap to the ultrasound image.
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αc
k =

1

Z

∑
i

∑
j

∂Ak
ij

∂yc
(3)

Where αc
k Eq. (3) represents the importance weight asso-

ciated with the k − th Eq. (3) feature map for the c − th
Eq. (3) class. In addition, Z Eq. (3) is a normalization factor
to ensure that the weights sum up to 1, preventing issues
with the scale of the gradient values. Moreover, ∂Ak

ij/∂y
c Eq.

(3) represents the partial derivative of the output score to the
activation map Ak

ij Eq. (3). It quantifies how changes in the
activation map affect the model’s confidence score for class c
Eq. (3). Next to that, the weighted combination step assigns the
gradients of each feature map. This is achieved by weighting
the gradients and applying a Rectified Linear Unit (ReLU) Eq.
(4) activation function to ensure only positive influences are
considered. Mathematically:

Lc
Grad-CAM = ReLU

(∑
k

αc
kA

k

)
(4)

Here, Lc
Grad-CAM Eq. (4) represents the Grad-CAM heatmap

for the c− th Eq. (4) class. Additionally, ReLU() Eq. (4) indi-
cates the Rectified Linear Unit activation function, which sets
negative values to zero and keeps positive values unchanged.
Besides, αc

k Eq. (4) denotes the importance weight associated
with the k− th Eq. (4) feature map for the c− th Eq. (4) class
and Ak Eq. (4) signifies the k−th Eq. (4) feature map from the
final convolutional layer of the CNN. The equation computes
a weighted sum of the feature maps Ak Eq. (4) based on their
importance weights αc

k Eq. (4) for the class c Eq. (4). Finally,
This weighted sum is then passed through the ReLU activation
function to generate the Grad-CAM heatmap. This heatmap
effectively highlights the regions within the ultrasound image
that are critical for the decision-making process. By overlaying
this heatmap onto the original ultrasound image, researchers
and clinicians gain valuable insights into the specific areas that
contribute to the model’s classification

IV. EXPERIMENTS

A. Performance Metrics

In assessing the performance of breast cancer classification
on ultrasound images, several metrics are commonly used:
accuracy (ACC), precision, recall, and F1 score. These metrics
help quantify the effectiveness of a classification model in
correctly identifying cancerous and non-cancerous cases.

Accuracy Eq. (5) measures the overall correctness of the
classification model and is calculated as the ratio of correctly
classified instances to the total instances:

ACC =
TP + TN

TP + TN + FP + FN
(5)

In Eq. (5), TP (True Positives) represents the number of
correctly classified cancerous cases, TN (True Negatives) is
the number of correctly classified non-cancerous cases, FP
(False Positives) is the number of non-cancerous cases wrongly

classified as cancerous, and FN (False Negatives) is the number
of cancerous cases wrongly classified as non-cancerous.

Precision Eq. (6) measures the proportion of correctly
identified cancerous cases among all cases classified as can-
cerous. As a result, it highlights the model’s ability to avoid
misclassifying non-cancerous cases as cancerous:

Precision =
TP

TP + FP
(6)

Recall Eq. (7) measures the proportion of correctly identi-
fied cancerous cases among all actual cancerous cases. Thus,
it indicates the model’s ability to correctly detect cancerous
cases:

Recall =
TP

TP + FN
(7)

The F1 score Eq. (8) is the harmonic mean of precision
and recall, providing a single metric that balances between
precision and recall. Hence, it gives an overall measure of
the model’s accuracy in identifying both cancerous and non-
cancerous cases while considering the trade-off between pre-
cision and recall.

F1 = 2× Precision×Recall

Precision+Recall
(8)

These metrics collectively offer a comprehensive evaluation
of the performance of breast cancer classification on ultrasound
images, aiding in the assessment and comparison of different
classification models.

B. Scenario 1: The Performance of Classifying the Dataset
without the Augmentation Method

TABLE I. THE RESULT IN PERFORMANCES OF CLASSIFYING
ULTRASOUND IMAGES WITHOUT DATA AUGMENTATION TECHNIQUES

Model Number of Parameters Phase Accuracy Others metrics
Validation Test Precision Recall F1

DenseNet169 12.647.875 Transfer Learning 70.51% 62.82% 61.60% 62.82% 62.06%
Fine Tuning 76.92% 73.08% 72.02% 73.08% 72.23%

Xception 20.867.627 Transfer Learning 75.64% 64.10% 63.94% 64.10% 64.00%
Fine Tuning 80.77% 74.36% 74.34% 74.36% 73.70%

ViT B16 85.800.963 Transfer Learning 73.08% 61.54% 52.52% 61.54% 55.40%
Fine Tuning 74.36% 66.67% 67.23% 66.67% 65.18%

ViT B32 87.457.539 Transfer Learning 69.23% 67.95% 70.22% 67.95% 64.51%
Fine Tuning 74.36% 65.38% 66.98% 65.38% 63.72%

Proposed 36.763.954 Transfer Learning 87.18% 84.62% 85.30% 84.62% 84.67%
Fine Tuning 87.18% 88.46% 88.53% 88.46% 88.47%

Table I presents the performance results of classifying
ultrasound images without utilizing data augmentation tech-
niques. It evaluates various models based on their accuracy
during both the validation and test phases, precision, recall,
and F1 score. Among the models assessed, DenseNet169,
Xception, ViT B16, and ViT B32 are included. These models
run over two phases: transfer learning and fine-tuning. No-
tably, the proposed model achieves an accuracy of 87.18% in
validation and an impressive 88.46% in test of the fine-tuning
phase. Despite having a larger number of parameters, ViT B16
and ViT B32 models show comparatively lower performance
metrics than some other models in the table. For instance, ViT
B16 has 85,800,963 parameters with a test accuracy of 67,95%,
while ViT B32 has 87,457,539 parameters with a test accuracy
of 65,35%, both significantly more than the proposed model
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Fig. 9. The line graph illustrates about training and validation phases of
accuracy in the experiment without data augmentation methods.

with 36,763,954 parameters. In addition, the performance in
precision, recall, and F1 of the proposed model also achieved
high scores of 85.30%, 84.62%, and 84.67%, respectively.

Fig. 10. The line graph illustrates about training and validation phases of
loss in the experiment without data augmentation methods.

With line graphs in Fig. 9 and 10, these graphs show
the trend of accuracy and loss scores during the training
and validation phases. In Fig. 9, The line graph illustrating
the training and validation phases of accuracy in the ex-
periment without data augmentation methods showcases the
performance of the model throughout the training process.
In this specific experiment, the training accuracy reaches a
high of approximately 98.08%, while the validation accu-
racy peaks at around 87.18%. On the other hand, Fig. 10
illustrating the training and validation phases of loss in the
same experiment depicts the convergence of the model’s loss
function during training. In this case, the training loss reaches
a low of approximately 0.0603, while the validation loss peaks
at around 0.9298 during the fine-tuning phase. Besides, The
confusion matrix in Fig. 11 helps evaluate the performance
of breast cancer classification models by providing insight
into actual and predicted percentages, enabling assessment of
model accuracy and error types.

Fig. 11. The confusion matrix in the experiment without applying data
augmentation methods.

C. Scenario 2: The Performance of Classifying the Dataset
with Simple Augmentation Methods Such as Rotation, Flip,
etc

TABLE II. THE RESULT IN PERFORMANCES OF CLASSIFYING
ULTRASOUND IMAGES WITH SIMPLE DATA AUGMENTATION TECHNIQUES

Model Number of Parameters Phase Accuracy Others metrics
Validation Test Precision Recall F1

DenseNet169 12.647.875 Transfer Learning 70.30% 67.59% 68.15% 67.59% 67.65%
Fine Tuning 89.10% 89.77% 89.75% 89.77% 89.73%

Xception 20.867.627 Transfer Learning 59.19% 61.62% 62.17% 61.62% 61.60%
Fine Tuning 73.08% 74.84% 75.02% 74.84% 74.87%

ViT B16 85.800.963 Transfer Learning 59.62% 60.98% 61.71% 60.98% 61.13%
Fine Tuning 69.02% 67.59% 69.07% 67.59% 67.36%

ViT B32 87.457.539 Transfer Learning 55.34% 55.86% 56.16% 55.86% 55.59%
Fine Tuning 58.76% 56.29% 58.70% 56.29% 53.84%

Proposed 36.763.954 Transfer Learning 92.31% 92.96% 92.99% 92.96% 92.93%
Fine Tuning 94.66% 95.31% 95.36% 95.31% 95.29%

Fig. 12. The line graph illustrates about training and validation phases of
accuracy in the experiment using simple data augmentation methods.

In Table II, various models are evaluated for their per-
formance in classifying ultrasound images using simple data
augmentation techniques. Notably, the proposed model stands
out with the highest accuracy rates in both validation and
test phases surpassing all other models. Specifically, in the
fine-tuning phase, the proposed model achieved an impressive
94.66% accuracy on the validation set and 95.31% on the
test set. This significant increase in accuracy suggests that the
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Proposed model exhibits superior performance compared to
the other models. Considering the other models, DenseNet169
has the largest growth of 22.18% between the two phases in
the test set indicating that DenseNet169 is consistent with the
augmentation techniques in this experiment. Besides, ViT B16
saw a slight increase when compared with Table I. On the
opposite, ViT B16 fell significantly which showed that ViT
did not adapt to several simple augmentation techniques.

Fig. 13. The line graph illustrates about training and validation phases of
loss in the experiment using simple data augmentation methods.

Fig. 14. The confusion matrix in the experiment using simple data
augmentation methods.

The accuracy and loss scores for the two training and
validation stages are shown in Fig. 12 and 13. This line chart
facilitates general evaluation during the training epoch by pre-
senting the accuracy and loss scores in an easy-to-understand
and intuitive manner. Moreover, the efficacy of deep learning
models for breast cancer categorization is evaluated using the
confusion matrix presented in Fig. 14. Normal indicates an
impressive percentage between actual and predicted of 99%.
Next, benign and malignant have a huge proportion of 92%
and 95%, respectively.

D. Scenario 3: The Performance of Classifying the Dataset
with DCGAN Augmentation Methods

TABLE III. THE RESULT IN PERFORMANCES OF CLASSIFYING
ULTRASOUND IMAGES WITH DCGAN DATA AUGMENTATION TECHNIQUE

Model Number of Parameters Phase Accuracy Others metrics
Validation Test Precision Recall F1

DenseNet169 12.647.875 Transfer Learning 94.78% 94.53% 94.64% 94.53% 94.52%
Fine Tuning 97.01% 97.51% 97.51% 97.51% 97.51%

Xception 20.867.627 Transfer Learning 84.83% 83.58% 85.18% 83.58% 83.71%
Fine Tuning 96.02% 94.78% 94.83% 94.78% 94.79%

ViT B16 85.800.963 Transfer Learning 95.27% 94.03% 94.03% 94.03% 94.03%
Fine Tuning 95.27% 93.78% 94.24% 93.78% 93.85%

ViT B32 87.457.539 Transfer Learning 94.03% 93.03% 93.44% 93.03% 93.09%
Fine Tuning 95.77% 94.28% 94.63% 94.28% 94.33%

Proposed 36.763.954 Transfer Learning 97.26% 96.52% 96.52% 96.52% 96.52%
Fine Tuning 97.76% 98.01% 98.01% 98.01% 98.01%

The proposed model achieves impressive results in both
transfer learning and fine-tuning phases in Table III. In trans-
fer learning, the model achieves a validation accuracy of
97.26% and a test accuracy of 96.52%. Fine-tuning further
enhances performance, with validation and test accuracies
reaching 97.76% and 98.01%, respectively. Precision, recall,
and F1-score metrics also demonstrate high values of 96.52%
and 98.01% across both phases, indicating robust perfor-
mance in classifying ultrasound images. Among other models,
DenseNet169 exhibits competitive performance, especially in
fine-tuning, with a test accuracy of 97.51%. Xception, al-
though having fewer parameters compared to DenseNet169,
demonstrates slightly lower accuracy in both transfer learning
and fine-tuning phases. ViT B16 and ViT B32 also exhibit
respectable performance, albeit with varying degrees of accu-
racy across transfer learning and fine-tuning. The comparative
analysis highlights the efficacy of the proposed model utilizing
GAN data augmentation in ultrasound image classification.

Fig. 15. The line graph illustrates about training and validation phases of
accuracy in the experiment employing GAN.

Furthermore, Training and validation on both accuracy and
loss scores are presented in Fig. 15 and 16. Following the
figures, the evaluation performance of our model presents the
balance when the dataset is changed. Moreover, Fig. 17 is
provided for evaluating, optimizing, and understanding the
performance of deep learning models in classifying breast
cancer providing insight into actual and predicted rates that
can lead to improved accuracy and reliability.
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Fig. 16. The line graph illustrates about training and validation phases of
loss in the experiment employing GAN.

Fig. 17. The confusion matrix in the experiment employing GAN.

E. Scenario 4: The Influence of the Self-attention Mechanism
on Performance over Experiments

TABLE IV. PERFORMANCE COMPARISON IN RESULTS BETWEEN WITH
AND WITHOUT MULTI-HEAD ATTENTION

Data Augmentation Model Phase Accuracy Others metrics
Validation Test Precison Recall F1

No-Augmentation
Without Attention Transfer learning 82.05% 82.05% 82.29% 82.05% 81.98%

Fine tuning 82.05% 84.62% 86.78% 84.62% 85.01%

Attention Transfer Learning 87.18% 84.62% 85.30% 84.62% 84.67%
Fine Tuning 87.18% 88.46% 88.53% 88.46% 88.47%

Simple Augmentation
Without Attention Transfer Learning 83.76% 83.58% 83.78% 83.58% 83.63%

Fine Tuning 92.95% 92.54% 92.57% 92.54% 92.54%

Attention Transfer Learning 92.31% 92.96% 92.99% 92.96% 92.93%
Fine Tuning 94.66% 95.31% 95.36% 95.31% 95.29%

GAN
Without Attention Transfer Learning 97.26% 97.01% 97.05% 97.01% 97.02%

Fine Tuning 97.76% 97.26% 97.29% 97.26% 97.27%

Attention (Proposed) Transfer Learning 97.26% 96.52% 96.52% 96.52% 96.52%
Fine Tuning 97.76% 98.01% 98.01% 98.01% 98.01%

Table IV provides a comprehensive comparison of model
performance with and without multi-head attention across
different phases and data augmentation scenarios. It primar-
ily focuses on test accuracy and other relevant metrics like
precision, recall, and F1 score.

When analyzing the results, it is clear that models with
attention consistently outperform those without attention in
terms of accuracy. This improvement is especially notable
when data augmentation techniques are applied. For instance,

in the Simple Augmentation scenario, the test accuracy in-
creases from 83.58% to 92.96% when the attention mechanism
is added to the model. The proposed attention model in the
DCGAN data augmentation scenario shows superior perfor-
mance compared to other configurations. In the Fine Tuning
phase, the proposed attention model achieves a remarkable test
accuracy of 98.01%, indicating the effectiveness of the multi-
head attention mechanism.

In comparison to the first experience without applied
DCGAN and Attention mechanism, the model increased by
13.39% between 98.01% and 84.62% in the fine-tuning phase
of test accuracy. The observed increase in test accuracy across
various experiments underscores the significance of incorporat-
ing multi-head attention mechanisms in deep learning models
for enhanced performance across diverse tasks and datasets.

V. RESULTS AND COMPARISON

A. Results

After analyzing the previous scenarios, Fig. 18 was created
to visualize the result in the past experiments. Specifically, the
DCGAN technique demonstrated the effectiveness on dataset
BUSI with an increase of 9.55% in test accuracy when
compared without the augmentation technique. Moreover, the
proportion is larger than 2.65% when compared with simple
augmentation techniques. Other performances such as preci-
sion, recall, and f1 score also witnessed a dramatic climb with
DCGAN. Besides, the result of a combination of self-attention
mechanism was presented in Table IV. Thus, It indicated AE-
GANB3 framework truly helped in the classification process
with a surprising rise in accuracy by 13.39% from 98.01% to
84.62%. In conclusion, the proposed framework has actively
contributed to the process of researching image classification
using machine learning

Fig. 18. The result of comparison over scenarios.

B. Comparison with others State-of-the-art Methods

Utilizing comparisons with other state-of-the-art methods
is an integral aspect of research. These comparisons serve
multiple purposes within the scientific community. Firstly,
they establish benchmarks against which new methods can
be evaluated, providing a baseline for assessing performance
improvements. Secondly, such comparisons validate the ef-
fectiveness of proposed approaches, strengthening the case
for their adoption. Additionally, they aid in identifying lim-
itations or weaknesses in existing methods, offering insights
for further refinement. Understanding how a new method
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compares to others also provides context for its significance
and relevance within the field, highlighting its innovative
contributions. Moreover, comparisons can inspire new ideas
for improvement by analyzing the strengths and weaknesses
of existing approaches. Thus, Table V was created for com-
parisons rigorously, considering factors such as dataset and
evaluation metrics.

TABLE V. COMPARISON WITH OTHER STATE-OF-THE-ART METHODS IN
DATASET BUSI

Reference Other methods Year Accuracy
Mohammed Alotaibi et al. [21] VGG19 2023 87.8%
Clara Cruz-Ramos et al. [22] DBFSGMI 2023 92%˜97.6%
Adyasha Sahu et al. [25] CNN and LoGMHBF 2024 96.92%
Sagar Deep Deb et al. [27] FRBEN 2023 85.23%
Ishak Pacal [31] CNN +ViT 2022 88.6%
Behnaz Gheflati et al. [32] ViT 2022 82%˜86.7%

Proposed Model 98.01%

VI. CONCLUSION

In conclusion, this research harnesses the power of deep
learning architectures to address crucial challenges in medical
imaging, particularly in the early detection of breast cancer.
Through the utilization of DCGAN for synthesizing realistic
ultrasound images and augmenting datasets, coupled with a
novel hybrid CNN and ViT architecture. The study aimed
to enhance the accuracy and efficacy of breast cancer clas-
sification models. The AttentiveEfficientGANB3 (AEGANB3)
framework was proposed with its incorporation of augmenta-
tion techniques and self-attention mechanisms. Thus, it showed
a remarkable improvement in classification accuracy, reaching
an impressive 98.01% in the test set. Moreover, the integration
of Grad-CAM provides valuable insights into the decision-
making process of deep learning models, which enhances
interpretability and fostering trust.

However, it is essential to acknowledge the limitations of
this research. One such limitation is the reliance on synthetic
data generated by DCGAN, which may not fully capture the
variability and complexity present in real-world ultrasound
images. Additionally, the interpretability provided by Grad-
CAM, while insightful, may not encompass the full spectrum
of factors influencing model decisions. Looking ahead, future
research endeavors should aim to address these limitations and
further increase the robustness and generalization capabilities
of breast cancer classification models. This could involve
exploring alternative data augmentation techniques, such as
generative adversarial networks with more advanced architec-
tures.

In summary, while this research represents a significant
step forward in leveraging deep learning for breast cancer
detection, there remain opportunities for further innovation
and refinement. By addressing the identified limitations and
pursuing avenues for future work, the future study can continue
to advance the field of medical imaging and contribute to
improved patient outcomes in the fight against breast cancer.

AVAILABILITY OF DATA, CODE, AND MATERIAL

Data for this study are published on repository link at1 and
code is at2

1https://doi.org/10.1016/j.dib.2019.104863
2https://github.com/lhhuong/AEGANB3
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“Convolutional neural network deep learning model for improved ultra-
sound breast tumor classification,” Al-Nahrain Journal for Engineering
Sciences, vol. 26, no. 2, pp. 57–62, 2023.

[25] A. Sahu, P. K. Das, and S. Meher, “An efficient deep learning scheme to
detect breast cancer using mammogram and ultrasound breast images,”
Biomedical Signal Processing and Control, vol. 87, p. 105377, 2024.

[26] S.-H. Chen, Y.-L. Wu, C.-Y. Pan, L.-Y. Lian, and Q.-C. Su, “Breast
ultrasound image classification and physiological assessment based
on googlenet,” Journal of Radiation Research and Applied Sciences,
vol. 16, no. 3, p. 100628, 2023.

[27] S. D. Deb and R. K. Jha, “Breast ultrasound image classification using
fuzzy-rank-based ensemble network,” Biomedical Signal Processing
and Control, vol. 85, p. 104871, 2023.

[28] Q. T. Lu, T. M. Nguyen, and H. Le Lam, “Improving brain tumor
mri image classification prediction based on fine-tuned mobilenet.”
International Journal of Advanced Computer Science & Applications,
vol. 15, no. 1, 2024.

[29] K. Jabeen, M. A. Khan, J. Balili, M. Alhaisoni, N. A. Almujally,
H. Alrashidi, U. Tariq, and J.-H. Cha, “Bc2netrf: breast cancer classifi-
cation from mammogram images using enhanced deep learning features
and equilibrium-jaya controlled regula falsi-based features selection,”
Diagnostics, vol. 13, no. 7, p. 1238, 2023.

[30] H. H. Luong, M. D. Vo, H. P. Phan, T. A. Dinh, L. Q. T. Nguyen,
Q. T. Tran, N. Thai-Nghe, and H. T. Nguyen, “Improving breast
cancer prediction via progressive ensemble and image enhancement,”
Multimedia Tools and Applications, pp. 1–28, 2024.
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