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Abstract—In the current research, two nonlinear features were 

utilized for the design of EEG-based mental workload recognition: 

one feature based on differential entropy and the other feature 

based on multifractal cumulants. Clean EEGs recorded from 36 

healthy volunteers in both resting and task states were subjected 

to feature extraction via differential entropy and multifractal 

cumulants. Then, these nonlinear features were utilized as input 

for a fuzzy KNN classifier. Experimental results showed that the 

multifractal cumulants feature vector achieved an AUC of 0.951, 

which is larger than the differential entropy feature vector (AUC 

= 0.935). However, the combination of both feature sets resulted in 

added value in identifying these two mental workloads (AUC = 

0.993). Furthermore, the multifractal cumulants feature vector 

(best classification accuracy = 94.76%) obtained better 

classification results than the differential entropy feature vector 

(best classification accuracy = 92.61%). However, the combination 

of these two feature vectors achieved the best classification results: 

accuracy of 96.52%, sensitivity of 97.68%, specificity of 95.58%, 

and F1-score of 96.61%. This shows that these two feature vectors 

are complementary in identifying different mental workloads. 
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I. INTRODUCTION 

Lately, there has been tremendous progress in the 
development and use of detection tools and artificial 
intelligence. As a result, they are now widely used to monitor 
human mental states in different areas [1]. These technologies 
are practically applied in passive brain-computer interfaces and 
human-robot interaction [2]. In this context, assessing cognitive 
workload has become highly important and has attracted a lot of 
attention. It measures the mental effort required considering the 
available cognitive resources. Monitoring and evaluating 
various factors like emotions, fatigue, and stress that affect 
cognitive workload have become crucial due to their potential 
impact on people's well-being and performance in real-world 
situations [3], [4]. Therefore, recognizing and understanding 
cognitive workload is extremely significant for improving 
human productivity, safety, and overall quality of life. 

Until now, cognitive workload measurements have been 
classified into two types: objective and subjective measures. 
Subjective measures rely on self-assessment and perceptions of 
the operators, often utilizing questionnaires like the Subjective 
Workload Assessment method to evaluate cognitive workload. 
While these approaches are easy to implement, they lack 

objectivity, real-time feedback, and precise results [5]. On the 
other hand, objective measures primarily rely on task 
performance recordings and various biological signals, which 
minimize interference with the task and address the 
aforementioned limitations [6]. Commonly used physiological 
signals include heart rate, respiration, electroencephalogram 
(EEG), eye tracking, and electromyogram [7]. Among these, 
EEG is a popular choice due to its convenience, excellent 
temporal resolution, availability, security, and affordability [8], 
[9]. Hence, this study focuses on the recognition of cognitive 
workload using EEG-based methods. 

EEG signals possess distinct characteristics, including noise, 
weakness, nonlinearity, and non-stationarity, which vary among 
individuals [10]. Consequently, it is a significant challenge to 
identify robust patterns in EEG signals specific to a particular 
state. Traditional analytical approaches rely on statistical testing 
to detect differences in features like power variations within 
standard EEG frequency bands [11]. However, these methods 
may lack adequate modeling capacity or fail to uncover causal 
relationships [12]. To overcome these challenges, numerous 
studies have proposed various machine-learning techniques 
[13]. Machine learning can effectively learn unique features that 
capture inherent patterns in the data and construct predictive 
models [14]. For instance, a proposed method integrates ECG, 
EEG, and electrooculography (EOG), demonstrating superior 
predictive capability compared to individual analyses [15]. 
Similarly, another research showcases high accuracy by 
combining ECG, EEG, and respiration rate for the classification 
of mental conditions [16]. Furthermore, combining EEG and 
ECG yields even better outcomes compared to using EEG 
signals alone [17]. However, utilizing multiple sensors and 
processing multiple physiological signals can pose 
computational and processing challenges. As a result, many 
researchers have concentrated on using EEG alone to identify 
mental workload. Several studies have utilized spectral, 
statistical, and fractal analysis along with various classifiers to 
detect different mental states from EEG signals. For instance, 
Zarjam et al. presented a mental workload recognition system 
that incorporates time, time-frequency, and nonlinear features of 
EEGs from five healthy volunteers, a statistical feature selection 
method based on t-test, and SVM classifier. They achieved an 
accuracy of 83% using the hold-out cross-validation technique 
in recognizing three different levels of cognitive workload [18]. 
Walter et al. computed the spectral features of EEGs from 21 
healthy subjects as input to an SVM classifier and reported an 
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accuracy of 82% using the 10-fold cross-validation technique in 
detecting three levels of mental workload [19]. Tremmel et al. 
also computed the spectral features of EEGs from 15 healthy 
subjects as input to a regularized LDA classifier and reported an 
accuracy of 63% using the 4-fold cross-validation technique in 
detecting three levels of mental workload [20]. Kakkos et al. 
calculated the functional connectivity of EEG signals from 33 
healthy subjects as input to an ensemble LDA classification 
model and reported an accuracy of 82% using the 10-fold cross-
validation technique in detecting three levels of mental 
workload [21]. Wang et al. calculated the time-frequency 
features of EEG signals from eight healthy subjects as input to a 
hierarchical Bayes classifier and reported an accuracy of 80% 
using the 5-fold cross-validation technique in detecting three 
different levels of cognitive workload [22]. Gevins et al. 
computed the spectral features of EEGs from eight healthy 
subjects as input to a neural network classifier and reported an 
accuracy of 80% using the hold-out cross-validation technique 
in detecting three different levels of cognitive workload [23]. 

Although the EEG signal exhibits nonlinear and chaotic 
characteristics, and nonlinear analysis techniques in signal 
processing have made significant advancements, there is a 
scarcity of studies exploring the potential of various nonlinear 
analysis methods in identifying cognitive workload. The 
existing studies that have employed nonlinear techniques have 
reported unsatisfactory outcomes. As a result, this study strives 
to enhance previous endeavors by employing two unique 
nonlinear analyses and machine learning techniques for the 
classification of resting and task-related EEG data. The two 
unique nonlinear analyses are performed according to 
differential entropy and multifractal cumulants. Therefore, the 
contribution of this study is twofold. First, multifractal 
cumulants and differential entropy are examined for the first 
time to recognize mental workload. Multifractal analysis of 
brain signals can provide insights into the complex and non-
linear dynamics of neural activity. While the direct relationship 
between multifractal cumulants of brain signals and mental 
workload is still an area of ongoing research, there are potential 
connections and implications. Multifractal analysis could 
potentially be used to distinguish between different mental 
states, such as periods of high versus low mental workload. 
Patterns in multifractal cumulants might reveal underlying 
neural dynamics linked to cognitive processing and workload 
variations. On the other hand, higher mental workload often 
requires increased cognitive processing and information 
integration. The differential entropy of brain signals could 
reflect the complexity and amount of information being 

processed by the brain during tasks associated with different 
levels of mental workload. However, none of the previous 
studies have examined these two important features for 
identifying mental workload. Second, a fuzzy classifier (fuzzy 
KNN) was applied to the extracted features. Fuzzy classification 
of brain signals can play a role in decoding the neural correlates 
of mental workload and providing valuable insights into 
cognitive states and processes. By exploiting the flexibility and 
adaptive nature of fuzzy logic, it is possible to capture the 
complexity of brain dynamics associated with different levels of 
mental workload. 

II. METHODS 

In this section, a comprehensive plan outlining the methods 
and techniques used to accomplish the research objectives is 
provided. It encompasses a thorough explanation of the 
experimental design, dataset, and analysis procedures employed 
in this study. Each step is presented in a systematic manner, with 
a focus on the crucial variables, instruments, and statistical 
methods utilized. 

A. EEG Dataset 

In this research, an openly accessible EEG database [24] was 
employed to investigate mental cognitive workload. The study 
enrolled 36 healthy volunteers (75% female) within the age 
range of 18 to 26 years. Participants met the criteria of having 
normal color vision, and visual acuity, and no history of 
cognitive or mental disorders or learning disabilities. To induce 
cognitive activity, participants were instructed to complete 
arithmetic tasks involving consecutive number subtraction while 
their EEG data was captured. The EEG signals were recorded 
using Ag/AgCl electrodes positioned on the scalp following the 
10-20 standard system. Sixteen scalp locations were selected, 
including Fp1, T5, Fp2, F8, F3, T3, F4, Fz, F7, C3, O1, C4, O2, 
Cz, T4, and T6. A reference was established by connecting the 
channels to A1 and A2, positioned on the earlobes. Electrode 
impedance was maintained below 5 kOhm, and the sampling 
rate was set at 500 Hz. To reduce noise and artifacts, a low-pass 
filter with a cutoff frequency of 45 Hz, a high-pass filter with a 
cutoff frequency of 0.5 Hz, and a notch filter with a center 
frequency of 50 Hz were used to filter the recorded EEGs. 
Before EEG recording, participants were instructed to relax 
during a resting-state period and mentally count during the 
arithmetic tasks without verbalizing. The recording process 
consisted of a three-minute adaptation phase, followed by three 
minutes of resting state with closed eyes, and concluding with 
four minutes of performing the arithmetic task. The timeline of 
the recording process is visualized in Fig. 1.
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Fig. 1. The time course of the EEG recording procedure [24].

B. Proposed Framework 

The general framework for EEG-based mental workload 
recognition is shown in Fig. 2. First, Clean EEGs were subjected 
to feature extraction via differential entropy and multifractal 
cumulants. Then, these nonlinear features were utilized as input 
for a fuzzy KNN classifier. 

 
Fig. 2. General framework for EEG-based mental workload recognition. 

C. Differential Entropy 

Differential entropy is a concept widely used in information 
theory and statistics to measure the uncertainty or randomness 
present in a continuous random variable. The underlying 
assumption is that engaging in a cognitive task has the potential 
to either heighten or diminish the predictability of the EEG 
signal. This altered predictability, when quantified by this 
feature, can be recognized via classifiers. For instance, motor 
activity produces discernible rhythmic patterns that contrast 
with the resting state of neurons. Regardless of the specific 
frequencies associated with both motor activity and the resting 
state, the presence of any type of activity will induce a variation 

in the predictability of the EEG signal. Mathematically, 
differential entropy is defined by [25]: 
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where, the signal X has a Gaussian distribution N (μ, σ2). In 
the feature extraction step, differential entropy was calculated in 
each EEG frequency band: delta (1-4 Hz), theta (4-8 Hz), alpha 
(8-12 Hz), beta (12-30 Hz), and gamma (30-40 Hz). 

D. Multifractal Cumulants 

Multifractal cumulants can be viewed as a statistical measure 
of the relationships between different frequency bands. The 
multifractal approach provides insights into how these bands are 
interconnected at any given moment. The underlying hypothesis 
suggests that specific mental activities not only affect the power 
of various EEG frequency bands but also impact the distribution 
of this power among the bands. Essentially, the multifractal 
cumulants of the signal capture a distinctive pattern of inter-
band relationships, which differs from the commonly used 
approach of analyzing power within individual frequency bands. 
Previous research has demonstrated the potential of utilizing the 
multifractal spectrum for EEG classification [26]. Our chosen 
method for extracting the multifractal spectrum involves 
performing a discrete wavelet transform on the signal and 
extracting the wavelet leader coefficients [27]. Then, following 
the methodology outlined in study [28], the cumulants of the 
leaders as classification features were employed. Let x(t) denote 
the signal under analysis. According to the perspective presented 
in [29] on multifractal analysis, the statistical properties of x(t) 
are related to those of a scaled version of the signal, x(at). This 
scaling in time corresponds to a frequency shift in the context of 
frequency analysis. Therefore, an alternative interpretation of 
the multifractal cumulants feature is that it characterizes some 
form of inter-frequency information, as explained in the 
introduction of this section. 
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 The process of implementing the multifractal cumulants 
extraction algorithm is as follows: 

 The discrete wavelet transform is utilized to decompose 
the time series x(t) and obtain the wavelet coefficients 
w(s,ts) at every time interval ts and dyadic scale s. 

 The wavelet leaders are calculated at every scale s by 
extracting the maximum coefficients among all samples 
obtained by calculating w(s,ts), w(s,ts-1), and w(s,ts+1).  

 The partition functions are calculated for a sufficient 
range of exponents q as follows: 

𝐹(𝑠, 𝑞) =
1

𝑁𝑠
∑ |𝑤(𝑠, 𝑡𝑠|

𝑞𝑁𝑠
𝑡𝑠=1

                      (2) 

 To obtain the multifractal spectrum, either a Legendre 
transform or a direct estimation of the Holder exponent 
density was employed, as described in[30]. However, in 
the current approach, a more recent technique introduced 
by study [28] was adopted. This technique involves 
computing the wavelet leader cumulants of orders 1-5, 
which are further detailed in the referenced paper. 
According to study [28], the initial cumulants already 
encompass a significant amount of practical information 
for characterizing the distribution of Holder exponents. 
In the context of a classification task, this condensed 
form of information can be effectively utilized. 

 The first five cumulants were calculated for the leaders 
at every scale, denoted by s. In a signal with a size 
between 2L and 2L+1, where L represents the maximum 
levels of the wavelet transform, a cumulative count of 5 
multiplied by L cumulants was obtained for the signal. 
These cumulants gradually encompass an increasing 
number of frequency bands as the scale rises. Ultimately, 
the feature vector consists of these 5 multiplied by L 
cumulants per channel. 

E. Fuzzy K-nearest neighbor (FKNN) 

The fuzzy k-nearest neighbor (FKNN) classifier emerged as 
one of the leading advancements in the field of KNN algorithms. 
It operates by incorporating membership degrees for classifying 
data that contains uncertainties. In FKNN, each new query 
sample is assigned membership degrees to different classes, with 
the highest degree playing a decisive role in classification [31]. 
The assigned membership degree reflects the proportion to 
which the query sample belongs to each available class. These 
degrees are then weighted based on the inverse distance between 
the query sample and its k nearest neighbors within the 
membership function. Additionally, a fuzzy strength parameter 
known as 'm' is introduced to determine the relative importance 
of distance when evaluating the contribution of neighbors to the 
membership degree. The membership degree for the query 
sample y in each class i, as determined by the k nearest 
neighbors, is measured according to the following approach: 
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where, uij denotes the membership of the sample jth in the 
class ith of the training subset and m = 2. 

III. RESULTS 

After the preprocessing of EEG data, various features were 
computed from all channels. The comparison of raw EEG 
signals between the rest and task conditions is presented in Fig. 
3. It can be observed that there were no noticeable distinctions 
between the two cognitive workload states. Moreover, Fig. 4 
shows the differential entropy values for each EEG frequency 
band at rest and task states in the F3 channel. As can be seen, the 
entropy values in all frequency bands are higher in the task state 
than in the rest state. In other words, the complexity of the EEG 
signal in different frequency bands is higher in the task state than 
in the rest state.

 
Fig. 3. A sample of EEGs for rest (left) and task (right) conditions.
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Fig. 4. Differential entropy for each EEG frequency band at rest and task states in the F3 channel.

To determine the recognition value of each of the feature 
vectors (i.e., differential entropy feature vector, multifractal 
cumulants feature vector, and combined feature vector), ROC 
curves corresponding to each feature category were obtained. 
Fig. 5 shows the ROC curves obtained for each feature category. 
As shown, the multifractal cumulants feature vector achieved an 
AUC of 0.951, which is larger than the differential entropy 
feature vector (AUC = 0.935). However, the combination of 
both feature sets resulted in added value in identifying these two 
mental workloads (AUC = 0.993). 

 
Fig. 5. ROC curves were obtained for each feature category. 

In the next step, each feature vector was used as input for the 
classifier. In addition, to more accurately evaluate the 

performance of the proposed classifier (FKNN), several 
classical classifiers were used for comparison: KNN, linear 
SVM, LDA, Naïve Bayes, decision tree, and random forest. In 
this binary classification problem, there are two distinct classes: 
task or positive (P) and rest or negative (N). The classification 
models yield four potential outcomes: true positive (TP), true 
negative (TN), false positive (FP), and false negative (FN). The 
predicted class determines T and F, while the actual class 
determines P and N. Accuracy, sensitivity, specificity, and F1-
score were the performance measures used to evaluate the 
classification. In every chosen feature vector, the data was 
divided into three parts: a training set of 60%, a validation set of 
20%, and a testing set of 20%. To maintain the same class 
proportions throughout the divided sets, a stratified random 
sampling technique was employed during the sampling process. 
For cross-validation, the holdout method was utilized, 
generating six random splits of the training and validation sets. 
Tables I to III show the classification results of rest and task 
EEGs by differential entropy, multifractal cumulants, and 
combined feature vectors using different classifiers, 
respectively. As shown in Table I, the FKNN classifier using the 
differential entropy feature yielded an accuracy of 92.61%, 
sensitivity of 90.42%, and specificity of 94.55% and F1-score of 
92.43% for mental workload recognition. After FKNN, SVM 
and LDA performed best among other classifiers with 91.16% 
and 90.89% accuracy, respectively. Multifractal cumulants 
achieved better results than differential entropy, as shown in 
Table II. Again, the FKNN classifier outperformed the other 
classification models with an accuracy of 94.76%, a sensitivity 
of 95.41%, a specificity of 94.15%, and an F1 score of 94.77%. 
According to the ROC curve analysis results, as expected, the 
multifractal cumulants feature vector (best classification 
accuracy = 94.76%) obtained better classification results than 
the differential entropy feature vector (best classification 
accuracy = 92.61%). However, the combination of these two 
feature vectors achieved the best classification results: accuracy 
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of 96.52%, sensitivity of 97.68%, specificity of 95.58%, and F1-
score of 96.61%. As shown, in Table III, this excellent result was 
achieved by the FKNN classifier. This shows that these two 
feature vectors are complementary in identifying different 
mental workloads. In addition, FKNN, SVM and LDA 
classifiers produced overall better results than other classifiers. 

TABLE I. CLASSIFICATION RESULTS OF RESTING AND TASK EEGS 

THROUGH DIFFERENTIAL ENTROPY FEATURE VECTOR AND FKNN 

COMPARED TO OTHER CLASSIFIERS 

Classifier 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

(%) 

FKNN 92.61 90.42 94.55 92.43 

KNN 88.47 87.29 89.73 88.49 

SVM 91.16 90.25 92.01 91.12 

LDA 90.89 89.66 92.05 90.83 

Naïve 

Bayes 
83.49 82.12 84.81 83.44 

Decision 

Tree 
84.92 84.16 85.69 84.91 

Random 

Forest 
84.50 83.10 85.97 84.51 

TABLE II. CLASSIFICATION RESULTS OF RESTING AND TASK EEGS 

THROUGH MULTIFRACTAL CUMULANTS FEATURE VECTOR AND FKNN 

COMPARED TO OTHER CLASSIFIERS 

Classifier 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

(%) 

FKNN 94.76 95.41 94.15 94.77 

KNN 89.11 88.36 90.00 89.17 

SVM 92.39 92.98 91.74 92.35 

LDA 93.21 94.36 92.10 93.21 

Naïve 

Bayes 
84.91 84.14 85.72 84.92 

Decision 
Tree 

86.32 86.93 85.65 86.28 

Random 

Forest 
85.97 85.09 86.90 85.98 

TABLE III. CLASSIFICATION RESULTS OF RESTING AND TASK EEGS 

THROUGH COMBINED FEATURE VECTORS AND FKNN COMPARED TO OTHER 

CLASSIFIERS 

Classifier 
Accuracy 

(%) 

Sensitivity 

(%) 

Specificity 

(%) 

F1-score 

(%) 

FKNN 96.52 97.68 95.58 96.61 

KNN 91.79 92.35 91.22 91.78 

SVM 93.62 94.47 93.07 93.76 

LDA 94.05 95.51 92.87 94.17 

Naïve 

Bayes 
86.13 86.90 85.35 86.11 

Decision 

Tree 
88.82 87.69 90.03 88.84 

Random 
Forest 

89.40 90.24 88.62 89.42 

IV. DISCUSSION 

An automated EEG-based system based on two new 
nonlinear features and a fuzzy classifier (FKNN) was suggested 
in this research for mental workload recognition. A good 
accuracy of 96.52% was obtained through the combination of 

the feature vectors extracted by two nonlinear analyses and the 
FKNN classifier. Mental workload serves as an important 
measure for assessing the cognitive demands placed on 
individuals during specific tasks. Its significance extends to 
various fields such as healthcare and education. It has been 
observed that nonlinear features extracted from EEG signals 
offer promising potential for detecting mental workload. EEG, a 
technique that records brain activity, captures the brain's 
electrical signals, which are intricate and nonlinear in nature 
[32]. Analyzing these signals using conventional linear methods 
proves challenging [33]. Nonlinear analysis of EEG signals, 
accomplished through mathematical techniques, enables the 
capture of the brain's dynamic and complex activities [34], [35], 
[36]. By extracting nonlinear features from EEG signals, 
valuable insights can be gained into the brain's functional 
connectivity, complexity, and synchronization, which are not 
easily identifiable using linear techniques [37]. The benefits of 
nonlinear analysis of EEG signals are numerous, including the 
ability to detect subtle changes in brain activity [38], identify 
abnormal brain activity associated with neurological disorders 
[39], [40], [41], [42] and develop more accurate diagnostic tools 
for brain disorders [33]. In essence, the nonlinear nature of EEG 
signals presents researchers and clinicians with a unique 
opportunity to delve into the intricate dynamics of the brain and 
devise more effective strategies for identifying mental 
workload. 

In contrast, the outcomes achieved through the proposed 
method in this research exhibit great promise when compared to 
previous investigations. Table IV displays a comparative 
analysis of the proposed approach and other machine learning-
based methods applied to EEG analysis for mental workload 
recognition. When considering the same unipolar EEG signals, 
the method presented in this study demonstrates satisfactory 
results compared to previous approaches. This study introduces 
a novel machine learning model that employs EEG nonlinear 
features to detect mental workload. Notably, unlike many prior 
studies that relied on small EEG datasets for evaluation, the 
current method was examined using a relatively larger dataset, 
yielding acceptable outcomes. The findings of this research hold 
potential implications for understanding the neural mechanisms 
underlying different levels of mental workload, particularly in 
clinical fields such as psychology and psychiatry. Nevertheless, 
it is essential to recognize the limitations of this study, as well 
as similar studies. One notable drawback is the limited clinical 
implications and generalizability of the findings. Further 
evidence is required to establish the effectiveness of employing 
EEG-based machine learning techniques in mental workload 
detection, including their performance in individuals with 
diverse physical or mental conditions. Moreover, a broader 
range of EEG datasets specific to various levels of cognitive 
workload is crucial to effectively utilize these approaches, given 
the intensive data requirements of machine learning techniques 
for optimal results. Nonetheless, the proposed method can 
potentially serve as a computer-aided detection (CAD) tool for 
clinical applications. Additionally, the presented framework 
offers advantages such as reduced labor, time efficiency, and 
decreased susceptibility to human errors compared to traditional 
methods of cognitive workload recognition. Consequently, it 
enables swift and accurate cognitive workload detection without 
direct human involvement.
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TABLE IV. COMPARING THE PERFORMANCE OF OUR PROPOSED APPROACH WITH SOME STATE-OF-THE-ART STUDIES USING MACHINE LEARNING METHODS FOR 

MENTAL WORKLOAD IDENTIFICATION THROUGH EEG ANALYSIS 

Reference Dataset Approach 
Cross-

validation 
Accuracy (%) 

[43] 28 EEGs from healthy adults during rest and task Functional connectivity and SVM LOSOCV 87.00 

[22] 9 EEGs from healthy adults during rest and task 
Time, frequency, and time-frequency features 

along with SVM 
10-fold CV 84.00 

[44] 8 EEGs from healthy adults during rest and task 
Spectral features and stacked denoising 

autoencoder 
Hold-out 74.00 

[45] 7 EEGs from healthy adults during rest and task 
Spectral features and adaptive stacked 

denoising autoencoder 
Hold-out 85.79 

[46] 15 EEGs from healthy adults during rest and task Spectral features and MLP neural network Hold-out 85.00 

[47] 8 EEGs from healthy adults during rest and task 
Time and frequency features, denoising 

autoencoder 
Hold-out 86.00 

[48] 12 EEGs from healthy adults during rest and task Spectral features and neural network Hold-out 75.00 

[49] 20 EEGs from healthy adults during rest and task Spectral and time features along with LDA 10-fold CV 90.00 

[50] 22 EEGs from healthy adults during rest and task 
Time and time-frequency features along with 

LDA 
5-fold CV 70.00 

Our proposed 

approach 
36 EEGs from healthy adults during rest and task 

Multifractal cumulants, differential entropy 

and various machine learning techniques 
Hold-out 96.52 

 

V. CONCLUSION 

This research suggested two nonlinear features for mental 
workload recognition: multifractal cumulants and differential 
entropy. The multifractal cumulants feature captures the 
relationship between frequency bands, rather than quantifying 
the power within each specific band. This feature provides 
valuable information about the interplay between different 
frequency ranges. On the other hand, the differential entropy 
feature assesses the level of difficulty in predicting future EEG 
signal patterns based on their past behavior. This measure 
reflects the intricate dynamics present within the EEG signals. 
Surprisingly, our findings revealed that the multifractal 
cumulants and differential entropy can independently 
distinguish between different mental states as measured by EEG. 
Additionally, the obtained results demonstrated that combining 
these two features resulted in a higher accuracy of classification 
compared to solely utilizing each feature. Consequently, these 
new features are deemed valuable supplements to the existing 
features utilized in mental workload recognition, offering 
potential for enhanced this field. Future research may focus on 
exploring innovative methods for feature combination and 
selection, as well as extending the application of these features 
to multi-class problems beyond resting and task states. 
Moreover, it is essential to address the creation of new 
algorithms incorporating physiologically relevant error 
functions specifically tailored for EEG signal predictions 
involving the complexity feature. In addition, it is recommended 
that future studies use optimization algorithms such as genetic 
algorithm to adjust the parameters of nonlinear analyzes and 
FKNN classifier to improve the results and speed up the 
parameter adjustment process. 
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