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Abstract—A membership inference attack (MIA) on machine
learning models aims to determine the sensitive data that has been
used to train machine learning models. Machine learning-based
applications (MLaaS—machine learning as a service) in finance,
banking, healthcare, etc. are facing the risks of private data leaks
by MIA. Several solutions have been proposed for mitigating MIA
attacks, such as confidence score masking, regularization, knowl-
edge distillation (KD), etc. However, the utility-privacy trade-
off problem is still a major challenge for existing approaches.
In this work, we explore the KD-based approach to defending
against MIA attacks. This approach has received increasing
attention in the research community on machine learning safety
recently as it aims at effectively addressing the above-mentioned
challenge of mitigating MIA attacks. An efficient KD-based
defense framework that includes multiple teacher and student
models is proposed in this work for alleviating MIA attacks. Three
main phases are deployed in this framework: (1) teacher model
training; (2) knowledge distillation from the teacher model to the
student model based on prediction augmentation and aggregation
from the teacher model; and (3) repeated knowledge distillation
among student models. The experimental results on standard
datasets show the outperforms in both model utility and privacy
of the proposed framework compared to other state-of-the-art
solutions for mitigating MIA.
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I. INTRODUCTION

A membership inference attack (MIA) is one kind of AI se-
curity attack in which the attackers try to determine if the sensi-
tive information used in training a machine learning model. In
some AI-based applications, protecting the privacy of training
data is an important requirement, such as individuals’ bank
account numbers, credit/debit card details, transaction data or
patients’ medical records. In the common MIA attack scenario,
two machine learning models are considered: (1) the target
model, which is trained on the dataset that needs to be kept
private, and (2) a MIA model, which is trained by the attacker.
Based on MIA model, the attacker can predicts whether a
particular data sample is a member or non-member of the
private training set. The extent of MIA attacks on machine
learning models depends on the information obtained by the
attackers. This can be (i) the shadow data, which is the one
that has the same distribution as the data used to train a
target model; (ii) the knowledge of the target model, including
the model architecture, the learned parameters like weights or
coefficients, and the learning algorithm. The white-box attacks
rely on the knowledge of the target model and the training

data distribution of the target model. In a black-box attack,
the attackers can only approach the trained target model (e.g.,
a target classifier) and get the prediction outputs from this
model.

Several solutions have been proposed to mitigate the MIA
attacks. They can be classified into four main approaches:
confidence score masking, regularization, differential privacy,
and knowledge distillation. In the first approach, the confidence
scores of class predictions in the output vector of the target
model are masked to prevent information leakage from these
[1]. This technique is mainly deployed for black-box attacks
on the classification models. Therefore, it is easily deployed
without any intervention inside the target model. The defensive
intervention only happened with model output. However, this
defense method can still be breached by attack methods such as
label-only attacks [2] or metric-based attacks [3]. The regular-
ization technique aims at preventing model overfitting, which
is a key factor in the success of MIA attacks. Several solutions
to this approach are proposed, such as L2-norm regularization,
data augmentation, and dropout [4], Adversarial Regularization
[5]. The regularization technique not only interferes with the
output of target models but also their internal parameters.
Therefore, it can be applied to both black-box and white-box
MIA attacks. Although the regularization technique is widely
applied and effective against MIA attacks, the accuracy of the
target models is inversely proportional to the privacy level
that this technique provides. This means the regularization
technique brings high privacy to the target models, but it
can also reduce their accuracy [6]. In the defense method of
differential privacy, the personal information is added to the
noise. This will make it difficult for MIA attackers to identify
the original data. However, the challenge when applying this
method is to find a reasonable way to balance the effectiveness
between the overall accuracy and its privacy against MIA
attacks [7]. The last defense approach to MIA attacks is
Knowledge Distillation (KD). KD was introduced in [8] as
one of the transfer learning methods. The fundamental concept
of the KD is derived from the process of human learning, in
which information is transferred from a teacher with greater
knowledge to a student with less understanding. The teacher
models are much larger than the student models. However,
based on the knowledge distilled from the teacher model,
the student model still achieves almost the same performance
as the teacher model. The KD-based defense models for
mitigating MIA attacks require two datasets named private
and reference datasets. The private dataset is used to train the
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teacher model, which is considered the unprotected model. The
reference dataset is soft labeled based on the predictions of
the trained teacher model. The soft-labeled reference dataset
is utilized to train the student model, which is considered a
protected model. The reference dataset can be the unlabeled
public dataset [9] or the private one [10]. The main challenge
for the KD-based defense models is the private-utility trade-
off of the protected model. In addition, the student/protected
model is desired to have as high accuracy as the teacher model.

Among the above-mentioned approaches, the KD-based
method against MIA attacks has been attracting the research
community recently because of its higher defense capacity
than many other solutions while still ensuring the model’s
performance. However, the private-utility trade-off is still an
open issue with this approach. Focusing on this, in this work,
we propose a new framework based on KD for mitigating
MIA attacks. It is different from other available KD-based
approaches, in this framework, we deploy (1) soft labeling of
the reference dataset by prediction augmentation and aggre-
gation from the teacher model and (2) repeated knowledge
distillation among multiple student models. The prediction
augmentation is executed through teacher model calibration
with several temperature parameters. This will output several
class probability distributions for each input sample. The
prediction aggregation from the teacher model is done based
on an optimal selection of the prediction probabilities from
the teacher model. This helps to create uniform distribution
predictions over all classes and contains no useful information
for MIAs while still maintaining the classification performance
of the target model. In addition to knowledge distillation
from the teacher model to a student model as other works,
in this work, we first conduct knowledge transfer from one
student model to another student model multiple times. This
creates multi-layer masking for the target dataset and helps
strengthen the defense ability of the target model against
MIAs. The experimental results on standard public datasets
show the outperformance of our contributions on not only
classification performance but also the defense ability of the
target model against MIAs compared to other related state-of-
the-art (SOTA) methods.

The remainder of this paper is organized as follows: In
Section II, we briefly survey recent related works based on
KD for mitigating MIA attacks. The proposed methodology is
presented in Section III. The experimental results are analyzed
in Section IV. Finally, Section V concludes the paper and states
research directions for future work.

II. RELATED WORK

The knowledge distillation technique was originally de-
signed to reduce computational cost and memory requirements
while maintaining the performance of deep learning models.
This enables deep learning models to be deployed on devices
with limited computing and storage capacity. Recently, the KD
approach has also been exploited in cyber security with KD-
based defense against MIA attacks.

In [9] a KD-based defense solution against MIAs, named
DMP (Distillation for Membership Privacy) is proposed. DMP
requires two datasets: a private dataset and a reference dataset.
The private dataset is the labeled dataset and needs to be

protected from attacks. The reference data is sensitive and
unlabeled. It is drawn from the same distribution as the private
training dataset and used to train the target model. These
datasets are utilized in three phases of DMP, including the
pre-distillation phase, the distillation phase, and the post-
distillation phase. In the first phase, an unprotected model is
trained on a private dataset. This model is then used in the
second phase to generate a reference dataset that minimizes
membership privacy leakage and transfers its knowledge to
the protected model. In the final phase, the protected model
is trained on the reference data with both ground truth and
predictions from the unprotected model. DMP is the first
method based on KD. In comparison with other previous
approaches against MIAs, it improved not only the defense
capacity but also the model’s performance on some bench-
mark datasets. However, obtaining a large amount of publicly
available reference data with the same distribution as private
data is challenging in practice. Moreover, the reference data
generation by DC-GAN as conducted in [9] seems to be a
more reasonable solution for this challenge, but it reduces the
performance of the model.

The solution proposed in [11] to address the challenge
raised in [9]. The reference dataset in [11] is a part of the
private dataset, not the public one as in [9]. In order to
overcome the overfitting that can occur with this selection, the
authors in [11] proposed KCD (Knowledge Cross-Distillation)
for membership privacy. KCD uses multiple teacher models to
transfer knowledge to the student model (target model). The
private dataset is divided into several parts. The knowledge
transfer process is done several times. At each time, consider
one part of the private dataset as a reference dataset and
other parts as a private dataset. The private dataset is used
to train the teacher model, and the reference dataset part is
soft labeled by the trained teacher model. Finally, we get soft-
labeled reference data parts and utilize them to train the target
model. Similarly, the work in [10] proposed a multi-teacher
architecture to transfer knowledge to the student model. The
private dataset is split into K disjoint partitions of the same
size. The teacher models are trained on these partitions in
the manner of K-fold cross validation. The soft targets are
generated from these trained teacher models, and they are
used to train the student model in the distillation phase. In
general, in comparison with [9], the multi-teacher knowledge
distillation decreases the attack accuracy and improves the
classification performance of the target model. However, ex-
perimental results on widely used datasets show that the testing
accuracy of the proposed target models is only less than 86%.
It is still necessary to increase the classification performance of
the target model and ensure data privacy against MIA attacks.

In this work, we propose an efficient KD-based framework
for mitigating MIA attacks. It is similar to the approach of [11],
[10]; in this framework, the sensitive dataset is split into two
parts: one for training the teacher model, and the other is softly
labeled by the teacher model and used for training the student
model. The teacher model are trained in the manner of two-
fold cross validation. However, it is different from the above
approaches in that soft labeling for the reference dataset is done
by prediction augmentation and aggregation from the teacher
model. Furthermore, in this research, we add an additional
layer of knowledge distillation that is repeatedly implemented
by the student models. Other related works only stop at
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transferring knowledge from one or more teacher models to
a student model and using this student model as a defensive
model against MIA attacks. However, in our work, an optimal
defense model will be selected from the student models. This
aims at creating multi-layer masking for privacy data and then
helps strengthen the defense ability of the target model against
MIA attacks. The details of the proposed framework will be
discussed in the next section.

III. METHODOLOGY

A. The Overall Framework

The overall defense framework against membership in-
ference attacks is shown in Fig. 1. There are three main
blocks in this framework: (1) teacher model training; (2)
knowledge distillation from the teacher model to the student
model (Teacher-Student KD) based on prediction augmentation
and aggregation from the teacher model; and (3) repeated
knowledge distillation (Repeated Student KD) from the student
model θn−1

S to the θnS , with n is the number of times the student
model θS is executed.

Inspired by the idea of [11], in this work, we also deploy
the sensitive private dataset for our proposed KD-based defense
system. The data scenario for the training teacher model and
knowledge distillation from the teacher to the student model
is shown in Fig. 2.

We have a sensitive private dataset D, and we split it into
two parts, D1 and D2. We first use D1 for training teacher
model θT . The trained θT will be utilized for soft labeling
D2. Secondly, we train the teacher model θT on D2 and use
the trained model θT to soft label D1. The datasets with soft
labels named D′

1 and D′
2 will be used to train the student

model for the first time (θ1S). In order to express this generally
(in Fig. 1), we refer to the parts of the dataset used for training
teacher model θT as DPri and the ones for soft labeling as
DRef :

• DPri = {(x1P , y1P ), .., (xNP
, yNP

)} (NP = |DPri|)

• DRef = {(x1R), .., (xNR
)} with the corresponding

hard labels {(y1R), .., (yNR
)}

In block 1, we train the teacher model on the DPri. The
DPri is split to Dtrain

Pri which is used to train the teacher model
θT , a test split Dtest

Pri and a validation split Dval
Pri. The teacher

model θT is trained using Dtrain
Pri until the training converges

to minimize the loss∑
(xP ,yP )∈Dtrain

Pri

L (θT (xP ) , yP )

In block 2, we utilize the trained θT to soft label
the DRef = {x1R , .., xNR

}, and DRef is labeled by
θT : yN0

R
= θT (xNR

). The soft labeled data D0
Ref =

{(x1R , y
0
1R), .., (xNR

, y0NR
)} will be utilized as ground truth

for training the student model θ1S : θ1S (xNR
, θT (xNR

)) until
the training converges to minimize the loss:

α
∑

(xR,y0
R)∈D0

Ref

L
(
θ1S (xR) , y

0
R

)
+

(1− α)
∑

(xR,yR)∈DRef

L
(
θ1S (xR) , yR

) (1)

where y0R is soft label returned by θT for the input xR, and
yR is the hard label of xR.

The soft labeling is implemented based on prediction
augmentation and aggregation from the teacher model. The
details for this will be represented in the next subsection.

In block 3, DRef will be soft labeled by θ1S :
y1NR

= θ1S(xNR
). The soft-label data D1

Ref =
{(x1R , y

1
1R), .., (xNR

, y1NR
)} will be utilized as ground

truth for training the student model θ2S : θ2S
(
xNR

, θ1S (xNR
)
)
.

The soft labeling is implemented based on prediction from
θ1S until the training converges to minimize the loss

α
∑

(xR,y1
R)∈D1

Ref

L
(
θ2S (xR) , y

1
R

)
+

(1− α)
∑

(xR,yR)∈DRef

L
(
θ2S (xR) , yR

) (2)

The soft data labeling and knowledge distillation steps are
implemented repeatedly from θn−1

S to θnS . The final student
model θns will be considered the protected model or a defense
model against MIA attacks. The target model θnS is trained
until it converges to the loss

α
∑

(xR,yn
R)∈Dn−1

Ref

L
(
θnS (xR) , y

n−1
R

)
+

(1− α)
∑

(xR,yR)∈DRef

L (θnS (xR) , yR)

(3)

In the proposed system, we believe that the soft labeling
for DRef by prediction augmentation from the teacher model
in block 1 will create uniform distribution predictions over
all classes and contain no useful information for MIAs. In
addition, the knowledge distillation from the teacher model
θT to the first student model θ1S is implemented by the
combination of learning from ground-truth labels and teacher
predictions. Based on this, the student model θ1S can learn
more effectively not only from the behavior of θT on xR but
also from the DPri. This helps the student model θ1S have the
competitive classification performance with the teacher model.
Moreover, in the block 3, the repeated knowledge distillation
from θn−1

S to θnS creates multi-layer masking for the DRef

dataset. This will help strengthen the defense ability of target
model θnS against MIAs on the original sensitive private dataset
D.

B. Prediction Augmentation and Aggregation from the Teacher
Model

The prediction augmentation and aggregation from the
teacher model θT for soft labeling DRef are shown in Fig. 3.
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Fig. 1. The overall defense framework for membership inference attacks based on knowledge distillation from prediction augmentation of teacher model and
repeated knowledge distillation of student models.

Fig. 2. The data scenario for training teacher and student models.

It should be noted in this figure that the repeated KD from one
student model to another is done by prediction augmentation.

We have an unlabeled dataset DRef = {x1R , .., xNR
} that

needs to be labeled by the teacher model θT . Given an input
xR, θT estimates the probability that P (yR = c | xR) for
each class value of c = 1, .., C. Thus, θT will output a C-
dimensional vector whose elements sum to 1, or give out C
estimated probabilities:

pi = softmax(zi) =
ezi∑n
j=1 e

zj
for i = 1, 2, ..., C (4)

where z, p ∈ RC and z is the output vector of the last layer
of the teacher model; 0 < pi < 1 and

∑
i pi = 1. Using the

temperature parameter in softmax for controlling the softness
of the probability distribution, we have the probabilities as
follows:

pi = softmaxT (zi) =
ezi/T∑n
j=1 e

zj/T
(5)

where T is called the temperature parameter. When T gets
lower, the biggest value in xR get more probability, when T
gets larger, the probability will be split more evenly on differ-
ent elements. In this work, we conduct prediction augmentation
through teacher model calibration with K temperature param-
eters. This means, for a single input xR, the teacher model
θT will output K probability distributions pkj according to K
temperature parameters (k = 1, 2, ..,K); j is the number of
the classes (j = 1, 2, .., C), as follows:

p1j =
[
p11, p

1
2, .., p

1
C

]
(6)

p2j =
[
p21, p

2
2, .., p

2
C

]
...

pKj =
[
pK1 , pK2 , .., pKC

]
where pkj is calculated as follows:

pkj =
ezj/Tk∑n
j=1 e

zj/Tk
(7)

where Tk is a temperature hyper-parameter (k =
1, 2, ..,K).

In order to avoid the leakage of Dpri from MIA attacks,
there should be a uniform distribution over all classes for xR,
but we must still ensure the classification accuracy of the
model. This means we need to have an uniform probability
distribution of the classes but still keep a maximum probability
which assigns to a certain class by each output probability
distribution respect to each Tk. In order to achieve this goal,
we firstly consider the predictions of θT in case of the smallest
value of Tk, which is equivalent to pkj with k = 1 or p1j . In
the set of p1j =

{
p11, p

1
2, .., p

1
C

}
, we examine two subsets of the

prediction probabilities. One contains high probability values
(HP), and the other includes low probability values (LP). HP
contains the max

j=1÷C

{
p1j
}

and its neighborhoods Nϵ that are

significantly lower than max
j=1÷C

{
p1j
}

, as follows:

HP (p) =

[
max
j=1÷C

{
p1j
}
, Nϵ

]
(8)

with Nϵ is represented as follows:

Nϵ

(
max
j=1÷C

{p1j}
)

=

{
p ∈ p1j | d

(
p, max

j=1÷C
{p1j}

)
< ϵ

}
(9)

LP contains the remaining probability values in p1j :
LP (p) = p1j ∩HP (p).

At other Tk, (k = 2, ..,K), we have the probability dis-
tributions for each class j, (j = 1, .., C). The final probability
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Fig. 3. The prediction augmentation and aggregation from the teacher model for the soft labeling of the reference dataset and the repeated knowledge
distillation from one student model to another.

distribution for an input xR with prediction augmentation from
θT model by K temperature parameters will be aggregated as
follows:

pj,xR
=

{
min

j=1÷C

{
pkj
}
| pkj ∈ HP (p)

}
∪ (10){

max
j=1÷C

{
pkj
}
| pkj ∈ LP (p)

}
We then label the samples {x1R , .., xNR

} of reference
dataset DRef according to the maximum probability element
in pj,xR

predicted by the teacher model θT .

IV. EXPERIMENT AND RESULT

A. Experimental Datasets and Teacher, Student model Struc-
tures

In this work, several datasets are utilized for experi-
ments: Purchase1001, Texas1002, CIFAR10, CIFAR100 [12],
MNIST3, MS-COCO [13], and ImageNet [14].

The Purchase100 dataset used in this work is set as in [6].
It contains 197,324 records of the user’s product transactions
each year. Each record contains 600 binary features that
represent whether the user has purchased the product or not.

1https://www.kaggle.com/c/acquire-valued-shoppers-challenge/data.
2https://www.dshs.texas.gov/THCIC/Hospitals/ Download.shtm
3url = https://yann.lecun.com/exdb/mnist

The records are grouped into several classes, each representing
a different purchase style. The Purchase100 dataset is set for 5
different classification tasks with a different number of classes:
2, 10, 20, 50, 100. The classification task is to predict the
purchase style of a user given the 600-feature vector.

Texas100 dataset as used in [6] for the classification
task. The dataset contains 100 classes of patient records with
67,300 binary feature vectors with a dimension of 6,170. Each
dimension corresponds to symptoms and its value states if
the corresponding patient has the symptom or not; the label
represents the treatment given to the patient.

CIFAR10 and CIFAR100 are popular image classification
datasets. CIFAR10 contains 60,000 RGB images with the size
of 32 × 32 pixels for each. Each image is labeled in one of
10 classes. CIFAR100 has 100 classes containing 600 images
each There are 20 super classes out of 100 in the CIFAR100.
Each image is labeled with the superclass and the class to
which it belongs.

MNIST dataset contains 70,000 grey-scale images of hand-
written digits. There are 10 classes, one for each digit ‘0’
to ‘9’. MS-COCO dataset is a mainstream dataset for object
detection, with 118,000 training images and 5,000 validation
images from 80 categories. ImageNet is a benchmark dataset
for image classification, with nearly 1.3 million training images
and 50,000 images for validation. The images come from 1,000
categories.

In this work, we use the same architecture for teacher
and student models. The dataset split for experiments and the
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TABLE I. THE TEACHER/STUDENT MODELS AND THE SPLITS OF THE EXPERIMENTAL DATASETS

Dataset Model Dpri Dref Attack train Attack test
Train Test Val Member Non-member Member Non-member

Purchase100 FC 10,000 5,000 5,000 10,000 10,000 5,000 5,000 2,500
Texas100 FC 10,000 5,000 5,000 10,000 10,000 5,000 5,000 2,500
MNIST FC 30,000 5,000 5,000 30,000 30,000 5,000 5,000 2,500

CIFAR10

Wide ResNet-28
Alexnet
VGG16

DenseNet121

25,000 5,000 5,000 25,000 25,000 5,000 5,000 2,500

CIFAR100

Wide ResNet-28
Alexnet
VGG16

DenseNet121

25,000 10,000 5,000 25,000 25,000 5,000 5,000 2,500

teacher/student model structures are shown in Table I. For
example, in the Purchase100 dataset, 10,000 samples are set
for each DPri and DRef ; 5,000 samples are used for validation
and 5,000 for testing the model. The amount for attack model
training is 10,000 member and 5,000 non-member samples,
while the amount for attack model testing is 5,000 and 2,500,
respectively.

As in [15], the teacher/student model for Purchase100 is a
4-layer fully connected neural network (FC) with layer sizes
[1024, 512, 256, 100] and a 5-layer fully connected neural
network with layer sizes [2048, 1024, 512, 256, 100] for the
Texas100 dataset. In this work, we also use a 5-layer fully con-
nected neural network with layer sizes [2048, 1024, 512, 256,
100] for the MNIST dataset. For CIFAR10 and CIFAR100 four
models of Wide ResNet-28 [16], Alexnet [17], VGG16 [18],
DenseNet121 [19] are deployed for teacher/student model.

B. Attack Scenario

In this work, black-box and white-box attacks as in [11] are
deployed to evaluate the defense performance of the proposed
framework. The black-box attack scenarios is shown in Fig.
4. We put the sets of non-member data (the non-training data
of the target model) and member data (the training data of
the target model) into the target model θnS . It will output the
corresponding confidence scores or labels of the inputs. These
results are then used for training the attack model θA. Given the
input target data, the attack model will infer the membership
status of the target data. In this work, we evaluate two types
of black-box attacks. The first one belongs to the case that
the attack classifier knows only the predicted labels from the
target model but not confidence scores. Inversely, in the second
case, the attack classifier knows only confidence scores but not
predicted labels. We deploy the Boundary Distance (BD) attack
with HopSkipJump [20] for black-box attack with labels only
and ML Leaks Adversary 1 attack [21] for black-box attack
with confidence scores. In Boundary Distance (BD) attack with
HopSkipJump, a testing sample is inferred as member if the
L2 norm of the smallest adversarial perturbation of this sample
is larger than a predetermined threshold.

The attack model for both types of black-box attacks is a
binary classifier with a multilayer perceptron (a 64-unit hidden
layer and a softmax output layer), as in [21].

The white-box attack scenario deployed in this work is the
same as the one in [22]. In this case, the inputs for the training
attacker classifier are confidence score of target data, as in the
case of black-box attack, and the target model parameters and

Fig. 4. The black-box attack scenario.

structure. As shown in Fig. 5, we put member data and non-
member data to the target model θnS and the outputs for this are
confidence scores/labels. In addition, the target data is also an
input of θnS to give out the gradient for the model parameter of
θnS . Confidence scores/labels and gradient are used to train the
attack model θA. Based on the trained θA model, the attacker
can infer the member data or non-member data of the target
data.

Fig. 5. The white-box attack scenario.

The data sets for training and testing the attack models is
shown in Table I. The member samples are a portion of the
training data of the target model, and the non-member samples
are not included in the training set of the target model.

C. Defense Scenario

In order to evaluate the defense performance of the pro-
posed system, we compare it to the popular defenses for MIA
privacy, including AdvReg (Adversarial Regularization) [15]
and MemGuard [23]. Furthermore, our defense solution is also
compared to the SOTA KD-based methods of DMP [9] and
KCD [11].
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TABLE II. THE EXPERIMENTAL RESULTS FOR KNOWLEDGE DISTILLATION FROM THE TEACHER MODEL TO THE FIRST STUDENT MODEL (ST1) AND
AMONG THE STUDENT MODELS, FROM ST1 TO ST6, ON DIFFERENT DATASETS AND MACHINE LEARNING MODELS

2*Dataset 2*Model 2*Teacher Acc (%) st1 Acc (%) st2 Acc (%) st3 Acc (%) st4 Acc (%) st5 Acc (%) st6 Acc (%)
(-)Pred (+)Pred (-)Pred (+)Pred (-)Pred (+)Pred (-)Pred (+)Pred (-)Pred (+)Pred (-)Pred (+)Pred

Purchase100 FC 94.09 93.95 89.81 94.21 90.39 93.81 90.16 92.69 90.76 91.96 89.08 91.48 89.75
Texas100 FC 94.16 93.91 91.59 93.25 90.98 93.08 90.18 92.81 89.95 92.58 89.51 91.98 89.06
MNIST FC 96.70 96.88 93.21 95.89 92.33 96.03 91.27 95.32 91.89 94.11 91.61 94.28 89.93

4*CIFAR10 Wide ResNet-28 94.80 95.36 88.98 94.88 86.29 94.11 84.37 93.78 83.15 92.56 81.06 91.61 80.11
Alexnet 89.40 90.04 86.72 90.31 87.06 89.85 86.85 89.91 86.19 89.17 86.35 88.75 85.89
VGG16 93.04 93.22 87.16 93.07 87.01 93.69 87.34 92.81 86.59 92.39 86.28 91.58 85.63

DenseNet121 95.80 96.28 90.74 97.35 91.08 97.61 91.38 96.74 91.59 96.41 92.08 96.05 91.94
4*CIFAR100 Wide ResNet-28 79.04 79.94 76.64 80.04 77.12 79.35 76.72 78.56 76.83 77.18 75.51 75.59 75.94

Alexnet 65.72 70.66 67.91 71.15 68.37 70.39 67.48 69.81 65.94 68.29 65.31 67.33 63.78
VGG16 73.32 75.40 71.16 76.19 71.03 75.82 72.15 76.68 71.84 74.24 70.59 72.57 69.64

DenseNet121 80.66 81.92 79.06 82.11 78.86 83.56 77.69 83.08 78.48 82.18 76.44 81.95 75.39

The AdvReg method is a regularization that attempts to
prevent overfitting in machine learning models. Overfitting
phenomena can allow an attacker to perform MIAs. In [15],
a min-max privacy game between the defense mechanism and
the inference attack is proposed. This aims to simultaneously
minimize the classification loss of the model and the maximum
gain of the MIA against it. An adversarial regularization
parameter, which is the gain of the inference attack, is added
to the loss function of the target model to protect the privacy of
the data and control the trade-off between membership privacy
and classification error.

If the AdvReg method tries to tamper with the training
process of the target model, MemGuard attempts to interfere
with the confidence score vectors predicted by the target model
for the input data samples. In a black-box attack setting, an
attacker has the data samples and puts them into the target
model to gain confidence score vectors. These vectors will be
inputs to train the attack model. The trained attack classifier
will be used to predicts a data sample is a member or not
of the target model’s training dataset. In order to protect the
training data privacy, MemGuard adds a carefully crafted noise
vector to a confidence score vector to turn it into an adversarial
example that misleads the attacker classifier.

D. Evaluation Metrics

In this work, two evaluation metrics are used for evaluating
the performance of the target models against MIA attacks.
The first one is Generalization Error (GE). GE [24] expresses
the absolute difference between the train accuracy and test
accuracy of the target model θnS . It reflects the overfitting level
of the target model. A larger GE means a higher privacy risk
of membership inference attacks [6]. The second evaluation
metric is attack accuracy which is the fraction between samples
correctly classified as members of the training dataset and the
total samples classified as members.

E. Experimental Results

The experiments are conducted to evaluate (1) the perfor-
mance of the proposed framework in knowledge distillation
from the teacher model θT to the student model θnS ; (2) the
defense performance of θnS against black-box and white-box
attacks (as mentioned in Section IV-B) and compare this to
other SOTA methods (as indicated in Section IV-C)

1) Evaluation of the knowledge distillation performance:
In this section, we evaluate the knowledge distillation perfor-
mance from the teacher model θT to the first student model

θ1S , and repeated knowledge distillation among the student
models (from θ1S to θnS). The evaluations are implemented in
two experimental scenarios: (1) knowledge distillation from
teacher model to student model with the augmented and
aggregated predictions from the teacher model (+Preda&a),
and (2) knowledge distillation from teacher model to student
model without the augmented and aggregated predictions from
the teacher model (-Preda&a).

The parameters of the experimental models are as follows:

• Full connected model (FC): Batch size equals 32;
50 epochs to 100 epochs for training model; Adam
optimizer; Cross entropy lost function; Learning rate
is from 10−4 to 10−6;

• Wide ResNet-28, Alexnet, VGG16, DenseNet121:
batch size is 32; epoch number for training is 200;
trained with Adam optimizer; Lost function is Cross
entropy; Learning rate is from 10−5 to 10−6.

The temperature values are Tk = {2, 3, 4, 5}; α = 0.5;
n = 6.

Table II shows the experimental results for knowledge
distillation from teacher model θT to the first student model
θ1S (st1) and from θ1S (st1) to θ6S (st6) on different datasets
and machine learning models. In general, in scenario 2 (-
Preda&a), the classification results of the student model 1
(θ1S) are higher than the ones of the teacher model, except for
the FC model with the Purchase100 and Texas100 datasets. In
the scenario 1 (+Preda&a), the classification results of the θ1S
are lower than the ones of teacher model, except for the case
of CIFAR100 with the Alexnet model. These results are also
lower than the case of (+Preda&a) of θ1S . The classification
results also gradually decrease from the student model 1 to the
student model 6 in both cases of (-Preda&a) and (+Preda&a).

2) Evaluation of the defense ability of the student model
against MIAs:

-Generation error evaluation:

Fig. 6 represents the generation error (GE) evaluation of
student models on the CIFAR10 dataset with Wide ResNet-
28, Alexnet, VGG16, DenseNet121 models, respectively. The
result for the scenario of (+)Preda&a is denoted as (+)GE,
and for the scenario of (-)Preda&a is (-)GE.

It can be seen from Fig. 6 that the minimum values of (-
)GE and (+)GE obtained from the student model 6 (st6) and
the student model 1 (st1) on Wide ResNet-28 are 2.41% and
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Fig. 6. Generation error for the CIFAR10 dataset with (a) the Wide ResNet-28 model, (b) the Alexnet model, (c) the VGG16 model, and (d) the DenseNet121
model.

Fig. 7. Generation error for the CIFAR100 dataset with (a) the Wide ResNet-28 model, (b) the Alexnet model, (c) the VGG16 model, and (d) the
DenseNet121 model.

Fig. 8. Generation error with the FC model for (a) the Purchase100 dataset, (b) the Texas100 dataset, and (c) the MNIST dataset.

6.03%, respectively. For Alexnet model, the minimum values
of (-)GE and (+)GE are 4.8% and 5.24% for st4 and st5
models, respectively. The lowest (-)GE and (+)GE values of
the VGG16 model are for the st4 model with 2.58% and the
st3 model with 4.93%. For the DenseNet121 model, the st3
model has a minimum (-)GE value of 2.1% and the st6 model
has a (+)GE minimum value of 4.29%.

The (+)GE and (-)GE results on CIFAR100 dataset with the
models of Wide ResNet-28, Alexnet, VGG16, DenseNet121
are indicated in Fig. 7. The minimum results of (-)GE and
(+)GE for the Wide ResNet-28 model are 7.15% from st2
model and 7.24% from st4 model, respectively. For the Alexnet
model, the lowest (-)GE and (+)GE are 18.38% and 17.12%
for the st4 model. The minimum results of (-)GE and (+)GE
for the VGG16 model are 6.1% (st5) and 4.33% (st3). The
lowest (-)GE and (+)GE results for DenseNet121 model are
6.81% for st3 model and 3.11% for st2 model.

The (+)GE and (-)GE evaluations on Purchase100,
Texas100, and MNIST datasets with FC model are presented
in Fig. 8. For the Purchase100 dataset, the lowest value of
(-)GE is 5.57% for the st3 model, while the one of (+)GE
is 8.05% for the st4 model. The (-)GE and (+)GE values for
Texas100 dataset are lowest for the st6 model with 3%, and
the st4 model with 3.26%. The smallest results of (-)GE and

(+)GE on the MNIST dataset are 3.12% and 3.46% for the st1
and st4 models, respectively.

In general, GE results for both scenarios (-)Preda&a and
(+)Preda&a at different datasets and experimental models
change quite fluctuating across student models. We choose
the optimal student models that have the smallest GE values
in both (-)Preda&a and (+)Preda&a scenarios. They are the
selected defense models, and they will be evaluated for their
defense against MIA attacks in the next section.

-Black-box and white-box attacks on the defense student
model:

Table III, Table IV, and Table V, represent the comparative
results of our optimal defense models (as mentioned above) in
both scenarios (-)Preda&a and (+)Preda&a to other SOTA
methods of AdvReg [15], MemGuard [23], and KCD [11]
on the datasets of Purchase100, Texas100, and CIFAR10.
The model architectures are Wide ResNet-28 for CIFAR10,
fully connected NNs with Tanh activation functions for Pur-
chase100, Texas100, as in [11].

It can be seen from the Table III that, with the Purchase100
dataset, the DMP defense model [9] is the best one for mitigat-
ing MIA. The accuracy results of score, label only black-box
attacks and white-box attack are the lowest ones with 57.1%,
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TABLE III. THE RESULTS OF OUR DEFENSE MODEL AGAINST BLACK-BOX AND WHITE-BOX ATTACKS COMPARED TO OTHER SOTA DEFENSE METHODS
ON THE PURCHASE100 DATASET. THE SCENARIOS WITH PREDICTION AUGMENTATION AND AGGREGATION FROM THE TEACHER MODEL (+Preda&a)

AND WITHOUT THIS (−Preda&a) ARE EVALUATED FOR OUR METHOD

Purchase100 dataset

Defense method Train Acc Test Acc Generation Error
(GE)

Black-box attack
Acc

White-box attack
Acc

Score Label only
AdvReg [15] 82.3% 64.2% 18.1% 59.9% 58.9% 60.2%

MemGuard [23] 100.0% 77.0% 23% 72.1% 68.6% 74.3%
DMP [9] 89.3% 75.4% 13.9% 57.1% 57.5% 57.3%
KDC [11] 93.8% 75.7% 18.1% 58.8% 58.7% 59.5%

Our method (−Preda&a) 99.38% 93.81% 5.63% 74.56% 75.18% 76.7%
Our method (+Preda&a) 98.81% 90.76% 8.05% 58.04% 57.93% 58.6%

TABLE IV. THE RESULTS OF OUR DEFENSE MODEL AGAINST BLACK-BOX AND WHITE-BOX ATTACKS COMPARED TO OTHER SOTA DEFENSE METHODS
ON THE TEXAS100 DATASET. THE SCENARIOS WITH PREDICTION AUGMENTATION AND AGGREGATION FROM THE TEACHER MODEL (+Preda&a) AND

WITHOUT THIS (−Preda&a) ARE EVALUATED FOR OUR METHOD

Texas100 dataset

Defense method Train Acc Test Acc Generation Error
(GE)

Black-box attack
Acc

White-box attack
Acc

Score Label only
AdvReg [15] 60.5% 45.5% 15% 59.5% 56.7% 58.0%

MemGuard [23] 90.7% 52.5% 38.2% 68.6% 69.7% 70.0%
DMP [9] 65.1% 51.9% 13.2% 56.3% 56.1% 56.5%
KDC [11] 59.2% 52.0% 7.2% 56.2% 53.6% 55.8%

Our method (−Preda&a) 95.61% 92.58% 3.03% 75.29% 74.81% 75.5%
Our method (+Preda&a) 93.21% 89.95% 3.26% 51.77% 52.28% 52.6%

TABLE V. THE RESULTS OF OUR DEFENSE MODEL AGAINST BLACK-BOX AND WHITE-BOX ATTACKS COMPARED TO OTHER SOTA DEFENSE METHODS
ON THE CIFAR10 DATASET. THE SCENARIOS WITH PREDICTION AUGMENTATION AND AGGREGATION FROM THE TEACHER MODEL (+Preda&a) AND

WITHOUT THIS (−Preda&a) ARE EVALUATED FOR OUR METHOD

CIFAR10 dataset

Defense method Train Acc Test Acc Generation Error
(GE)

Black-box attack
Acc

White-box attack
Acc

Score Label only
AdvReg [15] 84.9% 76.3% 8.6% 54.6% 54.7% 55.2%

MemGuard [23] 100.0% 82.1% 17.9% 64.3% 55.6% 66.0%
DMP [9] 84.2% 82.2% 2% 51.1% 50.9% 51.4%
KDC [11] 94.0% 82.2% 11.8% 55.8% 55.6% 56.2%

Our method (−Preda&a) 96.23% 93.78% 2.45% 67.7% 62.5% 68.9%
Our method (+Preda&a) 90.18% 83.15% 7.03% 50.4% 50.6% 50.8%

TABLE VI. THE RESULTS OF OUR DEFENSE MODEL AGAINST BLACK-BOX AND WHITE-BOX ATTACKS ON CIFAR100 DATASET

CIFAR100 dataset

Defense method Train Acc Test Acc Generation Error
(GE)

Black-box attack
Acc

White-box attack
Acc

Score Label only
Our method (−Preda&a) 87.19 80.04 7.15 56.81 57.19 58.6%
Our method (+Preda&a) 84.07 76.83 7.24 51.82 52.48 53.4%

57.5%, and 57.3%, respectively. The results obtained from
our defense model with the (+)Preda&a scenario are only
slightly lower than these results of DMP, with 58.04%, 57.93%,
and 58.6%, respectively. However, the testing accuracy of our
solution with (+)Preda&a is much higher than that of DMP
(90.76% of ours compared to 75.4% of DMP). This is also
much higher than the best MemGuard solution [23] (77%). Our
method with (−)Preda&a has higher testing accuracy than
the case with (+)Preda&a. However, it also has much higher
black-box and white-box attack accuracy than (+)Preda&a

scenario.

In the experiments on Texas100 dataset, as shown in Table
IV, our defense solution with the scenario of (+)Preda&a

achieves the best performance against MIA. The black-box
attack accuracy for score and label-only cases are 51.77% and

52.28%, respectively. The white-box attack accuracy is 52.6%.
The classification accuracy of our method with (+)Preda&a is
89.95%, which is much higher than the best one of other solu-
tions (52% of KDC method [11]). Although our method with
the (−)Preda&a scenario achieves better classification results
than the situation of (+)Preda&a (92.58% of (−)Preda&a

compared to 89.95% of (+)Preda&a), its defense ability is
worse than the case of (+)Preda&a and other methods.

Table V presents the results for the CIFAR10 dataset. Our
method with (+)Preda&a shows the best results for mitigating
MIA attacks, with 50.4%, 50.6%, and 50.8% for black-box
score-based, label-only and white-box attacks, respectively.
These results are slightly better than those of the DMP method,
with 51.1%, 50.9%, and 51.4%, respectively. The testing
accuracy of our method with (+)Preda&a is also above that
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TABLE VII. THE RESULTS OF OUR DEFENSE MODEL AGAINST BLACK-BOX AND WHITE-BOX ATTACKS ON MNIST DATASET

MNIST dataset

Defense method Train Acc Test Acc Generation Error
(GE)

Black-box attack
Acc

White-box attack
Acc

Score Label only
Our method (−Preda&a) 100 96.88 3.12 63.89 64.37 65.03%
Our method (+Preda&a) 95.35 91.89 3.46 59.22 60.19 61.9%

of the DMP method, with 83.15% compared to 82.2% of the
DMP. For the case of (−)Preda&a), the testing accuracy is
the best (93.78%), but it has the worst defense performance
among others.

Tables VI and VII show the results of our solution for CI-
FAR100 and MNIST datasets in two scenarios of (+)Preda&a

and (−)Preda&a. The Wide ResNet-28 and FC models are
implemented for the CIFAR100 and MNIST datasets, respec-
tively. It can be seen from these tables that the classification
performance of the (−)Preda&a scenario is better than the
case of (+)Preda&a. However, the resistance to MIA attacks
of the (−)Preda&a case is not as good as the (+)Preda&a

in both CIFAR100 and MNIST datasets.

The experimental results on different datasets with different
models show the stable effectiveness of our proposed method
in mitigating MIA attacks. By augmenting and aggregating the
predictions from the teacher model to transfer to one student
model (+Preda&a), along with the knowledge transfer from
one student model to another student model, we can choose the
optimal student model as the efficient defense model against
MIA attacks. We also see that, without prediction augmen-
tation and aggregation from the teacher model (−Preda&a),
the classification performance of the defense model can be
higher, but its attack accuracy is also higher than the case
of (+)Preda&a and other solutions. With better classification
efficiency than other SOTA solutions, our method with optimal
student model and prediction augmentation and aggregation
from the teacher model (+Preda&a) can bring utility-privacy
trade-off.

V. CONCLUSION AND FUTURE WORK

This work proposes a remarkable KD-based solution for
mitigating MIA attacks. The knowledge is transferred from the
teacher model to the student model based on the prediction
augmentation and aggregation from the teacher model. The
process of knowledge transfer also continues between student
models to find out the optimal defense model against MIA
attacks. The experimental results on the widely used datasets
are promising and show better performance of our proposed
method compared to SOTA methods.

Although the results are remarkable, there are still limi-
tations in this study. The experiments have only been imple-
mented with basic 2D CNN models and datasets. Knowledge
transfer done iteratively across multiple models will be time-
consuming. In the future, incremental learning mechanisms can
be implemented in the proposed framework to take advantage
of new information about added objects to further the concept
of learning.
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