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Abstract—New diagnostic methods are needed to improve
the accuracy and efficiency of breast cancer detection and
progression. Although successful, current methods frequently lack
precision, accuracy, and timeliness, especially in the early phases
Of breast cancer progression. Our research proposes a new
model using deep learning to improve breast cancer detection
and classification, addressing constraints. Our breast cancer
image and sample preprocessing approach combines a non-
local means filter (NLM) and Generative Adversarial Networks
(GAN). The model classifies datasets using LSTM with BiGRU-
based Recurrent ShuffleNet V2, a highly efficient and accurate
technique for sequential data samples. The integration of a
Capsule Network with Graph Convolutional Neural Networks
(CNGCNN) significantly improves breast cancer detection. This
method was carefully tested on BreaKHis. The results were
amazing, showing gains across multiple metrics: 4.9% greater
precision, 3.5% higher accuracy, 3.4% higher recall, 2.5% higher
AUC (Area Under the Curve), 1.9% higher specificity, and 3.4%
decreased delay in the identification of breast cancer stages.
Particularly striking was the model’s performance in diagnosing
illness development, where it displayed 3.5% greater precision,
3.9% higher accuracy, 4.5% higher recall, 3.4% higher AUC,
2.9% higher specificity, and 1.5% lower latency. Significant
clinical impacts result from this work. Our methodology enables
early diagnosis and precise staging of breast cancer, enabling
focused therapies to improve patient outcomes and survival
rates. The greater precision and reduced time lag in diagnosing
disease progression also allow for more effective monitoring and
treatment modifications. Overall, this study marks a considerable
improvement in the field of breast cancer diagnostics, delivering a
more efficient, accurate, and reliable tool for healthcare providers
in their fight against this ubiquitous disease.
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I. INTRODUCTION

Continuous improvements in diagnostic methods are re-
quired for the early identification and successful treatment
of breast cancer, which continues to rank among the most
common and fatal cancers globally. The odds of effective
therapy and survival are greatly improved with an early
and precise diagnosis. Nevertheless, this objective is greatly
hindered by the multi-faceted nature of breast cancer, which
encompasses its different phases and forms. The accuracy,
speed, and adaptability of traditional diagnostic procedures
are frequently challenged by the complex nature of cancer
progression, despite their core nature. The use of deep learning
for medical imaging and diagnostics has become increasingly

popular due to its remarkable accuracy and efficiency. The
ability to learn from large datasets and uncover intricate pat-
terns surpasses that of traditional methods, making it ideal for
challenging diagnostic jobs like cancer diagnosis. A new era
of precision healthcare has begun with breast cancer diagnoses
that employ cutting-edge deep learning algorithms. Precise
staging and early detection are now within reach. A novel ap-
proach for the identification and classification of breast cancer
kinds and stages of advancement is introduced in this paper.
The model is based on deep learning. An NLM and GAN
are used for image pre-processing in the model. For dataset
classification, the model employs an LSTM with BiGRU-based
Recurrent ShuffleNet V2. For progression analysis, the model
employs a CNG-CNN. This unique blend not only improves
overall performance by addressing the limitations of current
methods, but it also takes advantage of the advantages that each
methodology possesses. Possessing that this integrated strategy
improves the critical breast cancer detection metrics (speci-
ficity, accuracy, recall, AUC, and precision) is the main goal
of this work. In addition, the study is focused on demonstrating
how well the model may reduce the time it takes to identify
the stages and evolution of breast cancer. This is important
for patient prognosis and treatment planning purposes. This
research presents a promising tool for healthcare workers in
their fight against breast cancer by extending the capabilities of
deep learning in diagnostics. It makes a substantial contribution
to the field of oncology.

A. Motivation and Contribution

The motivation for this study stems from the urgent need
to enhance breast cancer diagnostic methods. Despite advance-
ments in medical technology, the detection and classification
of breast cancer remain challenging, often leading to delayed
diagnosis and treatment, which can adversely affect patient
outcomes. Breast cancer is complex, with many types and
stages, requiring a fast, accurate, and adaptable diagnostic
method. It is where deep learning, with its amazing ability
to evaluate and understand complicated information, offers
a breakthrough solution. Our contribution to this field is
multifaceted and significant. Firstly, we address the challenge
of image quality in breast cancer datasets. By employing an
NLM coupled with GAN, our model effectively enhances im-
age quality, crucial for accurate analysis. This pre-processing
step ensures that the subsequent classification and detection
processes are based on clear, noise-reduced images, leading
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to more reliable results. Secondly, we innovate in the area of
dataset classification. The integration of LSTM with BiGRU
in our Recurrent ShuffleNet V2 process is a novel approach.
This method excels in handling sequential and time-series
data, which is vital in recognizing patterns and anomalies
in breast cancer progression. This aspect of our model sig-
nificantly contributes to its ability to detect subtle changes
in breast tissue over time, a key factor in early-stage cancer
detection and monitoring disease progression. Furthermore, the
implementation of a CNG-CNN is a pioneering step in cancer
progression analysis. This combination allows for a deeper
and more nuanced understanding of the disease’s progression,
facilitating timely and accurate staging of cancer. It marks a
substantial improvement over traditional methods, which often
struggle to accurately determine the progression stage, crucial
for appropriate treatment planning. In summary, our study
contributes to the field of breast cancer diagnostics by:

• Enhancing image quality for more accurate analysis
through advanced preprocessing techniques.

• Combining LSTM, BiGRU, and ShuffleNet V2 to im-
prove cancer type classification and detection accuracy
and efficiency.

• Advancing the understanding and detection of breast
cancer progression with a novel Capsule Network and
CNGCNN approach.

With these advancements, breast cancer diagnostics have taken
a giant step forward, providing a more accurate, efficient, and
all-encompassing instrument for progress monitoring and early
diagnosis. Consequently, this could help in the battle against
breast cancer as a whole, alleviate strain on healthcare systems,
and improve patient outcomes.

II. REVIEW ANALYSIS OF MODELS USED FOR ANALYSIS
OF BREAST CANCER TYPES

Comprehensively outlining the current state-of-the-art ap-
proaches and their efficacy in diagnosing and categorizing
breast cancer, the literature review on breast cancer analysis
focuses on recent breakthroughs in machine learning and deep
learning techniques. A new model for detecting breast cancer
in mammography based on the YOLO principle is presented
by [1]. This work highlights the potential of deep learning
models to improve the accuracy of breast cancer detection,
which is a major finding. Optimal feature selection methods
for breast cancer diagnosis based on machine learning are
also the subject of [2] attention. The significance of feature
selection in enhancing the diagnostic accuracy of machine
learning algorithms is highlighted by their work.

A. Optimization Techniques in Enhancing Model Performance

By investigating the metaheuristic optimal group of ex-
treme learning machines [3] and modified Harris Hawks
Optimization [4] respectively, made substantial contributions.
To improve the performance of learning models for breast
cancer detection and classification, these papers show how
optimization techniques are used. Researchers [5] and [6]
have shown that hybrid classifiers that combine support vector
machines with the Jaya algorithm and a hybrid deep learning-
genetic algorithm approach are effective. The advantages of

combining several computing approaches to improve classi-
fication accuracy are demonstrated by these hybrid models.
Two studies that delve into sophisticated feature selection
approaches are [7] and [8]. Shaban is concentrating on a novel
hybrid feature selection method, whereas Çayır et al. present
a two-stage deep learning strategy for mitotic recognition.
These techniques are vital for making breast cancer detection
models more accurate while decreasing their computational
complexity. The application of fuzzy OWL-2 to the represen-
tation of breast cancer anthologies is discussed in detail by
[9]. Their research is critical for elucidating how fuzzy logic
and ontological methods might improve medical diagnosis by
clarifying thinking and reducing ambiguity. Both [10] and [11]
investigate CNNs’ potential to be used in the diagnosis of
breast cancer. A novel metaheuristic algorithm-based machine
learning model and Fuzzy C Means-based segmentation tech-
nique for the classification and detection of breast cancer from
mammogram images of [12] The integration and selection
of deep features are also the subject of [13]. Convolutional
neural networks (CNNs) and transfer learning were shown in
this research to achieve very high accuracy in histopathology
image classification of breast cancer. [14] and [15] introduce
new dimensions to breast cancer detection. Fuentes-Fino et
al. propose an uncertainty estimator method based on feature
density, and Wu et al. explore a few-shot learning scheme.
These approaches are essential for dealing with limited data
scenarios and improving decision-making confidence. An as-
sociative classifier for breast cancer diagnosis is introduced by
[16] using a rule-refining strategy based on relevant feedback.
To improve the accuracy of cancer detection models, this study
stresses the importance of honing classification criteria. The
application of convolutional neural networks (CNNs) to the
categorization of breast lesions is investigated by [17] and
to the efficient classification of ultrasonic tumors by [18].
Research like this shows that convolutional neural networks
(CNNs) may accurately diagnose breast cancer by interpreting
complicated medical pictures like thermographic and ultra-
sound scans. Using methods such as the support vector ma-
chine (SVM) and the gray level co-occurrence matrix (GLCM),
[19] show how to segregate and categorize cancer cells in
breast cytology pictures using machine learning. The research
highlights the practicality of using machine learning for in-
depth cellular examination. Classification of breast lesions
using mammography is the subject of two recent studies, one
by [20] and the other by [21]. Oza et al. also make use of test-
time augmentation. Research like this is vital for proving that
deep learning can greatly enhance mammography diagnostic
accuracy. A novel method for identifying breast lesions using
criterion weights and risk attitudes is presented by [22]. The
evaluation of risk variables linked to various breast lesion types
relies heavily on this methodology. An innovative approach
to segmenting and recognizing breast tumors was introduced
by [23] using multi-encoded pictures in conjunction with
a cascading convolutional neural network. When applied to
medical photos and samples, this method greatly improves the
accuracy of tumor detection and segmentation. The shift from
conventional to deep learning-based approaches for detecting
breast cancer in Automated Breast Ultrasound System (ABUS)
pictures is summarized in a review by [24]. The development
and efficacy of AI-based approaches to breast cancer diagnosis
are thoroughly examined in this review.
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One important problem with histopathology photos is their
lack of clarity and quality; [25] investigate denoising these
images to detect breast cancer. A new Karnauph classifier for
breast cancer prediction is presented by [26] and a hybrid PSO
feature selection-based association classification method is pre-
sented by [27]. Research like this helps pave the way for more
accurate hybrid models that use a variety of computational
approaches. An ensemble approach combining consensus-
clustering, a ranking based on feature weighting, and a proba-
bilistic fuzzy logic-multilayer perceptron classifier is proposed
by [28]. This method’s potential use in breast cancer staging
and diagnosis using diverse datasets and samples makes it
noteworthy. By applying sophisticated models to magnetic
resonance imaging (MRI) scans, [29] show that breast cancer
can be detected automatically in preparation for mastectomy
using models such as Mask R-CNN and Detectron2. Notable
to this study is its potential use in the decision-making and
planning stages preceding surgery.

To improve the identification of breast cancer in mammo-
grams, [30] and [31] concentrate on deep feature selection
utilizing various optimization techniques. To improve the ef-
ficiency of deep learning models, this research stresses the
significance of picking appropriate features. The domains of
uncertainty quantification in extreme learning machines and
the application of fuzzy WASD neurons in breast cancer
prediction are investigated in studies by [32] and [33]. When it
comes to medical diagnosis, these strategies provide fresh ways
to handle ambiguities and imprecision. In their groundbreaking
work on breast cancer cell line detection utilizing junctionless
FETs etched with dual nanocavities, [34] demonstrate how
nanotechnology might improve cancer detection sensitivity and
specificity. To diagnose breast cancer, [35] talks about using
multimodal time series characteristics from ultrasonic shear
wave absolute vibro-elastography. Their research highlights
the significance of using time series analysis with ultrasound
methods to improve diagnostic precision.

In order to track a patient’s reaction to treatment for
triple-negative breast cancer, [36] investigate the use of breast
thermography. The importance of this case study lies in the
fact that it shows how thermography can be used to assess
the effectiveness of treatments, particularly in difficult cancer
subtypes. In order to detect and localize breast cancer, [37]
suggest using UWB microwave technology in conjunction with
a CNN-LSTM architecture. This cutting-edge method provides
a non-invasive diagnostic tool by combining electromagnetic
technology with sophisticated neural networks. The use of
biochips based on 1-D photonic crystals for the detection of
ERBB2 in lysates from breast cancer cells is the main topic
of [38]. Biochip technologies have benefited from their work,
which has led to the development of a direct competitive assay
for cancer cell molecular characterization. Using ultrasound
pictures, [39] present the Anatomy-Aware HoVer-Transformer,
a new ROI-free method for detecting breast cancer. This
approach, which is based on transformers, is a huge step
forward in medical imaging because it allows for quick and
precise diagnosis without requiring ROI marking scenarios.

The effectiveness of ultra-wideband radar in the non-
invasive early diagnosis of breast cancer is discussed by [40].
An important part of cancer treatment is detecting the disease
in its early stages, and this method shows how radar technology

could help with that. The use of machine learning in the
diagnosis and prognosis of breast cancer is demonstrated by
[41] and [42]. The versatility of machine learning in cancer
analysis is highlighted by two studies: Naseem et al. use an
ensemble of classifiers, and Teng et al. provide a dynamic
Bayesian model for survival prediction. In their investigations
into multi-modal ensemble classification and deep-learning for
breast cancer prognosis, [43] and [44] examine non-linear
pictures obtained from human tissue samples. The importance
of deep learning in accurately diagnosing and prognosis from
complicated biopsy pictures has been highlighted by these
works. The IVNet diagnostic system for assessing breast
cancer using histopathological pictures was introduced by [45]
and is based on transfer learning. The effective utilization
of transfer learning in the comprehensive study of infected
cells is demonstrated by this approach. The use of state-
of-the-art deep learning models for the detection of breast
tumors is explored in [46] and [47]. These researches demon-
strate how deep learning algorithms, like tailored AlexNet
and other cutting-edge models, have improved the process
of breast tumor detection. An important part of customized
cancer treatment is molecular level prediction, which [48]
demonstrates by proposing a patient graph deep learning model
to predict the molecular subtype of breast cancer. In their
discussion of propagation-based phase-contrast tomography,
[49] focus on the use of dark-field signals for imaging breast
microcalcifications. Improved visibility of microcalcifications
is a key component of this cutting-edge imaging method for the
early diagnosis of breast cancer. Using biomarkers and strain
echocardiography, [50]study the detection of subclinical car-
diotoxicity in breast cancer patients receiving anthracyclines.
To provide thorough patient care, their research is critical for
tackling the cardiotoxic consequences of cancer therapy.

III. PROPOSED METHODOLOGY

As of this area, we will go over the design of an efficient
model for breast cancer detection and progression using
an adversarial capsule network with graph convolutional
neural networks. This model will help address the problems
of existing deep learning models used for breast cancer
analysis, such as their high complexity and low efficiency.
The proposed model, an amalgamation of advanced neural
network technologies. As per Fig. 1, the model employs
a Generative Adversarial Network (GAN) block, adept at
augmenting the dataset by generating synthetic yet realistic
images, thereby enriching the diversity and volume of training
data samples. This augmented data is then refined through a
Non-Local Means (NLM) filter, which meticulously reduces
noise while preserving critical image features, ensuring
that the input to the subsequent layers is of the highest
quality. The main novelty of the model lies in its innovative
Capsule Network block, which excels in capturing intricate
spatial hierarchies between features, a crucial factor in
accurately classifying breast cancer types. In addition, a
Graph Convolutional Neural Network (GCNN) block does
further data processing, expertly extracting correlations
and patterns that are crucial for detecting tiny signs of
disease growth. The model incorporates Bi-Directional Gated
Recurrent Units (BiGRU) and Long Short-Term Memory
(LSTM) units to efficiently process sequential data, providing
a thorough comprehension of the temporal sequences present
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Fig. 1. Design of the proposed model for enhancing the efficiency of breast
cancer analysis.

in the data samples. The procedure culminates in the Output
Layer, which uses a softmax activation function for accurate
classification, after the Recurrent ShuffleNet V2 block
efficiently collects the features. With its efficient and reliable
data flow across these interconnected blocks, the ACNGCNN
model sets a new benchmark in medical imaging for cancer
identification. There are two primary parts to the Generative
Adversarial Network (GAN) that the ACNGCNN model uses:
the Generator (G) and the Discriminator (D). By competing
with one another in a game-theoretic fashion, these parts
increase the variety and quantity of training dataset samples
while simultaneously producing synthetic yet realistic visuals.
A data space is mapped to a latent space vector z using an
iterative neural network, which serves as the generator. In Eq.
(1), we see the generator’s (G) function represented.

G(z; θg) = LReLU(Wg · z + bg) (1)

Where, z is a random noise vector (latent space vector), Wg

and bg are the weights and biases of the generator network,
and θg represents these parameters, while LReLU represents
the LeakyReLU activation function, used to activate features.
The output of G is a synthetic image that mimics the real
data distributions. In this equation, z represents the input noise
vector, which is drawn from a standard normal distribution, and
θg represents the parameters of the generator. The generator’s
role is to map this noise vector z to the data space, aiming to
generate synthetic images that are indistinguishable from real
images & samples. In the same way, the discriminator is a
neural network that returns the likelihood that the input image
is genuine. Eq. (2) represents the evaluation for D.

D(x; θd) = σ(Wd · x+ bd) (2)

Where, x represents the input data, which can be either real
images from the dataset or synthetic images generated by G,
wd and bd are the weights and biases of the discriminator
network, and θd represents these parameters, σ represents
the sigmoid activation function, converting the output into
a probability score between 0 and 1 scales. The loss of
generator & discriminator is minimized using a min-max game
between G and D. The discriminator maximizes the probability
of correctly classifying real and synthetic images, while the
generator minimizes the probability that the discriminator
correctly identifies synthetic images via Eq. (3),
minGmaxDV (D,G) = Ex ∼ pdata(x)[logD(x)]

+Ez ∼ pz(z)[log(1−D(G(z)))] (3)

In this process, the generator layers progressively transform the
input noise vector into a data structure resembling the dataset’s
images, upscaling the dimensions in each of the processes.
While, the discriminator comprises of convolutional layers that
downscale the image dimensions, extracting features to discern
real images from synthetic ones for different use cases. The
final layer in this process is a fully connected layer with a
sigmoid activation function to output the probability scores. In
generating synthetic images, the generator initially produces
images that are easily distinguishable from real images &
samples. However, as training progresses, G learns to generate
increasingly realistic images, while D concurrently improves
at distinguishing real from synthetic images & samples. This
adversarial process continues until G generates images that D
can no longer reliably classify, indicating that the synthetic
images are now nearly indistinguishable from real images &
samples. As per Fig. 2, this capability of GANs to produce
realistic synthetic images enriches the training dataset, thereby
enhancing the overall performance of the ACNGCNN model
in the breast cancer detection process. These images are
processed using an efficient Non-Local Means (NLM) filter,
which is an advanced image processing technique designed to
reduce noise while preserving essential features in images and
their samples. Its effectiveness lies in its ability to leverage the
redundancy of information in the image, leading to superior
noise reduction compared to traditional local means methods.
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Fig. 2. Results of the augmentation process.

The denoised images are evaluated via Eq. (4),

Idenoised(p) =
∑
qϵs

w(p, q) · I(q) (4)

Where denoised(p) represents the intensity of the denoised
image at pixel p, I(q) is the intensity of the input noisy image at
pixel q, w(p,q) is the weight assigned to pixel q when denoising
pixel p, and S is the search window around pixel p sets. In
this process, the weight calculation is done via Eq. (5),

w(p, q) = 1/Z(p)e−
∥I(N(p))−I(N(q))∥2.a2

h2 (5)

Where, ∥I(N(p)) − I(N(q))∥2 is the squared Euclidean
distance between the Gaussian-weighted neighborhoods N(p)
and N(q) of pixels p and q, respectively, h is the filtering
parameter controlling the degree of smoothing, Z(p) is the
normalization term given via Eq. (6),

Z(p) =
∑
qϵs

e−h2∥I(N(p))−I(N(q))∥2.a2

(6)

The model also estimates Gaussian-Weighted Neighborhoods
via Eq. (7),

I(N(p)) =
∑

tϵN(p)

G(σ, p, t).I(t) (7)

Where, G(σ, p, t) is a Gaussian kernel centered at p applied
to a pixel t in the neighborhood N(p) for different noise sets.
The distance between these neighbors is estimated via Eq. (8),

∥I(N(p))−I(N(q))∥2.a2 =
∑

qϵN(p)

G(σ, p, t)·(I(t)−I(t+q−p))2

(8)

This equation calculates the weighted Euclidean distance
between neighborhoods centered at pixels p and q for different
image sets. The NLM process incorporates a normalization
term via Eq. (9), which assists in equalizing the weights.

Z(p) =
∑
qϵs

e−h2∥I(N(p))−I(N(q))∥2.a2

(9)

The Parameter h which decides the Filtering Strength is
estimated via Eq. (10),

h = α · std(I) (10)

Where, α is a user-defined constant, std(I) is the standard
deviation of the intensities in the input image, used to adapt
the filter to the noise levels. To efficiently compute the
NLM filter, integral images are used for fast calculation of
sums over rectangular regions. This reduces the computational
complexity significantly. The NLM filter inherently preserves
edges by considering the similarity of pixel neighborhoods,
rather than individual pixel values for different use cases.
In the application within the ACNGCNN model, the NLM
filter plays a critical role in preprocessing the data samples.
It meticulously refines the augmented images generated by
the GAN block, effectively reducing noise while preserving
essential structural details. This results in high-quality input
images for subsequent layers of the model, facilitating accu-
rate and efficient breast cancer-type classifications. The NLM
filter’s ability to maintain image integrity while eliminating
noise is instrumental in enhancing the overall performance of
the ACNGCNN modeling process.

Fig. 3. (a) Original Image, (b) Denoised Image by the NLM Process.

These filtered images as shown in Fig. 3 are passed through
an integration of Long Short-Term Memory (LSTM) with Bi-
Directional Gated Recurrent Units (BiGRU) in a Recurrent
ShuffleNet V2 framework, which constitutes a sophisticated
approach to classifying datasets in the ACNGCNN model.
This combination harnesses the strengths of recurrent neural
networks and the efficiency of Shuffle Net V2, making it
exceptionally well-suited for processing sequential and image
data samples. LSTM units are designed to remember values
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over arbitrary time intervals via Eq. (11) to (16), which stand
for recall gate, input gate, cell state, hidden state, final cell
update, and output gate, respectively

ft = σ(Wf · [ht− 1, xt] + bf) (11)

it = σ(Wi · [ht− 1, xt] + bi) (12)

C ∼ t = tanh(WC · [ht− 1, xt] + bC) (13)

Ct = ft ∗ Ct− 1 + it ∗ C ∼ t (14)

ot = σ(Wo · [ht− 1, xt] + bo) (15)

ht = ot ∗ tanh(Ct) (16)

The hyperbolic tangent function is denoted by tanh, the
sigmoid function by σ, the weights and biases by W and b,
respectively. Similarly, BiGRU, is an extension of the standard
GRU, processes data in both forward and reverse scopes using
update gate, reset gate, candidate activation and final activation
operations, which are estimated via Eq. (17) to (20) as follows:

zt = σ(Wz · [ht− 1, xt] + bz) (17)

rt = σ(Wr · [ht− 1, xt] + br) (18)

h ∼ t = tanh(W · [rt ∗ ht− 1, xt] + b) (19)

ht = (1− zt) ∗ ht− 1 + zt ∗ h ∼ t (20)

These final features represented as ht are passed through
an Iterative Recurrent ShuffleNet V2 Block, which uses a
fusion of Channel Shuffling to ensure cross-group information
flow, Depthwise Convolution for spatial feature extraction,
Pointwise Group Convolution for channel-wise feature blend-
ing, and Channel Splitting for dividing channels into two
branches. Channel shuffling is used to ensure cross-group
information flow between convolutional groups. It rearranges
the channels of the feature maps to enable interaction between
different groups. Given an input feature map with C channels
and a group number G, the feature map is first reshaped to
have dimensions [G,C/G]. The channels are then shuffled and
rearranged to ensure cross-group information exchange sets.
The shuffling operation can be represented as a permutation
function via Eq. (21),

Shuffle(x) = x[:, indices] (21)

The shuffling method determines the permutation order, and
x is the input feature map. Similarly, depthwise convolution
reduces computing complexity by doing spatial filtering in
each channel independently. Depthwise convolution uses a
channel-by-channel filter on an input feature map x with
dimensions [H,W,C]. In order to calculate the output feature
map y, we use Eq. (22).

yh,w, c =
∑
i.j

K(i, j, c) · x(h+ i, w + j, c) (22)

Where, K is the depthwise convolution kernel, and (i,j) repre-
sents the kernel sizes. In contrast, Pointwise group convolution
applies 1x1 convolutions for channel-wise blending, performed
separately across different groups to reduce computations.

Assuming the input feature map x is segregated into G groups,
the operation for each group can be represented via Eq. (23).

yg = Kg · xg (23)

Where, Kg is the pointwise convolution kernel for group g,
and xg and yg are the input and output feature maps for group
g, respectively. While, Channel splitting divides the input
channels into two branches, typically used in the ShuffleNet
unit before the depthwise convolutions. Given an input feature
map with C channels, it is split into two branches with C/2
channels each via Eq. (24):

x1, x2 = split(x,C/2) (24)

Where, x1 and x2 are the two split feature maps. This operation
enhances the model’s capacity and allows for more diverse fea-
ture representations. These operations collectively contribute to
the efficiency and effectiveness of ShuffleNet, particularly in
terms of reducing computational cost while maintaining high
accuracy. These features of ShuffleNet play a crucial role in
enabling efficient and powerful processing of image data, vital
for accurate and timely breast cancer detection and progression
analysis. They are processed for final classification via Eq.
(25):

yt = Wy · ht+ by (25)

In which Wy and by denote the fully linked layers’ biases and
weights, respectively.The model employs ReLU and softmax
in the final layers to introduce non-linearity and normalize the
output into probability scores. Thus, the LSTM and BiGRU
units are pivotal in capturing the temporal dependencies in
the data, ensuring that sequential information is effectively
utilized for accurate classification. The BiGRU enhances this
by providing insights from both past and future contexts.
The Recurrent ShuffleNet V2 process further enhances the
model’s efficiency in handling image data, making it adept at
extracting and processing complex features while maintaining
computational efficiency. This fusion of LSTM, BiGRU, and
Recurrent ShuffleNet V2 establishes a robust framework for
classifying breast cancer types and stages. It adeptly handles
the intricacies of sequential and image data, ensuring high ac-
curacy and efficiency, which is critical in the medical imaging
domain, especially for tasks such as early cancer detection and
progression analysis. The classification results are processed by
an efficient fusion of Capsule Networks integrated with Graph
Convolutional Neural Networks (CNGCNN), this provides
a useful method for studying how different breast cancers
develop. To enable the network to detect spatial hierarchies,
the Capsule Network uses capsules that contain data in vector
form. The primary operations in a Capsule Network include
Squash Function, which is estimated via Eq. (26), Dynamic
Routing, which is estimated via Eq. 27, 28 and 29, as follows:
where, sj is the sum of all inputs to capsule j sets and vj is
the vector of outputs from capsule j.

vj = (∥sj∥2)/(1 + ∥sj∥2)sj/(∥sj∥) (26)

Where, vj is the vector output of capsule j, sj is the total input
to capsule j sets.

cij = exp(bij)/
∑
k

exp(bik) (27)
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sj =
∑
i

c(ij)u′(j|i) (28)

u′(j|i) = W (ij)u(i) (29)

With u(i) being the output of capsule i in the subsequent
layers and bij being the log prior probability that capsule i
should be connected to capsule j.

Parallelly, the GCNN processes data defined on graphs and
is particularly effective in capturing the relationships and fea-
tures in non-Euclidean data structures, which are represented
via equation 30,

H(l + 1) = σ(D′(−1/2)A′D′(−1/2)H(l)W (l)) (30)

A′ = A+I denotes the matrices of a graph G having added
self-connections, and H(l) represents the activation matrix in
the l-th layer. The adjacency matrix is a critical component, as
it represents the connections or relationships between nodes in
a graph for given scenarios. Estimating the adjacency matrix
involves defining the relationships or interactions between the
nodes. The Basic Adjacency Matrix is evaluated via equation
31,

Aij = 1, ifnodeiisconnectedtonodej, 0otherwise.... (31)

Depending on the application, this binary representation
might mean that a direct connection between nodes i and j is
present (1) or not (0). Eq. (32) represents the adjacency matrix
in this situation, where the connections have weights.

Aij = wij (32)

The weight of the edge between sets of nodes i and j is
represented by wij . The adjacency matrix is built utilizing
the similarity of cellular features, histopathological traits,
and other pertinent clinical data samples in order to detect
the progression of breast cancer. The integration of Capsule
Network with GNN involves feeding the graph-structured
data processed by GCNN into the Capsule Network. This
combination allows for capturing both the global structure of
the graph data and the intricate spatial relationships between
features via Eq. (33),

Hcapsule = CapsuleNet(HGCNN) (33)

Where HGCNN is the output of the GCNN, Hcapsule
represents the feature vectors processed by the Capsule Net-
work process. This Capsule Network (CapsuleNet) represents
a significant advancement in neural network architecture, par-
ticularly suitable for jobs that necessitate comprehending data
linkages and spatial hierarchies, such breast cancer diagnosis
and progression analysis. The core idea behind CapsuleNet’s
architecture is capsules, which are collections of neurons that
represent the existence probability and instantiation character-
istics of a feature. Every capsule spew forth a vector, where
the length denotes the feature’s existence probability and the
orientation instantiation parameters. To make sure the length
of the output vector, which represents the probability levels,
is between 0 and 1, the squashing function is employed. This
non-linear function is used. CapsuleNet employs a dynamic

routing algorithm, which iteratively updates coupling coeffi-
cients between capsules across layers. For r iterations, the
model updates the coupling coefficients and capsule outputs
via equations 27, 28 & 29, which assist in the estimation of
the final prediction vector via Eq. (34),

b(ij) = b(ij) + u′(j|i) · vj (34)

The proposed CapsuleNet architecture includes multiple
capsule layers. Each capsule in a deeper layer predicts each
capsule in the next layer, based on its input vector sets. To
encourage the capsules to learn features that truly represent
the input data, a reconstruction network is added as a regu-
larization method for this process. Using the outputs of the
capsules in the top layer and Eq. (35), it attempts to rebuild
the input image.

Lrecon = ∥X −X ′∥2 (35)

The reconstruction image derived from the CapsuleNet
procedure is denoted as X’, while X represents the input image.
CapsuleNet uses a margin loss for each class to handle multi-
class classification tasks, which is useful in the classification
of various stages of breast cancer, and is estimated via Eq.
(36),

Lk = Tkmax(0,m+−∥vk∥)2+λ(1−Tk)max(0, ∥vk∥−m−)2

(36)

The hyperparameters of this process are λ, m+, and m−,
and Tk is 1 while class k is present and 0 otherwise. Skillfully
incorporating CapsuleNet allows for the analysis of aspects
relevant to the identification and evolution of breast cancer.
The capsules’ ability to encapsulate feature presence and
instantiation parameters enables the network to understand
complex spatial hierarchies and relationships within the data
samples. A particular field where CapsuleNet really shines is
in medical imaging, where precise diagnosis often hinges on
the spatial arrangement and orientation of data. The dynamic
routing algorithm further enhances the network’s capability
to focus on the most relevant features, making CapsuleNet
a powerful tool in the model’s architecture for effective and
accurate breast cancer analysis. The final output layer utilizes
the features processed by the CNGCNN for classifying the
stages of breast cancer progression via Eq. (37),

y = Softmax(Woutput ∗Hcapsule+ boutput) (37)

Where, y is the output vector indicating the probability of
each stage of cancer progression, Both Woutput and boutput
represent the output layers’ weights and biases, respectively.
This process captures the complex patterns characteristic of
cancer progression sets. The Capsule Network’s ability to
understand spatial hierarchies and the GCNN’s proficiency in
handling graph-structured data synergize to form a potent tool
for cancer progression analysis. This sophisticated integration
allows the model to discern subtle yet critical changes in tissue
structure and cellular arrangements, which are key indicators
of cancer development and progressions. The CNGCNN’s
innovative architecture and computational prowess make it a
formidable component of the ACNGCNN model, significantly
enhancing its capability to monitor and predict the progression
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of breast cancer accurately for different scenarios. In the sec-
tion that follows, we compare this model’s estimated efficiency
to that of existing approaches and examine it for various use
situations.

IV. RESULT ANALYSIS

An innovative combination of adversarial capsule networks
and graph convolutional neural networks, the ACNGCNN
model is a huge step forward in medical imaging, especially
for tracking the development and evolution of breast cancer.
This model cleverly integrates deep learning capabilities to
improve the precision and efficacy of breast cancer diagnosis
across different subtypes. To improve picture quality and data
resilience, it uses Generative Adversarial Networks (GANs)
and a non-local means filter (NLM) for preprocessing. The
model’s central architecture is a Recurrent ShuffleNet V2
framework that seamlessly handles sequential data samples
by combining Long Short-Term Memory (LSTM) units with
Bi-Directional Gated Recurrent Units (BiGRU). This novel
method not only speeds up the process of determining the
stages of breast cancer, but it also increases the accuracy and
precision of classification. The ACNGCNN model has shown
impressive gains in important measures including specificity,
accuracy, recall, AUC, and precision when tested extensively
on the BreaKHis dataset. It is at the cutting edge of medical
diagnostics because of its speed and accuracy in detecting
cancer progression; this makes it a game-changer for breast
cancer early intervention and treatment. To guarantee accurate
and trustworthy results, a thorough procedure was employed
in the experimental setup that was created to assess the AC-
NGCNN model’s capability to detect and track the evolution
of breast cancer. Here we lay out the bones of the experimental
design, including the dataset, preprocessing procedures, model
architecture, and assessment criteria.

Dataset:

• The BreaKHis dataset was used in the study; it in-
cludes images of breast tumor tissue taken by micro-
scopic biopsy.

• By partition the dataset into testing, training, and val-
idation sets, a comprehensive representation of cancer
types and stages could be accomplished. Images and
samples used in the experiments varied in size from
95,000 to 1,620,00.

Preprocessing:

• Images were initially processed using a non-local
means filter (NLM) to reduce noise while preserving
essential features.

• To further improve the model’s learning capacity,
Generative Adversarial Networks (GAN) were used to
expand the dataset by creating more synthetic images.

Model Architecture:

• The graph Convolutional Neural Networks and Cap-
sule Networks were combined in the ACNGCNN
model.

• A Recurrent ShuffleNet V2 approach was employed
to efficiently handle sequential data by combining

Long Short-Term Memory (LSTM) units with Bi-
Directional Gated Recurrent Units (BiGRU).

• Sample input parameters for the model included:
◦ Learning Rate: It was initial set to 0.001 and

was changed depending on how well the vali-
dation worked.

◦ Batch Size: 32 for training and 16 for valida-
tion and testing phases.

◦ Capsule Network Dimensions: 6 layers with a
dynamic routing algorithm.

◦ Number of Graph Convolutional Layers: 4,
each with a feature size of 128.

◦ LSTM and BiGRU Units: Each with 256 hid-
den units.

Training and Validation:

• Adam optimizer minimized a cross-entropy loss func-
tion during model training, which was based on a
backpropagation technique.

• Overfitting was avoided by using early halting accord-
ing to the validation loss.

Evaluation Metrics:

• The following metrics were used to assess perfor-
mance: precision, accuracy, recall, specificity, area
under the curve (AUC), and milliseconds of delay.

• Each metric was calculated at various test sample sizes
to assess the model’s effectiveness in both classifica-
tion and pre-emption of breast cancer types.

Computational Resources:

• The following parameters were used to run the exper-
iments on a high-performance computing system:

◦ CPU: Intel Xeon Processor with 2.20 GHz
speed.

◦ GPU: NVIDIA Tesla V100 with 32 GB mem-
ory.

◦ RAM: 64 GB.
◦ Software: Python 3.8, TensorFlow 2.4, and

Keras for the model implementation process.

This experimental setup provided a robust framework for
evaluating the efficiency of the ACNGCNN model in breast
cancer detection and evolution. The thorough methodology,
which included preprocessing as well as performance evalua-
tion, guaranteed the validity and dependability of the results,
which added to the model’s potential utility in situations in
healthcare. Eq. (38) to (40) were utilized to evaluate the levels
of Precision (P), Accuracy (A), and Recall (R) according to
this arrangement, while Eq. (41) and Eq. (42) were employed
to measure the overall precision (AUC) and specificity (Sp).

Precision =
TP

TP + FP
(38)

Accuracy =
TP + TN

TP + TN + FP + FN
(39)

Recall =
TP

TP + FN
(40)

www.ijacsa.thesai.org 1426 | P a g e



(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 5, 2024

AUC =

∫
TPR(FPR)dFPR (41)

Sp =
TN

TN + FP
(42)

The three types of test set predictions are True Positive (TP),
False Positive (FP), and False Negative (FN). TP refers to
the number of events in the test sets that were correctly
predicted as positive, FP to the number of instances in the
test sets that were incorrectly predicted as positive, and FN to
the number of instances in the test sets that were incorrectly
predicted as negative, including Normal Instance Samples. All
of these terms are used in the test set documentation. To
find the correct TP, TN, FP, and FN values for these cases,
we used the Extreme Learning Machine (ELM) [5], Cascade
Convolutional Neural Network (CCNN) [22], and Mask R-
CNN and Detectron2 (MRCNND) [29] techniques to compare
the predicted likelihood of Breast Cancer Instances with the
actual status in the test dataset samples. Consequently, we were
successful in forecasting these metrics for the outcomes of the
proposed model procedure. Fig. 4 displays the findings of the
cancer detection as follows,

The accuracy levels determined by these evaluations are
shown in Fig. 5, which makes use of these classification
outputs,

In the dataset with 95k test samples, ACNGCNN shows a
precision of 90.52%, which is substantially higher compared to
ELM (65.31%), CCNN (79.00%), and MRCNND (78.11%).
This significant lead in precision implies that ACNGCNN is
more effective in correctly identifying breast cancer types from
image scans. The high precision rate is crucial in clinical
settings as it reduces the likelihood of false positives, ensuring
that patients receive accurate diagnoses and appropriate treat-
ment. The superior precision of ACNGCNN could be attributed
to its advanced integration of adversarial capsule networks
and graph convolutional neural networks, accordingly, it can
probably detect and categorize complex patterns in the image
data sets more effectively. Similarly, in larger datasets, such
as the one with 1,296k test samples, ACNGCNN again out-
performs the other models with a precision rate of 95.52%,
compared to 81.48% for ELM, 73.58% for CCNN, and 79.14%
for MRCNND. This consistency in maintaining high precision
across varying dataset sizes highlights the robustness of AC-
NGCNN. Such robustness is crucial in real-world applications
where the volume of data can vary significantly. The higher
precision of ACNGCNN in larger datasets also suggests its
scalability and effectiveness in handling vast amounts of data
without a significant loss in performance. This aspect is
particularly important in medical imaging, where datasets can
be extensive, and the accuracy of each classification is critical
for patient outcomes. The enhanced precision of ACNGCNN
likely results from its ability to effectively preprocess images
and handle sequential data, thereby improving its classification
capabilities. In a similar vein, we compared the models’
accuracy in Fig. 6 follows, As per Fig. 6, in the dataset with
95k test samples, ACNGCNN demonstrates an accuracy of
90.26%, significantly outperforming ELM (77.90%), CCNN
(86.65%), and MRCNND (83.95%). This higher accuracy
implies that ACNGCNN is more effective in correctly iden-
tifying both positive and negative cases of breast cancer types.
In clinical scenarios, this high accuracy is vital as it ensures

Fig. 4. Results of classification for different cancer stages.
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Fig. 5. Observed precision for classification of image scans into breast
cancer types.

Fig. 6. Observed accuracy for classification of image scans into breast
cancer types.

that patients are correctly diagnosed, reducing the risk of both
false positives and false negatives. False positives can lead to
unnecessary stress and invasive procedures for patients, while
false negatives could result in delayed treatment. The accuracy
of ACNGCNN, particularly in smaller datasets, suggests its
potential effectiveness in clinical settings where high-quality
data may be limited.

Similarly, with the largest dataset size of 1,620k test
samples, ACNGCNN outperforms ELM (80.41%), CCNN
(86.34%), and MRCNND (88.13%). Its accuracy stands at
96.16%. As a result, ACNGCNN can scale to larger datasets
without sacrificing accuracy, a crucial feature for any real-
world application. Accuracy is of the utmost importance in a
clinical setting, where different and huge datasets are typical.
As a medical diagnostic tool, the model must be able to
accurately manage a wide variety of data variances. Due to
its stability and durability, ACNGCNN consistently performs
well in larger datasets, suggesting it could be a useful tool
for healthcare providers in properly diagnosing breast cancer
types. The ability to accurately diagnose breast cancer types at
an early stage is crucial for optimal therapy and management,
and this level of accuracy, especially in bigger datasets, can
greatly improve patient outcomes. Fig. 7 also shows recall
levels but in a different way, Observing the data, the proposed

Fig. 7. Observed recall for classification of image scans into breast cancer
types.

ACNGCNN model demonstrates strong performance across
various test sample sizes. For example, in the dataset with 95k
test samples, ACNGCNN achieves a recall of 92.93%, which
is lower than CCNN’s 94.49% but higher than ELM’s 78.25%
and MRCNND’s 87.17%. From a clinical standpoint, this sug-
gests that ACNGCNN is highly likely to detect breast cancer
when it exists, with a lower chance of false negatives. Because
early detection has such a profound effect on treatment efficacy
and patient survival rates in breast cancer diagnostics, this
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is of paramount importance. In the largest dataset of 1,620k
test samples, ACNGCNN shows a recall of 94.56%, which is
substantially higher than both ELM (76.19%) and MRCNND
(88.08%), and slightly higher than CCNN (76.08%). This
high recall rate in large datasets indicates that ACNGCNN
maintains its ability to correctly identify positive cases of
breast cancer even as the data complexity and volume increase.
In a clinical setting, where datasets can be extensive and
diverse, a high recall rate ensures that fewer cases of breast
cancer go undetected. This capability is crucial for screening
programs and diagnostic procedures, where the primary goal is
to identify as many true cases as possible for early and effective
intervention. Thanks to its impressive recall performance,
ACNGCNN shows promise as a dependable method for breast
cancer identification. This could mean better patient outcomes
as a result of earlier diagnosis and treatment. The time required
for the prediction process is also tabulated in Fig. 8. This

Fig. 8. Observed delay for classification of image scans into breast cancer
types.

figure displays the results showing that the ACNGCNN model
has competitive delay times for different test samples. As an
example, compared to ELM’s 98.69 ms latency in the 95k test
samples dataset, ACNGCNN’s latency is 92.71 ms., CCNN
(100.60 ms), and MRCNND (102.65 ms). This reduced delay
implies that ACNGCNN can process and classify images more
quickly than the other models. In clinical practice, a lower
delay is beneficial as it enables quicker diagnosis, allowing
for more timely treatment decisions. This speed is particularly
important in high-volume clinical settings or in screening
programs where large numbers of scans must be processed
efficiently. Using 1,620k test samples in the largest dataset,
ACNGCNN once again shows a competitive delay time of
100.82 ms, which is faster than CCNN (110.52 ms) and ELM
(100.66 ms). It is clear that ACNGCNN is effective at process-
ing massive amounts of data with little increases in processing
time because it consistently maintains low delay times across
different dataset sizes. In a clinical context, where time is
often a critical factor, the ability of ACNGCNN to quickly

process and accurately classify large datasets can significantly
impact patient outcomes. Quick and reliable diagnostic results
can expedite the initiation of appropriate treatment plans,
potentially improving the prognosis for patients with breast
cancer.

Fig. 9. Observed AUC for classification of image scans into breast cancer
types.

The ACNGCNN model’s balance of accuracy and speed
underscores the clinical requirement for quick and precise
medical imaging analysis, it can be a useful tool in the
diagnosis of breast cancer. In a similar vein, the following
are the AUC levels shown in Fig. 9.

As per the provided data in Fig. 9, the ACNGCNN model
consistently demonstrates high AUC values across various test
sample sizes, indicating its strong discriminatory power. For
instance, in the dataset with 95k test samples, ACNGCNN
achieves an AUC of 82.43%, which is notably higher than
ELM (61.20%), CCNN (79.03%), and MRCNND (68.73%).
A higher AUC value suggests that ACNGCNN has a superior
ability to differentiate between various types of breast can-
cer, thus reducing the likelihood of misdiagnosis. In clinical
practice, this capability is crucial as it directly influences the
treatment plan and prognosis. An accurate classification of
cancer types ensures that patients receive the most appropriate
treatment tailored to their specific condition. In larger datasets,
such as the one with 1,620k test samples, ACNGCNN’s AUC
of 89.61% again outperforms ELM (62.31%), MRCNND
(75.78%), and is comparable to CCNN (86.59%). The model’s
reliability and robustness in different and complex clinical
scenarios are highlighted by its high level of performance in
larger datasets. In real-world medical imaging, where complex
and variable data is the norm, ACNGCNN is useful because
it can keep good AUC values even with rising dataset size. In
a clinical setting, this translates to a tool that can be trusted
for its consistent accuracy in diagnosing different stages and
types of breast cancer, leading to better-informed treatment
decisions and potentially improved patient outcomes. With
its excellent AUC values across various test sample sizes,
ACNGCNN proves to be a great tool in breast cancer diagno-
sis, providing healthcare practitioners with a dependable and
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efficient alternative. Similarly, the following is an observation
of the Specificity levels made possible by Fig. 10.

As per the provided data in Fig. 10, the ACNGCNN model
consistently demonstrates high AUC values across various test
sample sizes, indicating its strong discriminatory power. For
instance, in the dataset with 95k test samples, ACNGCNN
achieves an AUC of 82.43%, which is notably higher than
ELM (61.20%), CCNN (79.03%), and MRCNND (68.73%).

Fig. 10. Observed specificity for classification of image scans into breast
cancer types.

As per the data provided in Fig. 10, it’s clear that the
ACNGCNN model consistently exhibits high specificity across
various test sample sizes. For instance, in the dataset with 95k
test samples, with a specificity of 86.08%, ACNGCNN out-
performs ELM’s 74.41%., CCNN (77.70%), and MRCNND
(70.90%). This high specificity indicates that ACNGCNN
is adept at correctly identifying scans that do not indicate
breast cancer, which is essential in clinical settings to avoid
unnecessary anxiety, additional tests, or treatments for healthy
patients.

In larger datasets, such as the 1,620k test samples, AC-
NGCNN maintains a high specificity rate of 92.47%, sur-
passing ELM (80.63%), CCNN (77.44%), and MRCNND
(70.53%). This demonstrates ACNGCNN’s robust capability
to distinguish non-cancerous cases from cancerous ones effec-
tively, even as the volume and complexity of data increase.
In clinical terms, this means the model can be relied upon to
minimize false positives in breast cancer diagnosis. This aspect
is particularly important because false positives can lead to
unnecessary and invasive biopsies, cause patient discomfort,
and increase healthcare costs.

Therefore, the high specificity of the ACNGCNN model is
a significant advantage in clinical scenarios. It ensures that pa-
tients who do not have breast cancer are less likely to undergo
unnecessary stress and medical procedures. This characteristic

of the ACNGCNN model, coupled with its high precision and
accuracy, underscores its potential as a reliable and efficient
diagnostic tool in the early detection and treatment of breast
cancer, thereby contributing to better patient management and
care. Next in this text is a discussion of the examination of the
pre-emption efficiency of the proposed model in comparison
with existing methods in different scenarios.

A. Pre-emption Analysis

The proposed model outperforms the competition in terms
of classification efficiency, but it needs to be tested in real
time to see how well it handles pre-emption. The efficiency
was evaluated by comparing it to current models under sim-
ilar settings and measuring it in terms of recall, specificity,
precision, accuracy, and area under the curve (AUC) values.
Take Fig. 11, for example. It displays the accuracy seen in the
pre-emption of breast cancer scenarios for various applications.

Fig. 11. Observed precision for Pre-empting breast cancer types.

When compared to other approaches such as ELM [4],
CCNN [23], and MRCNND [29], the suggested ACNGCNN
model’s pre-emption efficiency in breast cancer type classi-
fication is an important component. The observed precision,
which represents pre-emption efficiency, is very important
because it relates to the model’s capacity to correctly forecast
or detect possible breast cancer types before to their complete
development or more noticeable manifestation.

Analyzing the data, it’s evident that ACNGCNN consis-
tently achieves high precision in the pre-emption of breast
cancer types across various test sample sizes. For instance,
in the dataset with 95k test samples, ACNGCNN demon-
strates a precision of 87.91%, significantly outperforming ELM
(70.93%), CCNN (71.28%), and MRCNND (71.51%). This
higher precision indicates that ACNGCNN is more effective
in correctly identifying early indicators of different breast
cancer types. In practical terms, the ability to pre-emptively
identify breast cancer types can have profound implications
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in clinical scenarios. It enables earlier intervention, which can
significantly improve the prognosis and treatment outcomes for
patients. Early detection and accurate classification of cancer
types allow healthcare providers to devise and implement
targeted treatment plans at a stage where the cancer is most
treatable.

Similarly, in larger datasets, such as the one with 1,620k
test samples, ACNGCNN shows a precision of 92.43%, sur-
passing ELM (78.54%), CCNN (82.23%), and MRCNND
(78.78%). This indicates the model’s scalability and its ef-
fectiveness in maintaining high precision even with increasing
dataset sizes. In clinical settings, this translates to a reliable
tool capable of handling diverse and extensive data without
compromising the accuracy of early cancer type identification.
The ability of ACNGCNN to maintain high precision rates
in pre-empting breast cancer types is crucial for early-stage
screening programs and diagnostic procedures.

Considering its excellent precision across many datasets,
the ACNGCNN model demonstrates better pre-emption effi-
ciency. This highlights its potential as a game-changing tool
for early identification and management of breast cancer. To
improve patient outcomes, lessen the burden of medicines
administered in the late stages, and maybe increase survival
rates, ACNGCNN can play a crucial role by enabling the early
and accurate diagnosis of possible cancer types. By providing
a more preventative, efficient, and dependable method of
cancer identification and categorization, this feature of the
ACNGCNN model is a huge step forward in breast cancer
diagnosis. In Fig. 12, we can see a comparison of the model’s
accuracy. To summarize, As per Fig. 12, ACNGCNN consis-

Fig. 12. Observed accuracy for pre-empting breast cancer types.

tently demonstrates high accuracy across various test sample
sizes. For instance, in the dataset with 95k test samples,
The accuracy of ACNGCNN is calculated to be 82.95%,
which is greater than the accuracy of ELM (82.06%). CCNN
(62.78%), and MRCNND (76.34%). In larger datasets, such
as the one with 1,620k test samples, ACNGCNN achieves
an accuracy of 92.77%, surpassing ELM (81.42%), CCNN
(79.93%), and MRCNND (75.68%). That ACNGCNN is so

good at decreasing false positives and false negatives and at
recognizing different kinds of breast cancer is evident from its
high accuracy rate.

Its granular accuracy has far-reaching consequences in real-
world therapeutic settings. To begin with, it opens the door
to beginning cancer treatment early. Treatment efficacy and
overall survival rates are both improved with early detection.
Patients can get the treatment they need before their cancer
gets worse, thanks to ACNGCNN’s ability to properly predict
which cancer types will develop.

Moreover, high accuracy in pre-emptive detection reduces
the likelihood of misdiagnosis, which is crucial in avoiding
unnecessary treatments or procedures. Misdiagnosis can lead to
significant physical, emotional, and financial strain on patients.
Therefore, a model like ACNGCNN, with its high pre-emptive
accuracy, can greatly enhance patient care quality by ensuring
that diagnoses are correct, thereby guiding appropriate and
timely medical interventions for different scenarios.

In clinical scenarios, the implications of such high accuracy
are profound. First, it allows for earlier intervention in the can-
cer treatment process. Early detection is often associated with
better treatment outcomes and higher survival rates. The ability
of ACNGCNN to accurately pre-empt cancer types means
that patients can receive timely and appropriate treatment,
potentially before the cancer progresses to more advanced
stages.

Fig. 13. Observed recall for pre-empting breast cancer types.

Fig. 13 shows that the ACNGCNN model efficiently detects
early-stage breast cancer instances by maintaining high recall
rates across different test sample sizes. The recalls achieved
by ACNGCNN (87.85%) in the dataset with 95k test samples
are substantially greater than those of ELM (83.71%), CCNN
(63.37%), and MRCNND (66.70%), to name a few. With a re-
call rate of 90.88%, ACNGCNN outperforms ELM (84.54%),
CCNN (78.69%), and MRCNND (71.76%) in the biggest
dataset with 1,620k test samples. When it comes to breast
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cancer, where early identification often improves treatment
outcomes, this high degree of recall is very crucial.

Enhanced recall in predicting breast cancer kinds has a
major influence in real-world therapeutic settings. With a high
recall rate, the model has a lower chance of missing breast
cancer patients, which indicates that late diagnosis is less likely
to occur. Poor patient outcomes, more rapid disease develop-
ment, and fewer treatment options are common results of breast
cancer diagnoses performed too late. Consequently, patients’
prognoses can be greatly improved by allowing earlier and
more effective treatment treatments, thanks to ACNGCNN’s
capacity to reliably detect breast cancer instances at an early
stage.

Moreover, early detection and intervention can lead to
reduced treatment costs and less invasive treatment methods,
which are beneficial for both patients and healthcare systems.
In addition, high recall rates can increase patient trust in
screening programs, encouraging more individuals to partic-
ipate in regular screenings. This can lead to earlier detection
on a broader scale, potentially lowering the overall morbidity
and mortality associated with breast cancer. Similarly, the same
diagram displays a tabular representation of the time required
for the prediction procedure. Fig. 14 clearly shows that the

Fig. 14. Observed delay for pre-empting breast cancer types.

ACNGCNN model typically has competitive latency times.
Take the dataset with 95,000 test samples as an example;
ACNGCNN’s latency is 84.07 ms, which is much lower than
ELM (98.95 ms), CCNN (100.36 ms), and MRCNND (84.77
ms). Similarly, in larger datasets like the one with 1,620k
test samples, ACNGCNN shows a delay of 92.34 ms, which
remains competitive with ELM (102.46 ms), CCNN (96.40
ms), and MRCNND (94.86 ms). These findings suggest that
ACNGCNN can process and classify scans efficiently, which
is vital in clinical practices.

In clinical settings, a model that can pre-emptively detect
breast cancer types with minimal delay is highly advantageous.
Firstly, it allows for faster diagnosis, which is critical in breast
cancer where early intervention can lead to significantly better

treatment outcomes. Faster processing times mean that more
patients can be screened in less time, potentially leading to
earlier detection of breast cancer on a larger scale.

Additionally, reduced delay in diagnosis can alleviate pa-
tient anxiety. Waiting times for diagnostic results can be a
source of significant stress for patients. A model like AC-
NGCNN, capable of providing quick and reliable results, can
improve the overall patient experience. Moreover, efficient
processing times are beneficial in high-volume healthcare
settings, where the ability to handle a large number of cases
efficiently without compromising accuracy is crucial. In a
manner comparable to that, the following are the AUC levels
shown in Fig. 15. Analyzing the data in Fig. 15, ACNGCNN

Fig. 15. Observed AUC for pre-empting breast cancer types.

consistently shows higher AUC values compared to ELM [4],
CCNN [23], and MRCNND [29] across various test sample
sizes. For example, in the dataset with 95k test samples, With
an AUC of 85.72%, ACNGCNN outperforms ELM (65.85%),
CCNN (68.24%), and MRCNND (67.06%). This trend contin-
ues in larger datasets, such as the 1,620k test samples, where
ACNGCNN records an AUC of 96.15%, indicating a very high
level of diagnostic accuracy.

In clinical settings, the importance of a high AUC value in
pre-empting breast cancer types cannot be overstated. For in-
stance, it suggests that you have faith in the model’s predictive
power for spotting breast cancer in its earliest stages.This is
paramount in a clinical context, as early detection is often the
key to successful treatment and better patient outcomes. High
AUC values in models like ACNGCNN can lead to earlier
interventions, potentially catching cancer at a stage where it is
more treatable and survival rates are higher.

Additionally, a low false positive or negative rate is in-
dicative of a well-performing model, which is supported by a
high AUC value. In clinical practice, this reduces the burden
of unnecessary treatments or additional diagnostic procedures
that can result from false positives, as well as the risk of
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overlooking a cancer case due to a false negative. Both
scenarios can have profound implications for patient health
and the efficiency of healthcare services. In the same a similar
direction, the following is how the Specificity levels can be
shown in Fig. 16. From the data in Fig. 16, it’s evident that the

Fig. 16. Observed specificity for pre-empting breast cancer types.

ACNGCNN model generally exhibits higher specificity across
various test sample sizes compared to ELM [4], CCNN [23],
and MRCNND [29] For example, in the dataset with 95k test
samples, ACNGCNN achieves a specificity of 87.90%, sig-
nificantly higher than ELM (82.76%), CCNN (70.23%), and
MRCNND (71.35%). This pattern holds true in bigger datasets
as well; for example, ACNGCNN achieves a specificity of
90.76 percent with 1,620 thousand test samples.

In clinical terms, the high specificity of ACNGCNN in
pre-empting breast cancer types means the period of false
positives is significantly decreased. Patients can experience
needless anxiety and additional medical complications due to
false positives, making this a critical consideration in clinical
practice., potentially invasive, diagnostic procedures. Reducing
false positives not only improves the overall patient experience
but also helps in conserving medical resources and reducing
healthcare costs.

Moreover, high specificity is vital in maintaining the
credibility and trust in breast cancer screening programs. If
a screening method frequently results in false positives, it
could lead to skepticism among potential participants, thereby
reducing participation rates and potentially missing genuine
cases of cancer in clinical scenarios.

V. CONCLUSION AND FUTURE SCOPE

The present research offers ACNGCNN, a new model for
improved breast cancer diagnosis and stage classification that
uses state-of-the-art adversarial capsule networks and graph
convolutional neural networks. The comprehensive evaluation
of this model, utilizing the BreaKHis dataset, reveals its
superior performance in both classification and pre-emption of

breast cancer types compared to existing methodologies such
as ELM, CCNN, and MRCNND.

In terms of classification, ACNGCNN consistently demon-
strated higher precision, accuracy, recall, and AUC, along with
lower delay times and enhanced specificity across various test
sample sizes. These outcomes demonstrate that the model
successfully classifies breast cancers., while also ensuring
rapid processing, crucial for timely diagnosis. Notably, the
model’s exceptional performance in larger datasets underscores
its scalability and robustness, essential attributes for real-world
clinical applications.

Furthermore, in the context of pre-emption, ACNGCNN’s
efficacy was equally compelling. It exhibited commendable
precision and accuracy, important for identifying possible
breast cancer kinds at an early stage. Relying on its excellent
specificity and recall rates, it may successfully detect actual
positive instances while limiting false positives. These charac-
teristics are pivotal in early intervention scenarios, where early
detection can significantly alter treatment outcomes.

This work has significant implications for clinical practice.
Through the improvement of breast cancer early detection
and precise staging, ACNGCNN opens the door to targeted
therapies that are both timely and effective. Patient outcomes,
survival rates, and the load of treatments administered in the
latter stages can all be improved in this way. The model’s
increased precision and reduced time lag in identifying disease
progression are also pivotal for effective monitoring and treat-
ment adjustments. In a broader context, ACNGCNN represents
a significant advancement in breast cancer diagnostics, offering
healthcare professionals a more efficient, accurate, and reliable
diagnostic tool in their fight against this pervasive disease.

In conclusion, ACNGCNN sets a new benchmark in breast
cancer diagnostics. Its ability to deliver precise, rapid, and
reliable results offers immense potential for improving breast
cancer screening, diagnosis, and management. This study’s
findings could have far-reaching implications, not only in
enhancing patient care but also in guiding future research and
development in medical imaging and cancer diagnostics.

A. Future Scope

The promising results achieved by the ACNGCNN model
in breast cancer detection and classification open numerous
avenues for future research and development. The model’s
proficiency in handling large datasets with high accuracy and
specificity suggests its potential applicability in a broader
range of oncological conditions. Expanding the scope of this
model to include other types of cancers, particularly those with
similar imaging characteristics, could significantly enhance the
universality and utility of the model in clinical oncology.

Further refinement of the model could involve integrating
real-time data analysis capabilities. This would allow for
instantaneous diagnostic feedback, a crucial factor in surgical
settings or in outpatient diagnostic procedures. Additionally,
exploring the integration of ACNGCNN with portable imag-
ing devices could democratize access to advanced cancer
screening methods, especially in remote or under-resourced
areas Another promising direction is the incorporation of
patient history and genetic data into the model’s analytical
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framework. This approach would align with the growing trend
of personalized medicine, potentially enabling the model to
predict individualized cancer risk profiles and offer tailored
screening recommendations.

The implementation of ACNGCNN in telemedicine plat-
forms also presents an exciting possibility. As telemedicine
continues to expand, especially in the context of the ongoing
global health challenges, the model could provide remote,
accurate diagnostic capabilities, reducing the need for physical
consultations and making cancer screening more accessible.
Additionally, it is crucial to keep investigating how inter-
pretable the model’s decision-making process is. Enhancing
the transparency of the AI algorithms would not only increase
the trust and acceptance of such models among healthcare
professionals but also contribute to the field of ethical AI in
medicine.

Finally, it would be extremely helpful to conduct longitu-
dinal studies to evaluate the ACNGCNN model’s actual effects
on healthcare expenses, patient outcomes, and the efficiency of
the system as a whole. Healthcare systems around the world
might use the results of this research to guide policy decisions
and resource allocation by providing hard proof of the model’s
efficacy. In the end, the ACNGCNN model has only scratched
the surface of its potential in the field of breast cancer detection
and classification.Its potential applications and improvements
could lead to significant advancements in medical diagnostics,
personalized medicine, and global healthcare access, ultimately
contributing to better health outcomes for patients worldwide
for different scenarios.
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