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Abstract—The classification of motor imagery holds significant 

importance within brain-computer interface (BCI) research as it 

allows for the identification of a person's intention, such as 

controlling a prosthesis. Motor imagery involves the brain's 

dynamic activities, commonly captured using 

electroencephalography (EEG) to record nonstationary time series 

with low signal-to-noise ratios. While various methods exist for 

extracting features from EEG signals, the application of deep 

learning techniques to enhance the representation of EEG features 

for improved motor imagery classification performance has been 

relatively unexplored. This research introduces a new deep 

learning approach based on two-dimensional CNNs with different 

architectures. Specifically, time-frequency domain 

representations of EEGs obtained by the wavelet transform 

method with different mother wavelets (Mexicanhat, Cmor, and 

Cgaus). The BCI competition IV-2a dataset held in 2008 was 

utilized for testing the proposed deep learning approaches. Several 

experiments were conducted and the results showed that the 

proposed method achieved better performance than some state-of-

the-art methods. The findings of this study showed that the 

architecture of CNN and specifically the number of convolution 

layers in this deep learning network has a significant effect on the 

classification performance of motor imagery brain data. In 

addition, the mother wavelet in the wavelet transform is very 

important in the classification performance of motor imagery EEG 

data. 
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I. INTRODUCTION 

Brain-computer interfaces (BCIs), with the aim of helping 
people with muscle disabilities who have cognitive potential, 
analyze brain signals and convert them into control commands 
without direct use of peripheral nerves and muscles [1]. The 
general function of BCI is to first receive brain signals as input, 
extract useful features from the signal, classify them, and finally 
convert them into a control command [2]. Among the types of 
BCIs, motion imagery systems have been increasingly used in 
various fields. In this type of BCI system, when the subject 
moves a part of his body (such as the right or left hand) or 
imagines movement, the brain frequency profile changes in the 
μ and β frequency range [3]. These phenomena show event-
related synchronization (ERS) and event-related 
desynchronization (ERD), based on which brain signals affected 
by motor imagery can be classified [4]. In general, studies on the 

classification stage of these systems are conducted using 
classical machine learning methods and modern deep learning 
approaches [5]. Classical machine learning methods have two 
relatively independent parts feature extraction and classification 
[6, 7]. One of the major challenges in classical machine learning 
methods is the extraction of appropriate features and inefficiency 
in dealing with nonlinear data [8, 9]. In order to solve these 
problems, the use of deep learning methods for data 
classification gradually increased [10], and in recent years, with 
the increasing progress of hardware, the use of these methods for 
various applications, including data classification in motor 
imagery problem, has grown significantly [11]. In contrast to 
conventional approaches, deep learning has the capability to 
autonomously acquire sophisticated high-level features and 
underlying traits through intricate architectures directly from 
unprocessed motor imagery EEG signals. This eliminates the 
need for time-consuming preprocessing and feature extraction. 
Among the scrutinized studies, CNN emerged as the most 
commonly utilized technique for classifying motor imagery in 
the EEG signals [12]. The common practice in employing raw 
signal data with deep learning techniques, with or without 
minimal preprocessing, was apparent. However, recent 
comprehensive reviews suggested that despite the advancements 
made by deep learning in enhancing the interpretation of motor 
imagery EEG signals, the practical deployment of motor 
imagery based BCI systems in real-world scenarios continues to 
face impediments in terms of technical complexities and user-
friendliness [3, 5, 13]. Therefore, there is still no comprehensive 
solution for the problem at hand, and our effort in this work is to 
find an optimal solution for one of the technical challenges of 
EEG classification of motion imagery. In fact, two research 
objectives are pursued in this work. First, providing a deep two-
dimensional CNN model with minimum complexity and 
processing time that can be added to BCI systems in the future. 
Second, finding the best wavelet function to extract 2D images 
from the EEG signal to integrate with 2D CNN for the problem 
at hand. The solutions presented in this paper can help future 
studies to achieve an optimal motor imagery EEG based BCI 
system. The rest of this paper is arranged as follows: Section II 
reviews the related works in the literature of this field. Section 
III presents the proposed methods including the used database, 
time-frequency analysis, and deep learning models. 
Experimental results are presented in Section IV. Section V 
provides a discussion of the results and proposed methods. 
Finally, a brief conclusion is provided in Section VI. 

*Corresponding Author. 
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II. RELATED WORKS 

Due to the complexity involved in recording and the limited 
availability of signals, the utilization of deep-learning-based 
classification methods in BCI applications remains infrequent. 
Li and Zhu et al. [14] utilized the optimal wavelet packet 
transform (OWPT) for constructing feature vectors from motor 
imagery EEG data. These feature vectors were employed in 
training a long short-term memory (LSTM) model based on a 
recurrent neural network (RNN). The performance of this 
algorithm was found to be excellent on dataset III of the BCI 
Competition 2003. However, the structure of the algorithm 
appeared to be excessively intricate. On the other hand, Liu et al. 
[15] introduced a novel CNN architecture for the classification 
of P300 signals. The algorithm achieved remarkable results on 
the BCI competition P300 datasets. Despite the impressive 
performance of these deep learning methods in classification 
tasks, it is worth noting that these networks typically exhibit 
complexity and involve a large number of parameters. In the 
publication referenced as [16], Bashivan et al. employed power 
spectrum densities derived from three different frequency ranges 
of EEG signals. They proceeded to generate images for each 
frequency range by interpolating topological features that 
accurately represented the brain's surfaces. Their approach 
involved utilizing the VGG (visual geometry group) model, 
blending 1D convolutions with LSTM layers. The research 
outcomes demonstrated that the ConvNet and LSTM/1D-Conv 
architectures outperformed alternative models. In another study 
referenced as [17], the authors also adopted a CNN architecture, 
but with a distinct approach. They first employed the 
convolutional layer and then utilized the encoder portion of the 
AutoEncoder. Furthermore, they incorporated the power 
spectral densities of fast Fourier transforms as a feature set in 
their experimentation.  

Ju and Guan [18] introduced a new geometric deep model 
called Tensor-CSPNet to specify the spatial covariance matrices 
of EEGs on symmetric positive definite manifolds. This 
framework was applied to motor imagery EEG datasets and 
achieved current state-of-the-art performance in cross-validation 
and holdout techniques. Zhang et al. [19] investigated five 
different adaptive transfer learning-based schemes to adapt a 
CNN-based EEG-BCI system to decode hand motor imagery. 
They obtained an average accuracy of 84% for the two-class 
motor imagery problem. Hwang et al. [20] proposed an LSTM-
based classification method based on overlapping sliding 
windows to acquire time-varying EEG data. They demonstrated 
that their proposed method outperforms existing algorithms for 
EEG classification of four motor imagery classes, and also 
exhibits robustness to inter-trial and inter-session motor imagery 
data variability. Liu et al. [21] proposed a new end-to-end 
compact multi-branch 1D convolutional neural network for 
EEG-based motor imagery classification. They reported average 
classification accuracies of 83.92% and 87.19% on two public 
datasets. Wang et al. [22] proposed a 2D hybrid CNN-LSTM 
algorithm for EEG classification in motor imagery tasks. They 
converted the EEGs into time series segments and then 
calculated the connectivity features between EEG electrodes in 
every segment via 2D CNN and finally fed the feature vectors to 
the LSTM network for training. Li et al. [23] proposed a new 
dual-attention-based adversarial network for motor imagery 
classification. Their framework uses multi-subject knowledge to 

enhance the classification performance of single-subject motor 
imagery tasks through intelligently utilizing a new adversarial 
learning algorithm and two unshared attention blocks. Dang et 
al. [24] proposed a modular CNN, Flashlight-Net model, for 
Motor Imagery EEG Classification. Due to the multi-frequency 
nature of the brain, they combined the three frequency bands and 
built an ensemble model of Flashlight-Net using transfer 
learning. 

One of the main problems of all previously presented models 
is their structural and computational complexity, which severely 
limits their real-time application in BCI systems. In this article, 
we intend to design a CNN model to create an optimal and stable 
network for motor. In imagery classification the following, we 
will introduce the data, proposed methods, and findings, and 
finally discuss and conclude the findings. 

III. METHODS 

A. Dataset 

In this article, the BCI competition IV-2a dataset held in 
2008 [25] was utilized for testing the proposed deep learning 
approaches. This data includes EEG signals with 22 signal 
recording electrodes, which are placed on people's heads with 
10-20 standard, from nine normal subjects. The signals are 
sampled with a frequency of 250 Hz and filtered with a 0.5 to 
100 Hz band-pass filter. The signal recording protocol is based 
on cues and includes four movement perception tasks (right 
hand, left hand, legs, and tongue movement perception). In this 
data, the signal recording for each subject was done in two 
sessions, each recording session consists of six tasks, and in each 
task, 48 trials (12 trials per movement perception class) and a 
total of 288 trials were recorded for each subject. At the 
beginning of each test (t=0), a + sign appears on the screen, after 
two seconds (t=2s) with a short sound warning, the + sign turns 
into an arrow and goes to one of the up, down, left, and right 
directions. Then, with a short rest, the subject performs the next 
test. Fig. 1 shows the timing scheme of a trial. 

 
Fig. 1. Timing scheme of a trial in BCI Competition IV-2a dataset. 

B. Proposed Framework 

The purpose of this article is to classify brain signals based 
on motor imagery using two-dimensional CNNs. For this four-
class classification problem, the proposed method includes the 
implementation of two-dimensional CNNs with the input of 
time-frequency data obtained by the wavelet transform method 
with different mother wavelets and comparing the performance 
of this network in order to classify the data. In general, the 
proposed method is shown in the block diagram of Fig. 2. This 
framework included data preprocessing, time-frequency 
transformation using different mother wavelets, classification 
through two-dimensional CNNs, and performance evaluation. In 
the following, the details of each of these steps are described.
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Fig. 2. Block diagram of the proposed framework for motor imagery EEG classification.

C. Data Preprocessing 

At first, in order to select suitable and effective channels, for 
each subject, all 22 signal recording channels were checked and 
channels were selected that have more information related to 
movement perception signals according to the anatomical 
structure of the brain. The selected channels for each subject 
were C4, C3, and Cz channels, which are located in the 
sensorimotor area of the brain. Fig. 3 shows the location of these 
electrodes on the scalp. Also, considering that motor imagery 
often occurs in the μ and β frequency range, an 8-30 Hz 
Butterworth band-pass filter (5th order) was applied to the EEG. 

 
Fig. 3. Location of C3, C4, and Cz EEG channels used for motor imagery 

classification. 

D. Time-Frequency Analysis 

CNNs necessitate the use of images as input, which means 
that the one-dimensional EEG should be transformed into two-

dimensional images. To achieve this, the continuous wavelet 
transform (CWT) is a commonly used time-frequency technique 
that decomposes a time series into its frequency and time 
(1/scale) components. The CWT was developed to address the 
resolution issue of the Short-Time Fourier Transform (STFT) 
and produces high-resolution scalogram outputs. Using the 
Fourier transform alone is not a suitable approach considering 
that it is not sensitive to parameters such as time or frequency 
resolutions which are very important in the analysis of motor 
imagery. Therefore, it is recommended to use methods such as 
the wavelet transform, which has good accuracy both in terms of 
time and frequency [26]. CWT allows for time-frequency 
analysis of EEG signals, which is important in EEG processing 
as it provides information about how signal characteristics 
change over time. CWT offers variable resolution in both time 
and frequency domains [27]. This means that it can provide high 
time resolution when analyzing high-frequency components and 
high frequency resolution when analyzing low-frequency 
components. CWT exhibits shift-invariance property, which 
means that small shifts in the signal do not significantly impact 
the wavelet coefficients. This property can be beneficial when 
analyzing EEG signals which may have slight time delays due 
to various factors [28]. This technique involves convolving a 
time series with a series of functions generated through a 
continuous function known as the mother wavelet. The CWT for 
a specified time series, s(t), can be computed using Eq. (3): 

𝐶𝑊𝑇(𝑎.𝑏)[𝑠(𝑡)] =
1

√|𝑎|
∫ 𝑠(𝑡)Φ∗ (

𝑡−𝑏

𝑎
) 𝑑𝑡

+∞

−∞
              (1) 

where, a, b, and Φ denote the scale factor, the translational 
variable, and the basic wavelet function, respectively. In this 
article, CWT with three different mother wavelets Cmor, 
Mexicanhat, and Cgaus was used to convert the time domain to 
the time-frequency domain, so that among these three mother 
wavelets, the most powerful one is selected for data processing 
in motor image classification. 
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E. Deep Learning Models 

Previous studies have shown that CNN is an effective and 
superior method compared to other methods in motor imagery 
data classification, and it has received much attention [19, 29, 
30]. CNNs are able to capture local patterns in data irrespective 
of their location, making them suitable for EEG signals which 
are often affected by noise or small variations in electrode 
placement. CNNs can automatically learn hierarchical 
representations of the input data, starting from simple features 
(like edges or curves) to more complex features. This ability is 
beneficial for capturing the intricate patterns present in EEG 
signals. CNNs are known for their ability to learn meaningful 
representations from relatively small datasets. This is 
advantageous in EEG classification where collecting large 
amounts of labeled data can be challenging and expensive [31]. 
CNN architectures can be easily scaled to handle different EEG 
datasets with varying sizes and complexities. By adjusting the 
depth and width of the network, CNNs can adapt to different 
EEG classification tasks efficiently [32]. Therefore, in this 
paper, the classification performance of two-dimensional CNNs 
for images obtained from wavelet transform with three mother 
wavelets, Mexicanhat, Cmor, and Cgaus, was investigated. For 
this purpose, two different 2D CNN architectures are proposed 
with the aim of classifying motor imagery-based data. In the first 
architecture, the network includes a convolution layer consisting 
of 256 kernels with dimensions of 3×3 and step 1. The next 
layers include the Max pooling layer and a Dropout layer to 
prevent overfitting. In order to prepare the data for classification, 
a flattened layer and then two fully connected layers are used. In 
the second architecture, the network consists of two convolution 
layers. In the first layer, 32 kernels with dimensions of 3×3 and 
step 1 are used, and in the second layer, 16 kernels with 
dimensions of 3×3 and step 1 are used. Among the convolution 
layers, a Max pooling layer and a Dropout layer are used, a 
flattened layer is used for data preparation, and two fully 
connected layers with 200 and 50 neurons, respectively, are used 
for classification. The architecture of these two networks is 
shown in Fig. 4. The proposed models incorporate various 
adjustments for the count of filter, size of stride, and other 
parameters. Hidden layer dimensions were decreased from the 
input size to four, representing count of groups in suggested 
network. It is important to mention that the hyperparameter 
values were carefully fine-tuned based on a thorough 
examination of relevant literature and extensive testing. Only 
optimal parameters were selected for suggested networks. 
Several optimization functions were explored, like Adam, 
Stochastic Gradient Descend (SGD), CyclicLR, StepLR, and 
ReduceLR. Nonetheless, due to superior performance in 
practical applications, the SGD algorithm was chosen as 
optimizer with a learning rate of 0.0002 and a batch size of 64. 
Additionally, training process was controlled by cross-entropy 
loss function. Best parameters for suggested network are 
summarized in Table I. 

TABLE I.  OBTAINED OPTIMAL PARAMETERS FOR SUGGESTED DEEP 

MODELS 

Parameter Tested domain 
Selected 

Value 

Number of 

convolutional layers 
1, 2, 3, 4, 5 

Model 1: 1 

Model 2: 2 

Count of filters in the 

convolutional layers 
16, 32, 64, 128, 256 

Model 1: 256 

Model 2: 32, 
16 

Filter size in the 

convolutional layers 
3, 16, 32, 64 

Model 1: 3 

Model 2: 3 

Activation function ReLU, LReLU ReLU 

Cost function Cross-entropy, MSE Cross-entropy 

Optimizer 
Adam, Adamax, RMSProp, 

SGD 
SGD 

Dropout level 0.1, 0.2, 0.3, 0.4, 0.5 0.5 

Batch size 4, 8, 16, 32, 64 64 

Learning rate 0.001, 0.0001, 0.0002, 0.0003 0.0002 

 
Fig. 4. Two-dimensional convolutional neural network architectures are 

proposed to classify the brain data of motor imagery: (A) the first proposed 

architecture, and (B) the second proposed architecture. 

IV. RESULTS 

Fig. 5 shows an example of EEG signals related to selected 
channels for motor imagery classes 1 and 4. Moreover, Fig. 6 
shows an example of time-frequency maps resulting from 
wavelet transform in selected EEG channels using mother 
wavelets Cmor, Mexicanhat, and Cgaus. As shown, there was an 
obvious difference in the time-frequency maps obtained from 
different wavelet mothers, which may affect the classification 
performance of deep learning models. 
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Fig. 5. An example of EEG signals related to selected channels for motor imagery classes 1 and 4. 

 
Fig. 6. An example of time-frequency maps resulting from wavelet transform in selected EEG channels using mother wavelets is (A) Cmor, (B) Mexicanhat, and 

(C) Cgaus.

One of the important steps after designing and building a 
model is to evaluate that model. In classification problems, this 
evaluation is based on four elements: true positive, true negative, 
false positive, and false negative. In this study, four criteria of 
accuracy, precision, recall, and F1-score were used for an 
individual-based classification strategy. The results of the 
implementation of the first and second architectures of two-
dimensional CNN with three mother wavelets Mexicanhat, 

Cmor, and Cgaus in nine subjects and with the evaluation 
criteria of accuracy, precision, recall, and F1score are shown in 
Tables II and III. The results showed that the second architecture 
with two convolution layers performs better than the first 
architecture. The best classification result was obtained through 
the second CNN architecture and mother wavelet Cgaus with 
92.54% accuracy, 94.11% precision, 95.06% recall, and 93.37% 
F1-score. 

TABLE II.  THE RESULTS OBTAINED THE FIRST CNN ARCHITECTURE USING DIFFERENT MOTHER WAVELETS FOR MOTOR IMAGERY CLASSIFICATION 

Subjects 
Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Cmor Mexicanhat Cgaus Cmor Mexicanhat Cgaus Cmor Mexicanhat Cgaus Cmor Mexicanhat Cgaus 

Subject 1 93.22 85.97 93.94 94.32 87.15 94.58 95.57 88.00 95.47 94.42 86.10 94.21 

Subject 2 87.32 74.4 89.02 89.23 75.30 90.44 90.42 77.41 92.26 88.13 79.37 89.86 

Subject 3 67.27 59.18 66.91 70.07 60.67 67.92 70.98 61.33 68.96 69.48 60.02 67.32 

Subject 4 91.52 78.42 91.97 92.87 79.97 93.21 93.41 81.08 93.88 92.20 79.11 92.68 

Subject 5 95.8 88.98 96.13 96.65 90.02 97.64 98.01 90.96 98.39 96.68 89.46 97.03 

Subject 6 89.43 88.07 89.94 90.31 89.90 91.66 92.27 90.22 93.17 90.10 88.93 90.35 

Subject 7 95.46 80.07 95.78 96.68 81.84 97.45 97.33 82.21 98.00 96.24 80.99 96.41 

Subject 8 83.47 80.04 84.01 84.63 81.69 85.45 84.99 82.02 87.41 83.97 80.88 84.99 

Subject 9 96.87 94.67 96.89 97.30 95.34 98.37 97.94 98.95 98.91 97.04 95.42 97.22 

Average 88.92 81.08 89.39 90.23 82.48 90.75 91.22 83.25 91.83 89.81 81.82 90.02 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

131 | P a g e  

www.ijacsa.thesai.org 

TABLE III.  THE RESULTS OBTAINED THE SECOND CNN ARCHITECTURE USING DIFFERENT MOTHER WAVELETS FOR MOTOR IMAGERY CLASSIFICATION 

Subjects 
Accuracy (%) Precision (%) Recall (%) F1-score (%) 

Cmor Mexicanhat Cgaus Cmor Mexicanhat Cgaus Cmor Mexicanhat Cgaus Cmor Mexicanhat Cgaus 

Subject 1 94.23 93.43 97.57 95.98 94.99 90.68 96.85 96.14 99.06 95.35 94.19 98.03 

Subject 2 89.72 86.35 88.90 91.24 88.67 90.11 92.47 89.40 91.37 90.55 87.64 89.33 

Subject 3 70.57 68.57 74.53 71.35 70.06 76.90 72.41 72.59 78.37 70.99 69.44 75.49 

Subject 4 90.06 89.85 95.42 91.96 91.46 96.88 92.68 93.29 97.68 91.00 90.67 96.04 

Subject 5 95.70 93.86 96.15 97.77 95.44 98.03 98.51 96.90 99.00 96.44 94.79 97.35 

Subject 6 96.52 96.05 96.17 97.94 97.85 98.30 98.00 98.30 99.01 97.20 97.10 97.77 

Subject 7 97.36 96.79 95.66 98.81 97.91 97.07 98.98 98.57 97.99 97.90 97.47 96.57 

Subject 8 91.21 90.57 89.77 91.93 91.88 91.48 93.66 93.45 93.37 92.11 91.42 90.38 

Subject 9 98.72 97.48 98.87 99.02 98.95 99.49 99.57 99.02 99.98 98.97 98.33 99.34 

Average 91.57 90.33 92.54 92.90 91.92 94.11 93.92 93.08 95.06 92.28 91.25 93.37 

 

V. DISCUSSION 

EEG motor imagery classification plays a crucial role in 
various fields, especially in the domain of BCI technology. By 
utilizing EEG data, this classification technique allows the 
interpretation and extraction of meaningful information from 
brain signals associated with motor imagery tasks. The 
significance of EEG motor imagery classification lies in its 
potential to enable individuals with motor disabilities to regain 
control of their environment and interact with external devices 
using their thoughts alone. It opens up new possibilities for 
applications such as neuro-rehabilitation, prosthetics control, 
and assistive technologies. Moreover, EEG motor imagery 
classification contributes to advancing our understanding of 
brain functioning and provides a non-invasive means to study 
and analyze neural processes related to motor planning and 
execution. Through continued research and development, EEG 
motor imagery classification holds promise for enhancing the 
quality of life for individuals with motor impairments. In this 
article, with the aim of designing a classification system of 
motor imagery data based on deep learning methods, two 
different CNN architectures were investigated. For this purpose, 
after reviewing the studies conducted in this field, the proposed 
systems were introduced and implemented, and the details of 
these systems were examined. The proposed model with the aim 
of classifying motion perception data includes the blocks of 
channel selection, filtering, data transformation to the time-
frequency domain, classification, and evaluation of the proposed 
model. Among the examined wavelet transforms, the images 
created with the Cgaus mother wavelet had the best 
classification performance in both CNN architectures. In 
addition, among the proposed CNN architectures, the second 
architecture with two layers of convolution showed the best 
performance, which was confirmed by various evaluation 
criteria including accuracy, precision, recall, and F1score.  

In Table IV, the results obtained from the proposed method 
are compared with the previous classical machine learning and 
deep learning approaches. All these publications have used the 
same dataset as our study and therefore it is possible to directly 
compare the previous and current proposed methods. As shown, 
the proposed method performs very well compared to the 
previous classical machine learning and deep learning methods. 
However, it should be noted that deep learning methods increase 
the computational costs, and to reduce the computational load 
and maintain the classification quality, it is necessary to conduct 
more studies on the network structure, such as the number of 
kernels, the use of one-dimensional kernels instead of two-

dimensional kernels, and the number of layers used. Also, 
considering the variety of existing mother wavelets, more 
studies on the wavelet transform with other mother wavelets are 
suggested. 

TABLE IV.  COMPARING THE RESULTS OF THE PROPOSED DEEP LEARNING 

METHOD WITH THE PREVIOUS STATE-OF-THE-ART WORKS FOR THE 

CLASSIFICATION OF THE BCI COMPETITION IV-2A DATASET 

Reference Algorithm Classifier 
Reported 

accuracy (%) 

[33] SFBCSP SVM 92 

[34] CTDA SVM 81.85 

[35] Variance FN 78 

[36] Variance TSLDA 70.20 

[37] CSP LDA 89.23 

[38] WT 2D CNN 87.60 

[39] CWT VGG-16 68.33 

[40] WT 2D CNN 85.59 

[41] CSP+WT 2D CNN 72.25 

[42] WT 2D CNN 89.36 

Current work WT 2D CNN 92.54 

VI. CONCLUSION 

In this work, two simple CNN models with different and yet 
simple structures were proposed and investigated for motor 
imagery EEG classification. For this purpose, time-frequency 
representation of EEG signal was used as input of deep models. 
Both research goals of this work were achieved: (1) increasing 
the accuracy of motor imagery EEG classification compared to 
previous existing techniques using simple deep learning 
architectures; and (2) investigating the effect of the mother 
wavelet on the time-frequency representation of the EEG signal 
as an input to deep learning networks and determining the best 
mother wavelet to achieve appropriate results. In summary, the 
findings of this study showed that the architecture of CNN and 
specifically the number of convolution layers in this deep 
learning network has a significant effect on the classification 
performance of motor imagery brain data. In addition, the 
findings of this study showed that the mother wavelet in the 
wavelet transform is very important in the classification 
performance of motor imagery EEG data. Considering that 
many EEG studies use time-frequency maps obtained from 
wavelet transform as input to deep learning models, the results 
of this study can be very useful and important for this type of 
study. 
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Although the proposed method achieved better performance 
than some state-of-the-art methods, this study faced limitations 
that should be further investigated in future research. One of the 
limitations of this study was the selection and analysis of only 
three EEG channels based on anatomical information related to 
motor perception, while other channels may also contain useful 
information that can help improve the performance of the 
proposed system. Therefore, it is recommended that future 
studies use automatic channel selection and optimization 
methods to utilize the maximum relevant information available 
in brain signals. In this study, only three well-known mother 
wavelets were compared and investigated, while new hybrid 
mother wavelets have been introduced in recent years that can 
improve the performance of the proposed framework. 
Therefore, further studies on wavelet transform with other 
mother wavelets are suggested. In addition, there are new time-
frequency analysis methods that may perform better than 
traditional wavelet transforms, such as empirical Fourier 
decomposition and empirical wavelet transform. It is strongly 
recommended that future studies explore the integration of these 
new methods with the proposed deep models. 
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