
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

197 | P a g e

www.ijacsa.thesai.org

Comparative Study: Mouth Brooding Fish (MBF) as a

Novel Approach for Android Malware Detection

Kangle Zhou1*, Panpan Wang2, Baiqing He3

Nanchang Institute of Technology School of Computer Information Engineering, Nanchang 330044, China1, 2

University of Campania Luigi Vanvitelli, Italy, Naples3

Abstract—Android Malware Detection has become

increasingly prevalent, with the highest market share among all

other mobile operating systems due to its open-source nature and

user-friendliness. This has resulted in an uncontrolled

proliferation of malicious applications targeting the Android

platform. Emerging trends of Android malware are employing

highly sophisticated detection and analysis evasion techniques,

rendering traditional signature-based detection methods less

effective in identifying modern and unknown malware.

Alternative approaches, such as Machine Learning methods, have

emerged as leading solutions for timely zero-day anomaly

detection. Ensemble learning, a common meta-approach in

machine learning, seeks to improve predictive performance by

amalgamating predictions from multiple models. This paper

introduces an enhanced strategy, Mouth Brooding Fish (MBF),

based on ensemble learning for Android Malware Detection

(AMD). The findings are further compared with the outputs of

various algorithms including Support Vector Machine (SVM),

AdaBoost, Multilayer Perceptron (MLP), Gaussian Kernel (GK),

and Random Forest (RF). Compared to the other selected models,

MBF exhibits remarkable performance with an F-score of

98.57%, precision of 99.65%, sensitivity of 97.51%, and specificity

of 97.51%. Thus, the significant novelty of this work lies in the

accuracy and authenticity of the selected algorithms,

demonstrating their superior performance overall.

Keywords—Android malware detection; ensemble learning;

SVM; MLP; RF

I. INTRODUCTION

Due to the nearness of innovation in all areas of our everyday
lives, cyber security has become one of the biggest concerns to
be attended to by society. In a long time, there has been a
considerable number of assaults and, what is indeed more
exceptional, to a wide assortment of destinations. A few later
well-known cases incorporate refusal of benefit assaults such as
that performed by the Mirai botnet [1] and an enormous
information seizure driven by the ransomware Wannacry [2].
However, the widespread use of mobile phones has turned out
to be a significant contributing factor to a sharp increase in
malware attacks. Because these malicious programs are hidden
within legitimate programs, it is difficult to identify and
categorize them. Because they use a signature-based
methodology, the current processes are unable to differentiate
between hidden malware [3].

The most widely used operating system (OS) is Android,
which is also continuing to increase its market share. Android is
an open-source platform that allows users to download apps
from the Google Play Store and third-party developers. Because

of its popularity and openness, Android has drawn the attackers'
attention. According to McAfee's security reports, 49 million
new malware and 121 million existing malwares were
discovered in 2020 [4]. Any malicious code that compromises a
user's privacy, accessibility, or keenness is referred to as
malware. The malicious programs seem to be real, but they carry
out harmful operations behind the scenes. Malware uses a
variety of techniques, such as tracking the client's region and
jumbling individual data. Malicious programs (apps) try to
infiltrate Android devices in order to steal personal data, place
phone calls, send SMS, and do other activities. According to
MacAfee's estimate, there will be 49 million and 121 million
new instances of contemporary malware and cumulative
malware by 2020, respectively [5]. The escalating pace of
Android malware's advancement poses a significant threat to
users of the Android operating system. Clients are required to
determine the malicious nature of an application due to the need
for data acquisition and comprehension. When acquiring an
application from the Android application store, a significant
number of Android users tend to overlook or neglect the
examination of the terms and conditions. Regrettably,
perpetrators exploit this reality and specifically target portable
electronic devices [6].

Due to the increment in Android malware, physically
handling malevolent tests has become troublesome. To
overcome this restriction, it is vital to construct a proficient
strategy for better distinguishing hazards of applications. A prior
signature-based approach was utilized to distinguish proof of
malware. This approach is based on coordinating the app's
signature within the database. This strategy's confinement is that
it cannot identify obscure malware [7]. On a customary premise,
malware designers make modern malware to undermine the
framework's security and its clients' protection. The chance
posed by malware requires the improvement of successful
strategies. This assessment helps with the arrangement of early
notices concerning a particular Android app, permitting quick
consideration to be paid to it in terms of apportioning assets [8].

The Android operating system has the dominant position in
market share primarily as a result of its seamless functionality
and an extensive array of features, which serve to captivate and
entice cyber criminals [9]. Traditional Android malware
detection methods, such as signature-based or battery
consumption monitoring, may fail to detect recent malware.
Therefore, we present a novel method for detecting malware in
Android applications using MBF. The outcomes of the proposed
method are compared with several algorithms, including SVM,
Adaboost, MLP, GK, and RF. The following outlines the main

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

198 | P a g e

www.ijacsa.thesai.org

gaps and shortcomings of the related works in the second
section. The third section illustrates the selected algorithms for
the considered problem and specifies the evaluation criteria
calculated for comparison. The used dataset is also explained in
the fourth section. The results are discussed in the fifth section
to specify the superiority of MBF over the other algorithms. The
findings and suggestions for future work are presented in the
sixth section.

II. LITERATURE REVIEW

As seen from the literature, many advances have been made
regarding AMD. Grace et al. [10]proposed RiskRanker, which
is an automated method designed to assess the level of risk
associated with a given application. The experiments were
conducted by aggregating a total of 118,318 applications
sourced from various Android stores. The findings indicate that
RiskRanker showed effectiveness and flexibility in regulating
Android marketplaces. Idress et al. [11] introduced PIndroid, a
system designed to locate and analyze malware. This system
focuses on gathering learning tactics to enhance its
effectiveness. This study focuses on a methodology for detecting
malware that integrates the intersection and union set operations
with data aggregation techniques. The aforementioned
methodology was implemented on a sample size of 445
untainted and 1300 contaminated Android applications that
were obtained from both third-party and official channels. The
researchers reached the conclusion that the suggested approach
has the potential to be used for the categorization of Android
applications. In Sharma et al.'s [11] study, the malicious
capabilities were categorized by analyzing notable features
identified during both passive and active malware assessments,
as well as the malware nomenclature used by antivirus vendors.
The authors presented a methodology for addressing
discrepancies in malware analysis by using fuzzy logic to
evaluate the many functionalities of malicious software. In
agreement with the planned FIS, it was determined that 83% of
malware testing was discovered to belong to the same cluster for
malware-recognizable proof. Mariconti et al. [12] presented the
MAMADROID framework, which depends on static malware
analysis and was successfully deployed. Malware detection
employs static characteristics, like API calls and call graphs. The
study included the evaluation of a dataset consisting of 3.5
million harmful applications and 8.5 million benign
applications. The strategy that was suggested resulted in an F-
measure of 0.99. Jang et al. [6] demonstrated Andro-Autospy,
an antimalware mechanism that protects mobile devices. The
findings suggested that the proposed system can detect and
classify malware. In the work of Sharma et al.[13], the
RNPDroid approach was offered as a means of doing risk
assessments by leveraging permissions. The suggested
methodology is assessed using the M0Droid dataset, including
400 Android samples with 165 characteristics. The T-test and
ANOVA were employed for statistical analysis. The findings
indicate that, with a significance level of 5%, the computed F
value of 517.3 exceeds the critical F value of 2.61. Gandotra et
al. [14]presented a novel approach using fuzzy logic to automate
the calculation of the damage potential of malware programs.
This technique relies on extracting characteristics via automated
analysis.

Moreover, Zhu et al. [15] used SVM as the fusion classifier
to learn the implicit supplementary information from the output
of the ensemble members and yield the final prediction result.
The creators appeared that exploratory comes about on two
partitioned datasets collected by inactive investigation to
demonstrate the viability of the SEDMDroid. The primary ones
extricate consent, touchy API, checking framework occasion,
and so on that are broadly utilized in Android malware as
highlights. Sedmdroid accomplishes 89.07% precision in terms
of these multi-level inactive highlights. The moment one, an
open enormous dataset, extricates the touchy information stream
data as the highlights, and the normal exactness was 94.92%.
The promising try reveals that the proposed strategy was a
successful way to recognize Android malware. Bhat et al. [16]
proposed a precise dynamic analysis approach to identify
several malicious attacks. The proposed strategy centered on
behavioral examination of malware that requires remaking the
behavior of Android malware. The energetic behavior highlights
incorporate framework calls, covers, and complex Android
objects (composite behavior). The strategy was utilized to
evacuate unessential highlights for effective malware location
and classification. For classification, the homogeneous and
heterogeneous outfit machine learning calculations were
utilized.

The stacking approach had the most excellent classification,
with a precision rate of 98.08%. The thorough test of the
viability and predominance of the show. In another paper [17],
a total of seven feature selection methods were used in order to
choose permissions, API calls, and opcodes. Subsequently, the
outcomes of each feature selection process were combined to
provide a novel feature set. Following this, the authors used this
technique to educate the foundational learner. The researchers
used logistic regression as a meta-classifier in order to extract
implicit information from the output of the base learners and
generate the final classification outcomes. Following the
examination, the F1-score of MFDroid achieved a value of
96.0%. Ultimately, an examination was conducted on each sort
of feature in order to ascertain the distinctions between
dangerous and benign applications. Atacak [18] proposed the
use of a fuzzy logic-based dynamic ensemble (FL-BDE) model
for the purpose of detecting malware that is targeted towards the
Android operating system. The findings indicated that the FL-
BDE model had outstanding results compared to the ML-based
models. It achieved an accuracy of 0.9933, a recall of 1.00, a
specificity of 0.9867, a precision of 0.9868, and an F-measure
of 0.9934.

Due to the outcomes of the previous works, it is interesting
to compare Android malware detection techniques with MBF.
Even though malware detection algorithms and MBF function
in entirely separate fields, comparing the two might be a
thought-provoking exercise. To demonstrate the possible
benefits of MBF over conventional algorithms in the context of
Android malware detection, the following comparison study is
provided in the current work:

Adaptability and Learning: Fish that raise their young in
their jaws demonstrate adaptable parental care. Likewise, MBF
may represent a method that, instead of algorithms, learns from
and adjusts to novel dangers more naturally. By monitoring and
responding to abnormalities similar to a live creature, they could

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

199 | P a g e

www.ijacsa.thesai.org

"protect" the system and continuously adjust to new dangers
without explicit programming.

Resilience to Unknown Threats: Fish that rear their young
by mouth can keep their young safe from predators. Similarly,
utilizing innate reflexes or pattern recognition unconstrained by
preset rules or signatures, MBF may represent a theoretical
system naturally resistant to dangers posed by zero-day or
previously undisclosed malware.

Complexity and Interpretation: Providing MBFs with care
necessitates a sophisticated comprehension of the dangers
surrounding them. On the other hand, predetermined signatures
or behavior patterns are frequently the basis of Android malware
detection algorithms, which may miss more nuanced or
sophisticated threats. A method that transcends algorithms'
interpretive capabilities might be represented by MBF, which is
capable of interpreting contextual signals and subtleties.

Resource Efficiency: Fish raising their young by
mouthbrooding expend significant energy and resources.
Comparatively speaking, MBF may represent a method that
maximizes the use of computing resources for malware
detection, or it may draw attention to high-risk regions of an
Android system.

The adaptation and evolutionary advantage of mouth-
brooding fish have developed throughout time to improve their
chances of surviving and procreating. By comparison, MBF may
stand for continuous evolution in malware detection, in which
the system improves with time through experience-based
learning and grows increasingly capable of fending off new
threats. Even though this analogy is purely theoretical and
symbolic, it's crucial to remember that a realistic, ethical, and
computationally constrained implementation of MBF in
Android malware detection would need thorough investigation
and technological viability. However, taking cues from the
workings of nature might occasionally result in novel concepts
in cybersecurity and technology.

III. METHODOLOGY

The detection of Android malware has significant
importance due to many factors. The safeguarding of personal
data is a critical concern since malware often targets the theft of
sensitive information, including personal particulars, financial
records, and login passwords. The detection and prevention of
malware on Android devices are crucial in order to protect
sensitive information from potential intrusion.

The prevention of financial loss is a critical concern in the
realm of cybersecurity. Certain types of malicious software,
such as ransomware or banking trojans, possess the capability to
target individuals' financial accounts specifically. This targeted
approach may result in unlawful transactions or the coercion of
monetary funds from unsuspecting users. Detection plays a
crucial role in mitigating financial losses resulting from these
illicit acts. The preservation of device performance is a crucial
concern since malware has the potential to substantially
diminish it via resource consumption, resulting in delays and the
presentation of invasive advertisements. The identification and
eradication of malicious software contribute to the preservation
of the device's optimum functionality. Malicious software often
capitalizes on weaknesses within the Android operating system

or its apps in order to get illegal entry. The process of detection
plays a crucial role in identifying and addressing these
vulnerabilities, hence reducing the risk of possible exploitation.
Besides, the preservation of user privacy is a critical concern in
the realm of cybersecurity. It has been observed that some types
of malicious software have the capability to seize control of
cameras and microphones, as well as monitor user actions
without obtaining proper approval. This unauthorized intrusion
into personal devices and activities poses a significant threat to
the privacy of users. The act of detection plays a pivotal role in
preventing and obstructing instances of privacy infringements.
Given the vast number of accessible applications, it is possible
that some apps may include harmful code or exhibit undesirable
behavior. The detection of malware plays a crucial role in
enabling users to download and use apps securely, hence
mitigating the risk of compromising their devices or data. The
presence of malware may serve as a potential entry point for
malicious actors seeking unauthorized access to computer
networks. The identification and eradication of malware on
Android devices contribute to the preservation of network
security, particularly in scenarios where compromised devices
serve as gateways for more extensive cyber assaults. Efficient
and reliable techniques for detecting malware, such as antivirus
software and security upgrades, play a crucial role in mitigating
these threats and ensuring a safer and more secure Android
environment for consumers. In this section, SVM, Adaboost,
MLP, GK, RF, and MBF are illustrated for Android malware
detection.

A. Selected Algorithms

1) Support vector machine (SVM): Support Vector

Machines (SVM) is a powerful supervised learning algorithm

that exhibits optimal performance when applied to datasets of

smaller sizes. However, its effectiveness diminishes when

confronted with complicated datasets. The Support Vector

Machine (SVM), sometimes referred to as SVM, is a versatile

algorithm that may be used for both regression and

classification tasks. However, it is generally more effective in

addressing classification problems. Support Vector Machines

(SVM) is a supervised machine learning algorithm often used

for both classification and regression tasks. Although the term

"relapse issues" is often used, it is most appropriate for the

purpose of categorization. The primary goal of the Support

Vector Machine (SVM) technique is to identify the optimal

hyperplane in an N-dimensional space that can effectively

separate the data points into distinct classes within the given

space. The hyperplane postulates that the boundary separating

the nearest centroids of different classes should be maximized.

The determination of the hyperplane's measurement is

dependent upon the quantity of highlights. When the number of

input features is two, the hyperplane may be described as a

straight line that fairly separates the data points. When the

number of input highlights reaches three, the hyperplane

transforms into a two-dimensional plane. It gets difficult to

make assumptions when the number of highlights exceeds

three. There exists a multitude of potential hyperplanes that

may be selected to separate the two groups of data points

effectively. Our objective is to identify a plane that exhibits

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

200 | P a g e

www.ijacsa.thesai.org

optimal discrimination, namely, the greatest separation

between data points belonging to different classes. The act of

maximizing the elimination of edges provides a modest level of

support, hence enhancing the accuracy of classifying future

information.

2) Adaboost: There are numerous machine learning

calculations to select from for your issue explanations. One of

these calculations for prescient modeling is called AdaBoost.

The AdaBoost calculation, brief for Versatile Boosting, may be

a Boosting strategy utilized as a Gathering Strategy in Machine

Learning. It is called Versatile Boosting, as the weights are re-

assigned to each occasion, with higher weights allowed to

classify occurrences inaccurately. What this calculation does is

that it builds a show and gives rise to weights to all the

information focuses. At that point, it allocates higher weights to

wrongly classified focuses. All the higher-weight focuses are

given more significance within the other demonstration. It'll

keep training models until and unless a lower mistake is made.

The foremost suited and thus most common calculation utilized

with AdaBoost is choice trees with one level. Because these

trees are so brief and, as it were, contain one decision for

classification, they are often called choice stumps. An

AdaBoost classifier may be a meta-estimator that starts by

fitting a classifier on the initial dataset and, after that, fits extra

duplicates of the classifier on the same dataset but where the

weights of erroneously classified occasions are balanced such

that consequent classifiers center more on troublesome cases.

AdaBoost limits misfortune work related to any classification

mistake and is best utilized with powerless learners. The

strategy was primarily planned for twofold classification issues

and can be used to boost the execution of choice trees. Slope

Boosting is utilized to unravel the differentiable misfortune

work issue.

3) Multilayer perceptron (MLP): The multilayer

perceptron (MLP) has the potential to enhance and strengthen

the forward neural architecture. The system is composed of

three distinct levels, namely the input layer, yield layer, and

covered-up layer, as seen in Fig. 1. The input layer is

responsible for receiving the input flag that needs to be

processed. The yield layer is responsible for executing the

designated task, such as prediction and categorization. The

presence of several hidden layers in a multilayer perceptron

(MLP) serves as a crucial computational mechanism, allowing

for the transformation of input data into output predictions.

Similar to a feedforward architecture in a multilayer perceptron

(MLP), the flow of information in the forward direction occurs

from the input layer to the output layer. The neurons of the

Multilayer Perceptron (MLP) are trained using the

backpropagation learning algorithm. Multilayer perceptrons

(MLPs) are designed to handle continuous tasks effectively and

have the ability to address problems that are not easily

separable. The primary applications of multilayer Perceptron

(MLP) are design categorization, pattern recognition,

prediction, and estimate.

Fig. 1. System modeling utilizing an MLP neural network

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

201 | P a g e

www.ijacsa.thesai.org

4) Gaussian kernel (GK): The GK is defined as follows in

one-dimensional, two-dimensional, and neuronal dimensions:

𝐺1 𝐷(𝑥; 𝜎) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2 , 𝐺2 𝐷(𝑥, 𝑦′, 𝜎) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2 ,

𝐺𝑁𝐷(𝑥⃑; 𝜎) =
1

(√2𝜋𝜎)
𝑁 𝑒

−
|𝑥̃|2

2𝜎2 (1)

The σ value determines the width of the Gaussian kernel. In
statistics, the Gaussian probability density function is the
standard deviation, while its square, 𝜎2 is the variance. When
we discuss the Gaussian as an aperture function in observations,
we will use "s" to refer to the inner scale or simply the scale.
This paper's scale is limited to positive values, where σ > 0.
During the observation process, s can never be reduced to zero.
This implies observing through a tiny aperture, which is
practically impossible. The inclusion of the factor of 2 in the
exponent is merely a matter of convention. It allows us to have
a more simplified formula for the diffusion equation, which we
will discuss in more detail later. The convention is to include a
semicolon between the spatial and scale parameters to
distinguish between them clearly.

5) Random forest (RF): As shown in Fig. 2, the Random

Forest (RF) classifier is a technique that involves the

simultaneous training of many decision trees using

bootstrapping, followed by the aggregation of their outputs by

a process referred to as bagging. The process of bootstrapping

entails the simultaneous training of several decision trees on

different subsets of the training dataset, employing varying

subsets of the available characteristics. By ensuring the

uniqueness of each decision tree inside the random forest, the

total variance of the RF classifier is reduced. The Random

Forest classifier combines the judgments made by individual

trees in order to get a final conclusion, allowing it to

demonstrate strong generalization capabilities. In comparison

to other classification approaches, the Random Forest (RF)

classifier often achieves superior accuracy while avoiding the

problem of overfitting [19].

Similar to the Decision Tree (DT) classifier, the Random
Forest (RF) classifier does not need feature scaling.
Nevertheless, the Random Forest (RF) classifier has superior
robustness in the selection of training samples and handling
noise within the training dataset compared to the Decision Tree
(DT) classifier. Although the RF classifier is more difficult to
read, it has the advantage of simplified hyperparameter
adjustment in comparison to the DT classifier.

6) Mouth brooding fish (MBF): According to Fig. 3,

Paternal mouthbrooders, often known as mouth-brooding fish,

are a group of animals in which the male fish assumes the

responsibility of incubating the fertilized eggs inside his oral

cavity until they reach the hatching stage. The manifestation of

this distinctive kind of parental care is mostly seen in certain

species of cichlids, which constitute a diversified assemblage

of freshwater fish distributed throughout numerous regions

globally [21]. In the phenomenon of mouth brooding, after the

deposition of eggs by the female, the male proceeds to fertilize

them and then collects them into his oral cavity by the use of

his lips. The male exhibits parental care by safeguarding the

eggs inside his oral cavity, so shielding them from any threats

posed by predators. Additionally, he ensures enough oxygen

supply to the eggs by a recurrent process of expelling and re-

ingesting them, facilitating their oxygenation [22]. During the

incubation stage, which exhibits variability in length contingent

upon the species under consideration, the male abstains from

consuming sustenance and dedicates his efforts exclusively

towards the protection and preservation of the eggs. After the

eggs have hatched, it is common for the fry, which refers to the

juvenile fish, to be temporarily sheltered inside the oral cavity

of the male fish until they have acquired the strength to explore

their surroundings independently. The observed behavior

exemplifies noteworthy parental investment, which serves to

enhance the likelihood of offspring survival via the provision

of protection throughout the crucial first phases of

development. There are variances seen across different species

in terms of their mouth-brooding behaviors, including factors

such as the period of incubation and the extent of parental care

shown after the discharge of the fry.

In nature, marriage is a crucial mechanism that aids colonies
or populations in achieving optimal outcomes by promoting
convergence. However, it only sometimes yields favorable
outcomes when it occurs. Mouth-brooding fish allow their best
cichlids to mate. Thus, the MBF algorithm selects one pair of
parents from each cichlid using a probability distribution or
Roulette Wheel selection (where higher point values have a
higher likelihood). Cichlids that hatch in a new position replace
their parents in the population without moving [24]. Before
assessing the fitness of the newly hatched fish using a fitness
function, we need to ensure that the new positions for the
offspring are within the boundaries of the search space.

B. Evaluation Criteria

The primary factors for comparing the results are F-score,
accuracy, specificity, sensitivity, and precision [25]. Precision
refers to a slight variation between two or more measurements,
whereas accuracy represents the disparity between a result and
its actual value. The end outcomes should align well, as
indicated by precision. The F1 score is the weighted average of
precision and recall, including false positives and negatives.
Specificity is the test's ability to identify unstick people
correctly. Mathematically, a test with high specificity that
produces a positive result can confirm a disease because it rarely
produces positive results in healthy people. A test's sensitivity
determines whether it detects a disease. High-sensitivity tests
have few false negatives, reducing disease cases missed. The
specificity of a test refers to its capability to correctly identify
someone who does not have a disease as being negative. To put
it differently, specificity refers to the percentage of individuals
who do not have Disease X and receive a damaging result on
their blood test. A particular test ensures that all healthy
individuals are accurately recognized as healthy, meaning no
incorrect positive results exist.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

202 | P a g e

www.ijacsa.thesai.org

.

Fig. 2. A dataset with two classes (Y = 1) and four features (X1, X2, X3, and X4) is employed to build a Random Forest (RF) classifier. The RF classifier is an

ensemble method that uses bootstrapping and aggregation to train multiple decision trees. Each tree is trained on unique subsets of training samples and features

[20]

Fig. 3. Mouth Brooding Fish Algorithm [23]

The term "True Negative," sometimes abbreviated as "TN,"
refers to the outcome that accurately identifies the number of
negative instances that have been properly classified. Likewise,
the acronym "TP" denotes True Positive, indicating the ratio of
accurately recognized positive instances. The term "FP" is used
to denote the occurrence of false positives, which refers to the
number of cases that are negative but are incorrectly classified
as positive. On the other hand, the word "FN" is used to denote
the False Negative value, which refers to the count of real
positive cases that have been misclassified as negative. The
metric of accuracy is often used for the classification of data.
The correctness of a model may be determined by using a
confusion matrix, which is calculated using the following
equation [26].

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃
 (2)

Moreover, precision (P), sensitivity (Sn), also known as true
positive rate (TPR), specificity (Sp), and F-score values

considered for the calculations based on the values of the
confusion matrix are as follows [26]:

𝑃 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
 (3)

𝑆𝑛 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
 (4)

𝑆𝑝 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
 (5)

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃×𝑆𝑛

𝑃+𝑆𝑛
 (6)

IV. DATASET

Malware is a pernicious computer software that poses a
significant threat to the security integrity of computer systems.
Malicious software instructions are concealed among a
substantial amount of data, hence rendering conventional
protection mechanisms often ineffective in preventing malware
attacks. Malicious attacks, such as viruses, worms, and Trojans,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

203 | P a g e

www.ijacsa.thesai.org

have the potential to inflict damage on a wide range of internet-
connected devices [27]. The structure of malware attacks may
vary. However, they may be identified by their nature due to the
crucial use of online information. The presence of malware on
websites poses a significant threat to both individual customers
and enterprises. Malware continues to pose a significant cyber
danger, as shown by the observation of over 357 million
varieties of malware in 2016 [28]. According to AVTEST, a
total of ninety-five million websites were found to be infected
with malware in 2017 [29]. The distinguishing characteristics of
malware may be discerned from site content and browser history
or data. The data obtained from malware may provide insights
into the characteristics of the virus itself, but it does not often
reveal the interrelationships between key data points. Moreover,
such data is generally insufficient to identify behavior that can
be classified as 'suspicious.' In all instances, perpetrators use
several strategies in their endeavor to breach a target's system.

The use of the Android Malware Detection dataset in this
simulation is seen as both innovative and suitable. The
simulation incorporates many pre-processing techniques,
including the conversion of non-numerical variables into
numerical representations and the removal of missing values.
These operations are necessary due to the categorical and textual
nature of some features. Furthermore, each input data point
undergoes a translation process to be represented inside the 0-1
interval and then normalized. The probability of misplacing a
device remains higher than the probability of contracting
malware. Implementing robust encryption measures
significantly enhances the security of electronic devices, making
them very resistant to unauthorized access and data theft. It is
important to establish a robust password for both the device and
the SIM card. The dataset known as TUNADROMD has a total
of 4465 instances and encompasses 241 distinct attributes. The
classification target attribute may consist of a binary
categorization, distinguishing between malware and good ware.
(Note: The following text is the pre-processed form of
TUANDROMD).

Variables:

1-214: Permission-based features

215-241: API-based features

Class Labels

Class: 1) Malware 2) Goodware

In this study, we utilized the dataset available at
https://www.kaggle.com/datasets/subhajournal/android-
malware-detection, which serves as a comprehensive resource
for Android malware detection research. This dataset comprises
a diverse collection of samples, including both malicious
applications and benign ones, providing a robust foundation for
evaluating the efficacy of different detection methods. The
dataset offers detailed information about each sample, such as
permissions requested, API calls made, and other relevant
features, enabling a thorough analysis of malware behavior and
characteristics. By leveraging this dataset, we were able to
conduct rigorous experiments to compare the performance of
MBF with other established algorithms for Android malware
detection, using standard evaluation metrics such as precision,
recall, and F1-score. This dataset served as a crucial component
in ensuring the validity and reliability of our findings,
contributing to the advancement of research in this critical
domain of cybersecurity.

V. RESULTS AND DISCUSSION

This section provides a discussion of the main findings
derived from the study. Furthermore, the efficacy of the
suggested algorithm in the field of data categorization is
substantiated by an examination of the relevant literature. The
evaluation of a classification model's performance in statistics
and machine learning may be conducted via the use of a
confusion matrix, as seen in Fig. 4. The provided information
offers a comprehensive summary of the categorization results,
including the quantities of true positive, true negative, false
positive, and false negative estimates. According to the data
shown in Fig. 4, the MBF algorithm exhibits superior
performance compared to the other algorithms. Confusion
matrices are an often used evaluation measure in the context of
classification problem-solving. The use of this approach may be
advantageous for both binary and multiclass classification
problems. Confusion matrices provide a tabular representation
of the observed and predicted values, displaying the counts for
each combination.

MBF CM Kernel CM

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

204 | P a g e

www.ijacsa.thesai.org

Adaboost CM MLP CM

RF CM SVM CM

Fig. 4. Confusion matrix for the selected algorithms

Fig. 5 illustrates that MBF has superior sensitivity,
indicating a noteworthy proportion of genuine positive cases
that the model correctly identified or classified as positive.
When it comes to TPR, SVM has the lowest performance.
Additionally, based on the data shown in Fig. 6, the accuracy of
MBF is satisfactory. The weighted combination of each machine
learning model's outputs is the foundation for the working
ensemble model's structure. The MBF method seeks to
determine the most optimum weighted sum of probability values
computed by each model for each issue class. The MBF
algorithm's objective function is also the classification's final
accuracy value. Thus, after adding up the weighted probability
values of each class, they are determined for each class sample
by the MBF algorithm, and the accuracy value is determined by
comparing the labels assigned by the algorithms. The MBF
algorithm is associated with the expected labels. Also, the
machine learning models were compared with the proposed
ensemble's primary method by calculating the classification's
evaluation criteria.

Fig. 7 to 11 demonstrate the values of F-score, accuracy,
specificity, and sensitivity obtained for the various selected
models. MBF is superior in terms of the criteria values obtained
in the work. The Adaboost does not have acceptable

performance in data classification. Accordingly, SVM can be an
excellent alternative to MBF as it has the highest values of F-
score, accuracy, specificity, and sensitivity after that. The results
reported in Table I match those in Fig. 7 to 11. MBF, with a
value of about 99.67%, is slightly different from Adaboost,
which has an accuracy of 99.56%. Compared to the other
selected models, the F-score, precision, sensitivity, and
specificity values obtained for MBF are remarkable, with
98.57%, 99.65%, 97.51%, and 97.51%, respectively.

The findings of this study underscore the remarkable
performance of MBF as a novel approach for Android malware
detection and better than previous ones [30]. Across all
evaluated metrics including accuracy, F-score, precision,
sensitivity, and specificity, MBF consistently outperforms the
other algorithms tested, including SVM, Adaboost, MLP,
Gaussian Kernel, and RF. With an accuracy of 99.67% and an
F-score of 98.57%, MBF demonstrates exceptional accuracy
and robustness in identifying both known and unknown malware
threats. Additionally, MBF achieves high precision and
sensitivity, indicating a low false positive rate and a high true
positive rate, respectively, which are crucial for effective
malware detection in real-world scenarios.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

205 | P a g e

www.ijacsa.thesai.org

Fig. 5. The true positive rate for the selected models

Fig. 6. The accuracy of the proposed method based on iteration and fitness

The superiority of MBF over the previous algorithms
[5,8,17] lies in its utilization of ensemble learning techniques,
which leverage the strengths of multiple models to enhance
predictive performance. By combining the predictions from
various base models, MBF achieves a synergistic effect that
effectively mitigates the limitations of individual algorithms.
Furthermore, the utilization of ensemble learning allows MBF
to adapt and evolve over time, enabling it to effectively detect

new and evolving malware threats. These findings not only
highlight the efficacy of MBF in Android malware detection but
also underscore the importance of exploring innovative
approaches, such as ensemble learning, to address the escalating
challenges posed by malicious actors in the mobile ecosystem.

In Fig. 7, the F-score values illustrate the balance between
precision and recall achieved by each model. Fig. 8 showcases

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

206 | P a g e

www.ijacsa.thesai.org

the accuracy values, indicating the overall correctness of the
predictions made by the models. Specificity values, depicted in
Fig. 9, represent the true negative rate, indicating how well the
models distinguish benign samples from malicious ones. Fig. 10
displays the sensitivity values, reflecting the true positive rate or
the models' ability to correctly identify malicious samples.
Lastly, Fig. 11 presents the precision values, indicating the
proportion of correctly identified positive cases among all cases
identified as positive by the models.

These figures provide a comprehensive visual representation
of the performance of each model across different evaluation
metrics, offering insights into their relative strengths and
weaknesses in Android malware detection. They serve as
valuable tools for understanding and interpreting the results of
your study, facilitating comparisons and highlighting the
superiority of certain models, such as MBF, over others.

Fig. 7. F-score values of the selected models

Fig. 8. Accuracy values of the selected models

0.9450

0.9500

0.9550

0.9600

0.9650

0.9700

0.9750

0.9800

0.9850

0.9900

SVM Adaboost MLP Gaussian

Kernel

RF MBF

F-score

0.9870

0.9880

0.9890

0.9900

0.9910

0.9920

0.9930

0.9940

0.9950

0.9960

0.9970

0.9980

SVM Adaboost MLP Gaussian

Kernel

RF MBF

Accuracy

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

207 | P a g e

www.ijacsa.thesai.org

Fig. 9. Specificity values of the selected models

Fig. 10. Sensitivity values of the selected models

0.9350

0.9400

0.9450

0.9500

0.9550

0.9600

0.9650

0.9700

0.9750

0.9800

SVM Adaboost MLP Gaussian Kernel RF MBF

Specificity

0.9350

0.9400

0.9450

0.9500

0.9550

0.9600

0.9650

0.9700

0.9750

0.9800

SVM Adaboost MLP Gaussian Kernel RF MBF

Sensisivity

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

208 | P a g e

www.ijacsa.thesai.org

Fig. 11. Precision values of the selected models

TABLE I. COMPARISON BETWEEN THE SELECTED METHODS BASED ON THE STATISTICAL RESULTS

Criteria SVM Adaboost MLP Gaussian Kernel RF MBF

Accuracy 0.9956 0.9908 0.9943 0.9956 0.9943 0.9967

F_score 0.9811 0.9597 0.9750 0.9811 0.9751 0.9857

Precision 0.9959 0.9707 0.9848 0.9959 0.9865 0.9965

Sensisivity 0.9668 0.9489 0.9654 0.9668 0.9640 0.9751

Specificity 0.9668 0.9489 0.9654 0.9668 0.9640 0.9751

VI. CONCLUSION

In summary, a new ensemble model is developed for
classification problems in the current study. The dataset
considered in this simulation is related to Android malware
detection, which is considered a new and suitable dataset. Due
to the categorical and textual nature of some features, several
pre-processing steps, including coding non-numerical variables
into numbers and removing missing values, have been
performed in the simulation. Also, all input data are mapped and
normalized to intervals of 0 and 1. The structure of the working
ensemble model is based on the weighted combination of the
outputs of each of the used machine learning models. Finding
the most optimal weighted sum of probability values calculated
by each model for each class of the problem is the goal of the
MBF algorithm. The F-score, accuracy, specificity, and
sensitivity values for the chosen models are shown in Fig. 7 to
11. When it comes to the criterion values that were found during
the job, MBF is better. In terms of data categorization, the
Adaboost's performance is unacceptable. Because SVM has the
greatest values of F-score, accuracy, specificity, and sensitivity
after MBF, it can be a great substitute for MBF. The outcomes
shown in Fig. 7 to 11 correspond with those in Table I. With an
accuracy of 99.56%, Adaboost and MBF differ somewhat, with
MBF having a value of around 99.67%. The F-score, accuracy,
sensitivities, and specificities for MBF are impressive compared
to the other chosen models; they are 98.57%, 99.65%, 97.51%,
and 97.51%, respectively. Further research on the use of deep

learning and insider threat identification issues is warranted.
Further attempts could prove quite beneficial to the literature.

FUNDING

This work was supported by the Science and Technology
Projects of Jiangxi Provincial Department of Education (No.

GJJ2202711，No. GJJ2202722).

REFERENCES

[1] M. Antonakakis et al., “Understanding the mirai botnet,” in 26th USENIX
security symposium (USENIX Security 17), 2017, pp. 1093–1110.

[2] N. Scaife, P. Traynor, and K. Butler, “Making sense of the ransomware
mess (and planning a sensible path forward),” IEEE Potentials, vol. 36,
no. 6, pp. 28–31, 2017.

[3] M. Dhalaria and E. Gandotra, “Android malware detection using chi-
square feature selection and ensemble learning method,” in 2020 Sixth
international conference on parallel, distributed and grid computing
(PDGC), IEEE, 2020, pp. 36–41.

[4] T. Rains and T. Y. CISSP, Cybersecurity Threats, Malware Trends, and
Strategies: Discover risk mitigation strategies for modern threats to your
organization. Packt Publishing Ltd, 2023.

[5] M. Fire, R. Goldschmidt, and Y. Elovici, “Online social networks: threats
and solutions,” IEEE Communications Surveys & Tutorials, vol. 16, no.
4, pp. 2019–2036, 2014.

[6] M. Dhalaria and E. Gandotra, “Risk Detection of Android Applications
Using Static Permissions,” in Advances in Data Computing,
Communication and Security: Proceedings of I3CS2021, Springer, 2022,
pp. 591–600.

[7] K. Liu, S. Xu, G. Xu, M. Zhang, D. Sun, and H. Liu, “A review of android
malware detection approaches based on machine learning,” IEEE Access,
vol. 8, pp. 124579–124607, 2020.

0.9550

0.9600

0.9650

0.9700

0.9750

0.9800

0.9850

0.9900

0.9950

1.0000

SVM Adaboost MLP Gaussian

Kernel

RF MBF

Precision

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

209 | P a g e

www.ijacsa.thesai.org

[8] M. Dhalaria, E. Gandotra, and S. Saha, “Comparative analysis of
ensemble methods for classification of android malicious applications,”
in Advances in Computing and Data Sciences: Third International
Conference, ICACDS 2019, Ghaziabad, India, April 12–13, 2019,
Revised Selected Papers, Part I 3, Springer, 2019, pp. 370–380.

[9] O. N. Elayan and A. M. Mustafa, “Android malware detection using deep
learning,” Procedia Comput Sci, vol. 184, pp. 847–852, 2021.

[10] M. Grace, Y. Zhou, Q. Zhang, S. Zou, and X. Jiang, “Riskranker: scalable
and accurate zero-day android malware detection,” in Proceedings of the
10th international conference on Mobile systems, applications, and
services, 2012, pp. 281–294.

[11] F. Idrees, M. Rajarajan, M. Conti, T. M. Chen, and Y. Rahulamathavan,
“PIndroid: A novel Android malware detection system using ensemble
learning methods,” Comput Secur, vol. 68, pp. 36–46, 2017.

[12] E. Mariconti, L. Onwuzurike, P. Andriotis, E. De Cristofaro, G. Ross, and
G. Stringhini, “Mamadroid: Detecting android malware by building
markov chains of behavioral models,” arXiv preprint arXiv:1612.04433,
2016.

[13] K. Sharma and B. B. Gupta, “Mitigation and risk factor analysis of
android applications,” Computers & Electrical Engineering, vol. 71, pp.
416–430, 2018.

[14] E. Gandotra, D. Bansal, and S. Sofat, “Malware threat assessment using
fuzzy logic paradigm,” Cybern Syst, vol. 48, no. 1, pp. 29–48, 2017.

[15] H. Zhu, Y. Li, R. Li, J. Li, Z. You, and H. Song, “SEDMDroid: An
enhanced stacking ensemble framework for Android malware detection,”
IEEE Trans Netw Sci Eng, vol. 8, no. 2, pp. 984–994, 2020.

[16] P. Bhat, S. Behal, and K. Dutta, “A system call-based android malware
detection approach with homogeneous & heterogeneous ensemble
machine learning,” Comput Secur, vol. 130, p. 103277, 2023.

[17] X. Wang, L. Zhang, K. Zhao, X. Ding, and M. Yu, “MFDroid: A stacking
ensemble learning framework for Android malware detection,” Sensors,
vol. 22, no. 7, p. 2597, 2022.

[18] İ. Atacak, “An Ensemble Approach Based on Fuzzy Logic Using Machine
Learning Classifiers for Android Malware Detection,” Applied Sciences,
vol. 13, no. 3, p. 1484, 2023.

[19] Y. M. Abd Algani, M. Ritonga, B. K. Bala, M. S. Al Ansari, M. Badr, and
A. I. Taloba, “Machine learning in health condition check-up: An

approach using Breiman’s random forest algorithm,” Measurement:
Sensors, vol. 23, p. 100406, 2022.

[20] J. Heaton, “An empirical analysis of feature engineering for predictive
modeling,” in SoutheastCon 2016, IEEE, 2016, pp. 1–6.

[21] D. S. Shayegan, A. Lork, and S. A. H. Hashemi, “Mouth brooding fish
algorithm for cost optimization of reinforced concrete one-way ribbed
slabs,” Int. J. Optim. Civil Eng, vol. 9, no. 3, pp. 411–422, 2019.

[22] E. Jahani and M. Chizari, “Tackling global optimization problems with a
novel algorithm–Mouth Brooding Fish algorithm,” Appl Soft Comput,
vol. 62, pp. 987–1002, 2018.

[23] K. Ota, M. Aibara, M. Morita, S. Awata, M. Hori, and M. Kohda,
“Alternative reproductive tactics in the shell-brooding Lake Tanganyika
cichlid Neolamprologus brevis,” Int J Evol Biol, vol. 2012, 2012.

[24] M. Babazadeh, O. Rezayfar, and E. Jahani, “Interval reliability sensitivity
analysis using Monte Carlo simulation and mouth brooding fish algorithm
(MBF),” Appl Soft Comput, vol. 142, p. 110316, 2023.

[25] M. Sokolova, N. Japkowicz, and S. Szpakowicz, “Beyond accuracy, F-
score and ROC: a family of discriminant measures for performance
evaluation,” in Australasian joint conference on artificial intelligence,
Springer, 2006, pp. 1015–1021.

[26] A. Kulkarni, D. Chong, and F. A. Batarseh, “Foundations of data
imbalance and solutions for a data democracy,” in Data democracy,
Elsevier, 2020, pp. 83–106.

[27] K. Rieck, P. Trinius, C. Willems, and T. Holz, “Automatic analysis of
malware behavior using machine learning,” J Comput Secur, vol. 19, no.
4, pp. 639–668, 2011.

[28] D. Farhat and M. S. Awan, “A brief survey on ransomware with the
perspective of internet security threat reports,” in 2021 9th International
Symposium on Digital Forensics and Security (ISDFS), IEEE, 2021, pp.
1–6.

[29] A. V Test, “The independent it-security institute.” 2019.

[30] Hamed Ghorban Tanhaei, Payam Boozary & Sogand Sheykhan, "
Analyzing the Impact of Social Media Marketing, Word of Mouth and
Price Perception on Customer Behavioral Intentions through Perceived
Interaction", in 2024 International Journal of Business and Social Science
Vol. 15, No. 1, pp. 69-77, URL: https://doi.org/10.15640/jehd.v15n1a8

