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Abstract—In real business processes, low quality event logs due
to outliers and missing values tend to degrade the performance
of process mining related algorithms, which in turn affects the
correct execution of decisions. In order to repair the missing
values in event logs under the condition that the reference model
of the process system is unknown, this paper proposes a method
that can repair consecutive missing values. First, the event logs
are divided according to the integrity of the trace, and then
the cluster algorithm is applied to complete logs to generate
homogeneous trace clusters. Then match the missing trace to the
most similar sub log, generate candidate sequences according to
the context of the missing part, calculate the context probability
of each candidate sequence, and select the one with the highest
probability as the repair result. When the number of missing
items in the trace is 1, our method has the highest repair accuracy
of 97.5 percent in the Small log and 93.3 percent in the real
event logs bpic20. Finally, the feasibility of this method is verified
on four event logs with different missing ratios and has certain
advantages compared with existing methods.

Keywords—Trace clustering; log repairing; process mining;
context semantics; conditional probability

I. INTRODUCTION

In the past few years, process mining has evolved into a
discipline focusing on the discovery, monitoring, and enhance-
ment of real processes [1]. Process mining bridges the gap
between traditional data analysis techniques like data mining
and business process management analysis [2]. One of the key
areas of process mining is process discovery, it aims at gen-
erating process models that describe the behavior of process
event logs as accurate as possible. Once a model is discovered,
process analysis and enhancement can be performed to detect
potential improvements [3].

Generally, an event log is composed of a set of traces,
while each trace is a sequence of events that occur in business
systems. We can label each event by an identifier, named case
ID, and all events with the same case ID constitute a trace,
where event are arranged by time series. Therefore, each event
contains several attributes, such as case ID, activity, resources,
and etc. All of event attributes reflect the actual execution
information of business processes. Process mining construct
model discovery frameworks based on various log processing
technologies [4], [5].

In the field of process discovery, most process mining
algorithms (such as heuristic mining algorithms, inductive
mining, etc.) assume that behaviors related to the execution
of underlying processes are correctly stored in event logs [6]–
[8]. However, in real business processes, event data inevitably
contains noise, and there are many reasons for this situation.
For example, manual recording, machine malfunctions, system

errors, and network delays, among others. In healthcare sys-
tems, errors in medical process event logs are mainly due to
manual recording, where the frequency of missing or incorrect
case IDs, resource information, and activity tags is higher than
that of missing or abnormal timestamps [9], [10]. Thus, low-
quality event logs due to outliers and missing values tend to
degrade the performance of process mining related algorithms,
which in turn affects the correct execution of decisions. It is
necessary to address the challenge of improving the quality of
event logs, achieving higher-quality business process analysis.

This paper proposes an approach of log repairing method
that incorporates context probability information, i.e., the con-
text semantics of event log. The method uses trace clustering
technology and is able to repair logs for multiple missing
value scenarios. Specifically, all logs are first divided into
logs containing only complete traces and logs containing only
missing traces. Then, the Levinstein Edit Distance is used
to measure the similarity between traces, and a bottom-up
hierarchical clustering approach is used to partition complete
logs into k sub-logs. Finally, the cluster with the highest
similarity to the missing trace is identified from the k sub-logs,
and all possible sequences of behaviors containing the missing
part are constructed based on the context of the missing part.
The optimal repair sequence is selected by solving the context
probabilities of each repair activity.

The contributions of our work is focused on:

• A clustering-based approach is proposed to repair
multiple consecutive missing activities.

• Behavioural relationships between contexts and activ-
ities of arbitrary length in the log are considered.

• Calculate the contextual probability of each repairing
activity to select the optimal repair sequence to im-
prove repairing results.

The remainder of this paper is structured as follows.
Section II introduces the related work, Section III presents
an illustrative motivation example. Section IV reviews some
basic concepts and notations, and Section V introduces the
proposed method of this work, Section VI conducts experi-
ments and analyses the experimental results. Finally, Section
VII concludes this paper.

II. RELATED WORK

In order to improve the quality of process mining analysis,
the work in [11] developed a process mining methodology as
a guide for projects using event logs for process mining, with
a focus on data cleaning steps. Similarly, the work in [12]
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Fig. 1. The framework of proposed Log repairing method.

categorized event log quality problems into four types: missing
data, incorrect data, imprecise data, and irrelevant data. In this
section, we mainly categorize the existing repairing log work
into two types: attribute-level repair and case-level repair.

A. Attribute-level Repair

The repair at the attribute level involves explicitly iden-
tifying the missing positions of attributes, including activity
attributes or determining the positions of abnormal attributes
based on anomaly detection of attributes. Specifically, as
shown in problem 1 in Fig. 1, the entire table represents a
case in the log, where each row represents an event and each
cell represents the attributes contained in the event. The red
cells in Fig. 1 indicate detected abnormal attributes, while the
gray cells indicate missing attributes.

In [13], detecting abnormal values and reconstructing miss-
ing values at the attribute level in event logs are focused on.
It consists of two processes: log cleaning and reconstruction.
In event log cleaning, abnormal values are those with high
reconstruction errors in the autoencoder decoding step. In
event log reconstruction, the autoencoder is used to reconstruct
missing values in the input dataset. This method does not rely
on any prior knowledge of the business process that generates
the event log and has shown significant performance in terms
of activity labels and timestamps in artificial event logs. In
PROELR [14] and SRBA [16], trace clustering methods are
used to cluster complete traces, which are traces without any
missing activity labels. Each incomplete trace, referring to
traces with missing activity labels, is assigned to the nearest
cluster. Subsequently, the incomplete traces are repaired based
on the characteristics of the corresponding trace clusters. It
is worth noting that both [14] and [16] can only repair
missing values at the individual activity level. MIEC [17] is
a likelihood-based multiple imputation technique for repairing
missing data in event logs. In addition to repairing missing
activity labels, it can also repair all other missing attributes
in the event log. MIEC relies on the dependencies between
event attributes. For example, certain activities may always
occur on weekends or be performed by specific groups of
people. When such dependencies do not exist or the event
log contains limited attribute data, effective repair of the event
log may not be possible. In [18], a decision tree learning

algorithm is proposed to discover rules for missing values
in event logs. In [19], a novel classification event imputation
method is proposed, which can recover missing categorical
events by learning structural features observed in the event log.
In [20], an LSTM-based prediction model that uses the prefix
and suffix sequences of events with missing activity labels as
input to predict the missing labels is proposed, demonstrating
high repair capability. In [21], the BERT4Log model and
weak behavior profile theory, combined with a multi-layer
multi-head attention mechanism is introduced, for interpretable
repair of low-quality event logs. In [22], a convolutional neural
network model that incorporates trace behavior features to
repair missing activities in traces is proposed, and its core idea
is to transform the event log of a business process transition
into spatial data based on the dimensions of time attributes and
activity attributes, convert it into an image matrix, and train
a convolutional neural network model to predict the missing
activities.

B. Case-level Repair

The existing techniques for case-level repair mainly focus
on solving problem 2 in Fig. 1, where there is a missing entire
event in a case. A method combining random Petri nets, align-
ment, and Bayesian networks was proposed in [23] to recover
missing activities and timestamps in event logs. The work in
[24] developed advanced indexing and pruning techniques to
reduce the search space, and the work in [25] utilizes process
decomposition techniques and heuristic methods to effectively
prune unfeasible sub-processes that fail to produce minimal
repairs. Both works of [24] and [25] aimed at minimizing the
search space as much as possible to improve the efficiency of
repairing events.

C. Summary of Existing Work

The attribute-level repair techniques are effective in repair-
ing known anomalies or missing attributes but are unable to
handle cases where the missing information is unknown or
when there are sequence anomalies and activity repetitions,
as shown in problems 3 and 4 in Fig. 1. On the other hand,
case-level repair techniques rely heavily on process models and
may not perform well in the absence of a process model.The
specific comparison of existing techniques is shown in Table
I, where the symbol ✓ represents the scope of techniques
considered. The specific meanings of the symbols are as
follows:

F1: Deterministic repair for known anomalies or missing
attributes, where the position of the anomaly or missing
attribute is clearly identified.

F2: Recovery of a single attribute’s missing values in a
trace, mainly activity names.

F3: Recovery of multiple attributes’ missing values in a
trace.

F4: Incorporation of process models.

F5: Uncertain repair for missing attributes, where the
position of the missing attribute is unknown.

F6: Uncertain repair, where the position of the missing
attribute and the existence of event repetitions or sequence
changes are unknown.
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F7: Interpretable missing attribute repair.

Based on the aforementioned issues, this paper introduces
the concept of an activity feature graph to detect and repair
the mentioned problems. It utilizes activity feature graphs to
compare abnormal behaviors with repaired behaviors, thereby
identifying the causes of anomalies. Additionally, it enables
further analysis of the impact of data. Furthermore, this paper
also proposes the recovery of average behavior characteristics
for missing values in the activity feature graph.

III. MOTIVATION

Table II presents an event log containing 9 activities
a, b, c, d, e, f, g, h, i, j and 10 trace variants. The superscript of
a trace denotes its occurrence frequency, and the symbol − rep-
resents missing value. Take the missing trace ⟨a, i, e,−, g, f⟩
for example, if the repair method of [14] is used, the repair re-
sult should be ⟨a, i, e, d, g, f⟩, as the highest frequency activity
occurring between activities e and g is d. The repair method of
[14] repairs the missing activity based on the highest frequency
of occurrence between the predecessor and successor of the
missing activity. However, this result is incorrect. The reason
is that the method of [14] can only repair one missing activity
based on its predecessor and successor activities, which may
not represent the key information of the missing trace. If the
method from this paper is used with a context length of 2, the
correct repair result can be obtained as ⟨a, i, e, k, g, f⟩, which
is the correct one.

Furthermore, the repairing work of [8] selects the most
frequently occurring segment between the preceding and suc-
ceeding contexts of the missing portion to repair the miss-
ing trace. The drawback of this method is that, although
it considers more contextual information, it can only repair
the missing trace variants occurring more than 2 times, and
ignores the behavioral relationships between activities. For
example, for the missing trace ⟨a, i, e,−,−, h, f⟩, the original
log in Table I does not find the corresponding length of the
missing segment when the method of [8] is directly used.
Comparatively, when the proposed method in this paper is
used, a kind of behavioral graphs of activities is constructed,
and then the repaired result based on contextual probabilities
is calculated as ⟨a, i, e, d, k, h, f⟩.

Therefore, in order to extend the research content of exist-
ing research, this paper proposes a clustering-based method
that can repair multiple consecutive missing activities. The
proposed method not only considers arbitrary lengths of con-
text in the logs but also takes into account the behavioral
relationships between activities. Experimental results show
that compared to existing research, the proposed method has
significant advantages in repairing missing activities.

IV. PRELIMINARIES

In this section, we briefly review a couple of terminologies
such as events, traces, event log, log clustering and missing
trace, in order to ease the readability of this paper.

A business process is a set of activities executed in a given
setting to achieve predefined business object [26]. An activity
is an expression of the form Act(a1, a2, · · · , anA

), where Act
is the activity name and each ai is an attribute name. We

call nA the arity of A. The attribute names of an activity are
all distinct, but different activities may contain attributes with
matching names.

We assume a finite set A of activities, all with distinct
names; thus, activities can be identified by their name, instead
of by the whole tuple. Every attribute ai of an activity A is
associated with a type DA(ai), i.e., the set of values that can
be assigned to ai when activity is executed.

An event is the execution of an activity and is formally
captured by an expression of the form e = A(v1, v2, · · · , vnA

),
where A ∈ Act is an activity name with vi ∈ DA(ai).The set
of events is denoted as Event.

A trace is formally defined as finite sequences of events
σ = ⟨e1, e2, · · · , en⟩ with ei = Ai(v1, v2, · · · , vnAi

). Traces
model process executions, i.e., the sequences of activities
performed by a process instance CID. A finite collection of
executions into a set L of traces is called an event log.

Definition 1 (Levenshtein Distance): Let σ1, σ2 ∈ L be
two traces in the log L, Lev(σ1, σ2) denotes the minimum
number of edit operations required to transform σ1 to σ2,
which is the edit distance. There are three types of edit
operations: delete, insert, and replace.

For example, for σ1 = ⟨a, c, d, e, h⟩, σ2 = ⟨a, b, d, e, g⟩,
after two replacement operations on σ1, it becomes σ2, thus
the edit distance Lev(σ1, σ2) = 2.

Definition 2 (Log Clustering): Let CN =
{C1, C2, · · · , Cm} be a set of clusters, and m be the
number of the clusters. If CN is the clustering result of log
L, then CN is a clustering of L if and only if Ci

⋂
Cj = ∅

(1 ≤ i, j ≤ n ∧ i ̸= j) and
n⋃

i=1

Ci = L.

Definition 3 (Missing Trace): A missing trace be σ∗ =
⟨e1, e2, · · · , en and n be the length of σ∗, if and only if ∃i ∈
[1, n] : ei =′ −′, where ′−′ denotes the missing value null.
The incomplete log L∗ is the set of all missing traces.

For example, L1 = {⟨a, d, b,−, h⟩56, ⟨a, d, c,−,−, c, d, e, h⟩8,
⟨a, d, c,−,−,−, b, e, g⟩2} is an incomplete log.

V. THE PROPOSED LOG REPAIRING METHOD

This section introduces the proposed method for repairing
multiple consecutive missing activities based on clustering and
context integration. The research framework is shown in Fig.
2, where the original log is first divided into complete logs
and missing logs, and then clustering methods are used to
segment the complete log into several sub-logs. Subsequently,
each missing trace in the missing log is matched with the
most similar sub-log. Next, a behavioral graph is constructed
based on the context of the missing parts and the behavioral
relationships of similar clusters, generating candidate repair
sequences. Finally, the conditional probabilities of each candi-
date sequence are calculated in conjunction with the context,
and the candidate sequence with the highest probability is
selected to repair the missing trace.

A. Log Clustering

Clustering is used to partition process logs into trace
clusters, which helps reduce heterogeneity and improve un-
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TABLE I. THE COMPARISON OF EXISTING TECHNIQUES

Repair type Existing technologies F1 F2 F3 F4 F5 F6 F7

Attribute-level repair

[13], [17], [19], [20] ✓ ✓

[14], [16], [22] ✓ ✓

[18] ✓

[21] ✓ ✓ ✓

Case-level repair [23]–[25] ✓ ✓ ✓

The methods in this paper ✓ ✓ ✓

TABLE II. AN EXAMPLE OF EVENT LOG

ID Traces

1 ⟨a, c, b, e, d, h, f⟩
2 ⟨a, c, b, e, d, g, f⟩2
3 ⟨a, i, b, e, d, g, f⟩
4 ⟨a, i, e, k, g, f⟩
5 ⟨a, i, c, b, h, k, f⟩3
6 ⟨a, b, c, g, d, j⟩2
7 ⟨a, i, c, e, d, k, g, j⟩
8 ⟨a, c, b, e, b, d, k, g, f⟩
9 ⟨a, i, c, g, k, j⟩
10 ⟨a, b, c, i, k, h, j⟩

Fig. 2. The framework of proposed log repairing method.

derstandability [16]. Trace clustering splits observed different
behaviors into several groups of multiple sub-logs with similar
behaviors. This paper aims to identify a group of activity
sequences similar to the missing trace from the complete logs,
in order to enhance the accuracy of missing trace repairing.
Therefore, this paper uses trace clustering as a preprocessing
stage for log repairing. Firstly, the traces are encoded using
Bag of Activity (BOA) encoding, and the similarity between
traces is measured using Euclidean distance to construct a
similarity matrix of traces. Then, spectral clustering is used
for clustering.

Definition 4 (Similar Clusters): Let σ∗ ∈ L∗ be a missing
trace, then Ci ∈ CN is the cluster most similar to σ∗, if and
only if Ci satisfies eq (1).

Ci = argmin
|CN |
i=1

Σσ∈CiLev
∗(σ, σ∗)

|Ci|
(1)

Where, Lev∗(σ, σ∗) = Lev(σ,σ∗)
max(|σ|,|σ∗|) represents the normalized

edit distance, and Lev∗(σ, σ∗) ∈ [0, 1].

In Algorithm 1, lines 1-5 use Euclidean distance to calcu-
late the similarity between traces represented by BOA encod-
ing, using SM to store the similarity values between traces,
and then use spectral clustering to divide the complete log into
n sub-logs. Lines 8-13 select the most similar cluster based on
the minimum edit distance SV from the missing trace to the
traces in each cluster according to Eq. (1).

Algorithm 1: Locating the candidate cluster C∗ that
most similar to the missing trace MT

Input: Original log L′, Number of clusters n,
Missing trace MT

Output: Candidate cluster C∗

1 SM ← null;
// Initialize the similarity matrix

2 foreach σi ∈ L′ do
3 foreach σj ∈ L′ do
4 SM(i, j)← Euclidean(σi, σj);
5 end
6 end
7 CN ← SC(SM);
8 C∗ ← null;
9 SV ← 0;

10 foreach Ci ∈ CN do
11 Si ← (

∑
σ∈Ci

Lev∗(σ,MT ))/|Ci|;
12 if SV > Si then
13 SV ← Si;
14 C∗ ← Ci;
15 end
16 return C∗;

B. Repairing Missing Traces by Context Probability

In order to achieve more accuracy and reduce the com-
plexity of repairing missing events, this paper defines the
concepts of begin sequence and end sequence in relation to
the behavior graph. The begin and end sequences refer to the
activity sequence around the missing part, while the behavior
graph stores the solution space that satisfies all possible activity
behaviors from the start sequence to the end sequence in the
similar cluster.
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Definition 5 (begin sequence, end sequence): Given a
missing trace σ ∈ A∗, the contextual behavior of the missing
part is defined as con(σ, l, r) = {(σ′, σ′′)|σ′, σ′′ ⊆ σ ∧ |σ′| =
l∧|σ′′| = r}, where σ′ corresponds to the begin sequence of σ
with precede length l, and σ′′ corresponds to the end sequence
of σ with successor length r.

For example, given a missing trace σ =
⟨a, d, c,−,−,−, b, e, g⟩, the context of its missing parts
is denoted as con(σ, 2, 3), con(σ, 2, 3) = (⟨d, c⟩, ⟨b, e, g⟩),
where ⟨d, c⟩ represents the Begin Sequence (BS) with precede
length 2 and ⟨b, e, g⟩ represents the End Sequence (ES) with
successor length 3.

To identify the activity sequences of the missing parts in
the missing trace, first, in the candidate clusters, identify the
activity sequences SeqSet that satisfy from the BS to the ES,
i.e., SeqSet = {ϕ(σi, BS,ES)|∃ϕ(σi, BS,ES) ∈ σi ∧ σi ∈
C∗ ∧ 1 ≤ i ≤ |C∗|}, where ϕ(σi, BS,ES) = {σi(o, p)|o =
PosB(σi, BS) ∧ p = PosE(σi, ES)}, PosB(σi, BS) indi-
cates the index where the begin sequence BS first appears
in trace σi, PosE(σi, ES) indicates the index where the end
sequence ES last appears in trace σi, and σi(o, p) represents
the activity sequence in trace σi between indices o and p. Then,
a behavior graph is constructed based on SeqSet.

Definition 6 (Behavior Graph): The behavior graph G
is a directed graph, i.e., G = DiGraph(V,E). The nodes
set V represent the activities in SeqSet, the directed edges
E = {(x, y)|∃x→ y ∈ SeqSet}, x→ y indicates that activity
y immediately follows activity x.

For the missing trace ⟨#,#, a, c, d, e, f, b, d,−,−, $, $⟩,
for ease of computation, we added the symbols # and $ at
the beginning and end of the trace, respectively, representing
the precede context at the start and the successor context at
the end.

Algorithm 2 describes the process of finding all possible
valid behavior sequences from the initial sequence to the final
sequence. Lines 1-10 define a method deep search, used to
calculate a depth-first search starting from a certain activity
with a length of (n + 2). Line 14 indicates searching for
the first activity in the initial sequence, for example, for the
missing trace mt = ⟨#,#, a, c, b, e,−,−, f, $, $⟩, when the
context lengths are set to 2, searching procedure starts from
activity b in the original sequence, returning all found behavior
sequences repair seq = {⟨b, e, d, g, f, $⟩, ⟨b, e, d, h, f, $⟩}.
Lines 15-17 filter the found behavior sequences based on
the length of the final sequence and the missing trace,
finally obtaining candidate repairing sequences CT =
{⟨b, d, e, h, $, $⟩, ⟨b, d, e, g, $, $⟩}.

Algorithm 2 can generate candidate repair sequences for
missing traces. In order to select the most suitable missing
sequence, this paper adopts eq. (2) to calculate the next activity
under the current window based on the context of the missing
parts.

Definition 7 (Context probability): Given a sliding win-
dow size of w, a candidate trace ct ∈ CT , and the cluster C
that is most similar to ct, the context probability of act under
the window w is denoted as CoverProbably(act).

CoverProbably(act) =
|Wact(ct, w) ∪Next(Wact(ct, w)) ∈ C|

|Wact(ct, w) ∈ C|
(2)

Algorithm 2: Generating candidate repair sequences
Input: Behavior Graph G, begin sequence BS, end

sequence ES, number of missing values n
Output: Candidate repair traces CT

1 def deep search(h, k, current,G): // search
from current, h is the current
depth

2 repair seq ← {};
3 if h ≤ k then
4 foreach sct ∈ G.node() do
5 if ∃current→ act// Nodes with paths

to the current activity
6 then
7 temp seq ←

deep search(h+ 1, k, act,G);
8 foreach seq ∈ temp seq do
9 misseq ← current ∪ {seq};

10 repair seq.add(misseq);
11 end
12 end
13 return repair seq;
14 CT = {};
15 Bact = Firact(BS);
// The first activity in the initial

sequence
16 Elen = len(ES); Blen = len(BS);
// length of the begin sequence, end

sequence
17 repair seq = deep search(0, n+ 2, Bact,G);
18 foreach seq ∈ repair seq do
19 if seq[Elen :] == ESandlen(seq) == n+ 2

then
20 CT.add(seq);

// Evaluate candidate sequences
21 end
22 return CT ;

Where act ∈ A, A = {ct(i)|w ≤ ilen(ct)}, Wact(ct, w)
represents the activity sequence in the candidate trace ct under
the window size of w. Next(Wact(ct, w)) represents the next
activity in this sequence. The probability of the candidate trace
ct sliding backward is denoted as BP (ct), shown as eq. (3).

BP (ct) = Πact∈ACoverProbably(act) (3)

Similarly, the probability of the candidate trace ct sliding
forward is denoted as FP (ct), FP (ct) = BP (ct−1), where
ct−1 represents the reverse order of the candidate trace activity
sequence ct. Therefore, the final context probability of the can-
didate trace ct is calculated as P (ct), P (ct) = BP (ct)+FP (ct)

2 .

Algorithm 3 describes the process of calculating the con-
ditional probability to select the final repair result from the
candidate repair sequences. Lines 1-5 initialize parameters.
Lines 6-9 calculate the probability of the next activity under
the current window from forward and backward directions.
The conditional probability calculated by the forward sliding
is saved in FP , and the conditional probability calculated by
the backward sliding is saved in BP . Then, the average of
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Algorithm 3: Context probability calculating algo-
rithm

Input: most similar cluster C, Sliding window size
w, Candidate repair sequence CT

Output: Predicted sequence pre ct
1 pre ct← null;
2 max P ← 0;
3 foreach ct ∈ CT do
4 BP ← 1;
5 FP ← 1;
6 while Next(Wact(ct, w)! = null) do
7 BP ←

BP ∗ CoverProbably(Next(Wact(ct, w));
8 FP ←

FP∗CoverProbably(Next(Wact(ct−1, w));
9 end

10 P = (BP + FP )/2;
11 if max P < P then
12 max P ← P ;
13 pre ct← ct;
14 end
15 return pre ct;

the probabilities calculated from both directions is taken as
the repair probability P for that candidate repair sequence.
Lines 10-13 select the candidate sequence with the highest
probability as the repair result and return it.

In order to illustrate the main idea of proposed method,
an example is taken here. Suppose the missing trace mt =
⟨#,#, a, c, b, e,−,−, f, $, $⟩ is generated from Table I that to
be repaired. Fig. 3 shows the distance matrix obtained by cal-
culating the Euclidean distance after encoding the logs in Table
II using BOA, and then generates a weighted undirected graph
based on spectral clustering, where nodes represent the IDs
of 10 variants, edges represent the distances between traces.
The original event log is divided into 2 clustering results,
with the most similar cluster {1, 2, 3, 4, 6, 8} determined based
on eq. (3). Next, setting the context of the missing trace as
con(mt, 2, 2) = (⟨b, e⟩, ⟨f, $⟩), and candidate repair sequences
are obtained as CT = {⟨b, e, d, g, f, $⟩, ⟨b, e, d, h, f, $⟩}
through Algorithm 2. Finally, Algorithm 3 is used to calculate
the conditional probability.

Tables III and IV record the context probability of candi-
date repair sequences with a window size of 2, with the prob-
ability of the candidate repair sequence ct1 = ⟨b, e, d, g, f, $⟩
being 3/5, and ct2 = ⟨b, e, d, h, f, $⟩ being 1/5. Therefore, the
final repair result is ⟨#,#, a, c, b, e, d, g, f, $, $⟩.

VI. EXPERIMENTAL EVALUATION

In this section, a series of experiments are conducted to
validate the feasibility of the proposed method. Firstly, the
repair effectiveness of traces with different missing ratios is
tested on four kinds of event logs. Secondly, the impact of
different context lengths and whether clustering preprocessing
is conducted on repairing missing traces is compared.

Fig. 3. Weighted undirected graph generated by spectral clustering method.

TABLE III. THE CONTEXTUAL CONDITIONAL PROBABILITY BETWEEN
CANDIDATE TRACES ct1 = ⟨b, e, d, g, f, $⟩

Direction Sliding window Conditional probability Result

Backward sliding

be → d 4/5

3/5
ed → g 3/4
dg → f 1
gf → $ 1

Forward sliding

$f → g 4/5

3/5
fg → d 3/4
gd → e 1
de → b 1

A. Logs Information

Table V describes the basic information of one synthetic
log and three real logs. These logs come from different envi-
ronments to compare the feasibility of the proposed method
in different environments. Small log is an artificial log gen-
erated by the plg tool that comes from the literature [15].
BPI Challenge 2020 (bpic20) contains event data related to
travel expense reimbursement over two years. sepsis records
sepsis case events from a hospital’s ERP system, with each
trace corresponding to a case. BPI Challenge 2013, incidents
(bpic13 inc), consists of event logs of Volvo IT incidents and
problem management.

B. Effectiveness Evaluation

In this paper, each experimental log is divided into com-
plete logs containing complete traces and incomplete logs
containing missing traces. The experiment divided them in this
way three times, with the proportion of incomplete logs in each
division being 5%, 10%, and 15% of the entire log respectively.
Secondly, this paper randomly deletes some activities from
each trace, in order to simulate the situation of lost activities
in a real environment, which generates the incomplete logs.
In experimental evaluation, three random deletion ratios have
been performed on the traces in the incomplete logs of each
log, with each deletion removing 1 to 3 activities from the
trace.
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TABLE IV. THE CONTEXTUAL CONDITIONAL PROBABILITY BETWEEN
CANDIDATE TRACES ct2 = ⟨b, e, d, h, f, $⟩

Direction Sliding window Conditional probability Result

Backward sliding

be → d 4/5

1/5
ed → h 1/4
dh → f 1
hf → $ 1

Forward sliding

$f → h 1/5

1/5
fh → d 1
hd → e 1
de → b 1

TABLE V. DESCRIPTION OF EVENT LOGS

Event log number
of traces

Trace variants Average
length
of traces

Number of activ-
ities

small log 2000 12 14 14
Bpic20 2099 202 8.693 29

Bpic13 inc 7554 2278 8.675 13
sepsis 1050 846 14.49 16

Fig. 4. Repair effects with different numbers of missing items under 10%
missing ratio.

Fig. 4 depicts the repair situation of each event log using
the method proposed in this paper under different missing
ratios and varying numbers of missing activities per trace.
From the Fig. 4, it can be seen that the best repair effect
is achieved when each trace is missing one activity. As the
number of missing activities increases, the accuracy of repair
gradually decreases. This result is expected because with more
missing activities in the trace, there are potentially multiple
behavior combinations that could exist, making it challenging
to obtain the true repair sequence solely based on the control
flow. Additionally, from this result, it can be observed that the
repair effect of synthetic logs using the method proposed in
this paper is superior to that of real event logs. This is because
real logs are generated by complex systems, characterized by
high concurrency, a wide range of event types, and inherent
abnormal situations, all of which can influence the accuracy
of repair.

TABLE VI. REPAIRING EFFECTS UNDER DIFFERENT MISSING RATIOS

Number
of
missing
items in
traces

Missing ratio Small log Bpic13 Bpic20 sepsis

1
5% 0.975 0.828 0.933 0.754
10% 0.957 0.8 0.929 0.838
15% 0.92 0.783 0.857 0.81

2
5% 0.945 0.782 0.967 0.698
10% 0.925 0.751 0.924 0.729
15% 0.902 0.731 0.917 0.655

Fig. 5. Repairing effects under different context lengths.

Table VI respectively displays the repair effects of traces
missing 1 and 2 activities under log missing rates of 5%, 10%,
and 15%. From the data in Table VI, it can be observed that
as the missing rate of the log increases, the repair rate of
the activities gradually decreases. Moreover, as the number
of missing activities per trace increases, the repair effect
decreases as well. Therefore, both the missing rate of the log
and the number of missing activities per trace will have an
impact on the log’s repair.

Fig. 5 illustrates the impact of different context lengths
on repair. Four different context lengths were set in this
experiment, and the results show that the accuracy of repair
is lower when the context length is set to 1. This is because
it is difficult to determine the main information of the current
trace with just one start and end activity. As the context length
increases, the repair effect gradually improves, as a certain
length of context contains the main information of the trace
and can filter out activity sequences more similar to the missing
trace. For logs bpic13 and sepsis, a decrease in repair rate
occurs when the context length reaches 4. This is because these
two logs have a high number of variants, and longer context
lengths filter out a large number of candidate traces, making
it difficult to find similar behavioral relationships.

Fig. 6 presents the comparison between the method of
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Fig. 6. Comparison of repairing methods.

repairing multiple missing activities (MY MUL) proposed
in this paper and the method of repairing single activity
(MY ONE), compared with the methods named CFC[13]
and PCR [12], respectively.It can be seen that our proposed
method outperforms existing methods both in the case of re-
pairing multiple activities or a single activity. And the method
of spectral clustering has a more significant improvement over
other existing clustering methods for preprocessing of missing
activity repair. Our proposed method has a good advantage in
repairing multiple consecutive missing events, but for the time
being, only the direct consecutive relationship between the
activities is considered, and the long-term dependency between
them is not taken into account. Furthermore, Table VII illus-
trates the improvement in repair after clustering preprocessing.
Dividing the logs and matching the missing traces to more
similar clusters can reduce the impact of unnecessary trace
pairs on the repair effect.

TABLE VII. THE IMPACT OF CLUSTERING PREPROCESSING ON
REPAIRING EFFECTIVENESS

Method Small log Bpic13 Bpic20 sepsis

clustering 0.957 0.751 0.924 0.729
No clustering 0.92 0.557 0.8 0.562
Enhancement 4% 34.8% 15.5% 29.7%

Fig. 7 describes the impact of using different cluster-
ing methods, such as kmeans,spectralclustering, SOM ,
UPGMA[17] method, on the repairing effectiveness of logs.
It can be seen from the Fig. 7 that the repair method based on
spectral clustering is better in the four logs.

VII. CONCLUSION

This paper proposes a method for repairing multiple miss-
ing activities in event logs without relying on process models.
We use spectral clustering to partition the complete event
log into sub-logs with similar behaviors, identifying the most
similar cluster based on the minimum Levenshtein edit distance
between the missing trace and traces in these clusters.

Behavior sequences are then constructed in the context of
the missing parts. Using a bottom-up hierarchical clustering

Fig. 7. The impact of different clustering methods on repairing effectiveness.

method, we refine the sub-logs and identify clusters most sim-
ilar to the missing trace. The best repair sequence is determined
by solving the contextual probability of each repair activity,
examining relationships between contexts and activities of
arbitrary lengths. A sliding window technique predicts the next
activity based on the current context, averaging forward and
backward probabilities to select the sequence with the highest
likelihood.

Our method effectively repairs multiple consecutive miss-
ing events by considering direct dependencies and contextual
semantics. However, this paper only considers control flow
dependencies between events and ignores data flow dependen-
cies. In future work, in order to consider data flow dependen-
cies of events, some more complicated sequential patterns of
traces will be further investigated.
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