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Abstract—Android Malware Detection has become 

increasingly prevalent, with the highest market share among all 

other mobile operating systems due to its open-source nature and 

user-friendliness. This has resulted in an uncontrolled 

proliferation of malicious applications targeting the Android 

platform. Emerging trends of Android malware are employing 

highly sophisticated detection and analysis evasion techniques, 

rendering traditional signature-based detection methods less 

effective in identifying modern and unknown malware. 

Alternative approaches, such as Machine Learning methods, have 

emerged as leading solutions for timely zero-day anomaly 

detection. Ensemble learning, a common meta-approach in 

machine learning, seeks to improve predictive performance by 

amalgamating predictions from multiple models. This paper 

introduces an enhanced strategy, Mouth Brooding Fish (MBF), 

based on ensemble learning for Android Malware Detection 

(AMD). The findings are further compared with the outputs of 

various algorithms including Support Vector Machine (SVM), 

AdaBoost, Multilayer Perceptron (MLP), Gaussian Kernel (GK), 

and Random Forest (RF). Compared to the other selected models, 

MBF exhibits remarkable performance with an F-score of 

98.57%, precision of 99.65%, sensitivity of 97.51%, and specificity 

of 97.51%. Thus, the significant novelty of this work lies in the 

accuracy and authenticity of the selected algorithms, 

demonstrating their superior performance overall. 

Keywords—Android malware detection; ensemble learning; 

SVM; MLP; RF 

I. INTRODUCTION 

Due to the nearness of innovation in all areas of our everyday 
lives, cyber security has become one of the biggest concerns to 
be attended to by society. In a long time, there has been a 
considerable number of assaults and, what is indeed more 
exceptional, to a wide assortment of destinations. A few later 
well-known cases incorporate refusal of benefit assaults such as 
that performed by the Mirai botnet [1] and an enormous 
information seizure driven by the ransomware Wannacry [2]. 
However, the widespread use of mobile phones has turned out 
to be a significant contributing factor to a sharp increase in 
malware attacks. Because these malicious programs are hidden 
within legitimate programs, it is difficult to identify and 
categorize them. Because they use a signature-based 
methodology, the current processes are unable to differentiate 
between hidden malware [3]. 

The most widely used operating system (OS) is Android, 
which is also continuing to increase its market share. Android is 
an open-source platform that allows users to download apps 
from the Google Play Store and third-party developers. Because 

of its popularity and openness, Android has drawn the attackers' 
attention. According to McAfee's security reports, 49 million 
new malware and 121 million existing malwares were 
discovered in 2020 [4]. Any malicious code that compromises a 
user's privacy, accessibility, or keenness is referred to as 
malware. The malicious programs seem to be real, but they carry 
out harmful operations behind the scenes. Malware uses a 
variety of techniques, such as tracking the client's region and 
jumbling individual data. Malicious programs (apps) try to 
infiltrate Android devices in order to steal personal data, place 
phone calls, send SMS, and do other activities. According to 
MacAfee's estimate, there will be 49 million and 121 million 
new instances of contemporary malware and cumulative 
malware by 2020, respectively [5]. The escalating pace of 
Android malware's advancement poses a significant threat to 
users of the Android operating system. Clients are required to 
determine the malicious nature of an application due to the need 
for data acquisition and comprehension. When acquiring an 
application from the Android application store, a significant 
number of Android users tend to overlook or neglect the 
examination of the terms and conditions. Regrettably, 
perpetrators exploit this reality and specifically target portable 
electronic devices [6]. 

Due to the increment in Android malware, physically 
handling malevolent tests has become troublesome. To 
overcome this restriction, it is vital to construct a proficient 
strategy for better distinguishing hazards of applications. A prior 
signature-based approach was utilized to distinguish proof of 
malware. This approach is based on coordinating the app's 
signature within the database. This strategy's confinement is that 
it cannot identify obscure malware [7]. On a customary premise, 
malware designers make modern malware to undermine the 
framework's security and its clients' protection. The chance 
posed by malware requires the improvement of successful 
strategies. This assessment helps with the arrangement of early 
notices concerning a particular Android app, permitting quick 
consideration to be paid to it in terms of apportioning assets [8]. 

The Android operating system has the dominant position in 
market share primarily as a result of its seamless functionality 
and an extensive array of features, which serve to captivate and 
entice cyber criminals [9]. Traditional Android malware 
detection methods, such as signature-based or battery 
consumption monitoring, may fail to detect recent malware. 
Therefore, we present a novel method for detecting malware in 
Android applications using MBF. The outcomes of the proposed 
method are compared with several algorithms, including SVM, 
Adaboost, MLP, GK, and RF. The following outlines the main 
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gaps and shortcomings of the related works in the second 
section. The third section illustrates the selected algorithms for 
the considered problem and specifies the evaluation criteria 
calculated for comparison. The used dataset is also explained in 
the fourth section. The results are discussed in the fifth section 
to specify the superiority of MBF over the other algorithms. The 
findings and suggestions for future work are presented in the 
sixth section.   

II. LITERATURE REVIEW 

As seen from the literature, many advances have been made 
regarding AMD. Grace et al. [10 ]proposed RiskRanker, which 
is an automated method designed to assess the level of risk 
associated with a given application. The experiments were 
conducted by aggregating a total of 118,318 applications 
sourced from various Android stores. The findings indicate that 
RiskRanker showed effectiveness and flexibility in regulating 
Android marketplaces. Idress et al. [11] introduced PIndroid, a 
system designed to locate and analyze malware. This system 
focuses on gathering learning tactics to enhance its 
effectiveness. This study focuses on a methodology for detecting 
malware that integrates the intersection and union set operations 
with data aggregation techniques. The aforementioned 
methodology was implemented on a sample size of 445 
untainted and 1300 contaminated Android applications that 
were obtained from both third-party and official channels. The 
researchers reached the conclusion that the suggested approach 
has the potential to be used for the categorization of Android 
applications. In Sharma et al.'s [11] study, the malicious 
capabilities were categorized by analyzing notable features 
identified during both passive and active malware assessments, 
as well as the malware nomenclature used by antivirus vendors. 
The authors presented a methodology for addressing 
discrepancies in malware analysis by using fuzzy logic to 
evaluate the many functionalities of malicious software. In 
agreement with the planned FIS, it was determined that 83% of 
malware testing was discovered to belong to the same cluster for 
malware-recognizable proof. Mariconti et al. [12] presented the 
MAMADROID framework, which depends on static malware 
analysis and was successfully deployed. Malware detection 
employs static characteristics, like API calls and call graphs. The 
study included the evaluation of a dataset consisting of 3.5 
million harmful applications and 8.5 million benign 
applications. The strategy that was suggested resulted in an F-
measure of 0.99. Jang et al. [6] demonstrated Andro-Autospy, 
an antimalware mechanism that protects mobile devices. The 
findings suggested that the proposed system can detect and 
classify malware. In the work of Sharma et al.[13], the 
RNPDroid approach was offered as a means of doing risk 
assessments by leveraging permissions. The suggested 
methodology is assessed using the M0Droid dataset, including 
400 Android samples with 165 characteristics. The T-test and 
ANOVA were employed for statistical analysis. The findings 
indicate that, with a significance level of 5%, the computed F 
value of 517.3 exceeds the critical F value of 2.61. Gandotra et 
al. [14]presented a novel approach using fuzzy logic to automate 
the calculation of the damage potential of malware programs. 
This technique relies on extracting characteristics via automated 
analysis.  

Moreover, Zhu et al. [15] used SVM as the fusion classifier 
to learn the implicit supplementary information from the output 
of the ensemble members and yield the final prediction result. 
The creators appeared that exploratory comes about on two 
partitioned datasets collected by inactive investigation to 
demonstrate the viability of the SEDMDroid. The primary ones 
extricate consent, touchy API, checking framework occasion, 
and so on that are broadly utilized in Android malware as 
highlights. Sedmdroid accomplishes 89.07% precision in terms 
of these multi-level inactive highlights. The moment one, an 
open enormous dataset, extricates the touchy information stream 
data as the highlights, and the normal exactness was 94.92%. 
The promising try reveals that the proposed strategy was a 
successful way to recognize Android malware. Bhat et al. [16] 
proposed a precise dynamic analysis approach to identify 
several malicious attacks. The proposed strategy centered on 
behavioral examination of malware that requires remaking the 
behavior of Android malware. The energetic behavior highlights 
incorporate framework calls, covers, and complex Android 
objects (composite behavior). The strategy was utilized to 
evacuate unessential highlights for effective malware location 
and classification. For classification, the homogeneous and 
heterogeneous outfit machine learning calculations were 
utilized. 

The stacking approach had the most excellent classification, 
with a precision rate of 98.08%. The thorough test of the 
viability and predominance of the show. In another paper [17], 
a total of seven feature selection methods were used in order to 
choose permissions, API calls, and opcodes. Subsequently, the 
outcomes of each feature selection process were combined to 
provide a novel feature set. Following this, the authors used this 
technique to educate the foundational learner. The researchers 
used logistic regression as a meta-classifier in order to extract 
implicit information from the output of the base learners and 
generate the final classification outcomes. Following the 
examination, the F1-score of MFDroid achieved a value of 
96.0%. Ultimately, an examination was conducted on each sort 
of feature in order to ascertain the distinctions between 
dangerous and benign applications. Atacak [18] proposed the 
use of a fuzzy logic-based dynamic ensemble (FL-BDE) model 
for the purpose of detecting malware that is targeted towards the 
Android operating system. The findings indicated that the FL-
BDE model had outstanding results compared to the ML-based 
models. It achieved an accuracy of 0.9933, a recall of 1.00, a 
specificity of 0.9867, a precision of 0.9868, and an F-measure 
of 0.9934. 

Due to the outcomes of the previous works, it is interesting 
to compare Android malware detection techniques with MBF. 
Even though malware detection algorithms and MBF function 
in entirely separate fields, comparing the two might be a 
thought-provoking exercise. To demonstrate the possible 
benefits of MBF over conventional algorithms in the context of 
Android malware detection, the following comparison study is 
provided in the current work: 

Adaptability and Learning: Fish that raise their young in 
their jaws demonstrate adaptable parental care. Likewise, MBF 
may represent a method that, instead of algorithms, learns from 
and adjusts to novel dangers more naturally. By monitoring and 
responding to abnormalities similar to a live creature, they could 
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"protect" the system and continuously adjust to new dangers 
without explicit programming. 

Resilience to Unknown Threats: Fish that rear their young 
by mouth can keep their young safe from predators. Similarly, 
utilizing innate reflexes or pattern recognition unconstrained by 
preset rules or signatures, MBF may represent a theoretical 
system naturally resistant to dangers posed by zero-day or 
previously undisclosed malware. 

Complexity and Interpretation: Providing MBFs with care 
necessitates a sophisticated comprehension of the dangers 
surrounding them. On the other hand, predetermined signatures 
or behavior patterns are frequently the basis of Android malware 
detection algorithms, which may miss more nuanced or 
sophisticated threats. A method that transcends algorithms' 
interpretive capabilities might be represented by MBF, which is 
capable of interpreting contextual signals and subtleties. 

Resource Efficiency: Fish raising their young by 
mouthbrooding expend significant energy and resources. 
Comparatively speaking, MBF may represent a method that 
maximizes the use of computing resources for malware 
detection, or it may draw attention to high-risk regions of an 
Android system. 

The adaptation and evolutionary advantage of mouth-
brooding fish have developed throughout time to improve their 
chances of surviving and procreating. By comparison, MBF may 
stand for continuous evolution in malware detection, in which 
the system improves with time through experience-based 
learning and grows increasingly capable of fending off new 
threats. Even though this analogy is purely theoretical and 
symbolic, it's crucial to remember that a realistic, ethical, and 
computationally constrained implementation of MBF in 
Android malware detection would need thorough investigation 
and technological viability. However, taking cues from the 
workings of nature might occasionally result in novel concepts 
in cybersecurity and technology.  

III. METHODOLOGY 

The detection of Android malware has significant 
importance due to many factors. The safeguarding of personal 
data is a critical concern since malware often targets the theft of 
sensitive information, including personal particulars, financial 
records, and login passwords. The detection and prevention of 
malware on Android devices are crucial in order to protect 
sensitive information from potential intrusion. 

The prevention of financial loss is a critical concern in the 
realm of cybersecurity. Certain types of malicious software, 
such as ransomware or banking trojans, possess the capability to 
target individuals' financial accounts specifically. This targeted 
approach may result in unlawful transactions or the coercion of 
monetary funds from unsuspecting users. Detection plays a 
crucial role in mitigating financial losses resulting from these 
illicit acts. The preservation of device performance is a crucial 
concern since malware has the potential to substantially 
diminish it via resource consumption, resulting in delays and the 
presentation of invasive advertisements. The identification and 
eradication of malicious software contribute to the preservation 
of the device's optimum functionality. Malicious software often 
capitalizes on weaknesses within the Android operating system 

or its apps in order to get illegal entry. The process of detection 
plays a crucial role in identifying and addressing these 
vulnerabilities, hence reducing the risk of possible exploitation. 
Besides, the preservation of user privacy is a critical concern in 
the realm of cybersecurity. It has been observed that some types 
of malicious software have the capability to seize control of 
cameras and microphones, as well as monitor user actions 
without obtaining proper approval. This unauthorized intrusion 
into personal devices and activities poses a significant threat to 
the privacy of users. The act of detection plays a pivotal role in 
preventing and obstructing instances of privacy infringements. 
Given the vast number of accessible applications, it is possible 
that some apps may include harmful code or exhibit undesirable 
behavior. The detection of malware plays a crucial role in 
enabling users to download and use apps securely, hence 
mitigating the risk of compromising their devices or data. The 
presence of malware may serve as a potential entry point for 
malicious actors seeking unauthorized access to computer 
networks. The identification and eradication of malware on 
Android devices contribute to the preservation of network 
security, particularly in scenarios where compromised devices 
serve as gateways for more extensive cyber assaults. Efficient 
and reliable techniques for detecting malware, such as antivirus 
software and security upgrades, play a crucial role in mitigating 
these threats and ensuring a safer and more secure Android 
environment for consumers. In this section, SVM, Adaboost, 
MLP, GK, RF, and MBF are illustrated for Android malware 
detection. 

A. Selected Algorithms 

1) Support vector machine (SVM): Support Vector 

Machines (SVM) is a powerful supervised learning algorithm 

that exhibits optimal performance when applied to datasets of 

smaller sizes. However, its effectiveness diminishes when 

confronted with complicated datasets. The Support Vector 

Machine (SVM), sometimes referred to as SVM, is a versatile 

algorithm that may be used for both regression and 

classification tasks. However, it is generally more effective in 

addressing classification problems. Support Vector Machines 

(SVM) is a supervised machine learning algorithm often used 

for both classification and regression tasks. Although the term 

"relapse issues" is often used, it is most appropriate for the 

purpose of categorization. The primary goal of the Support 

Vector Machine (SVM) technique is to identify the optimal 

hyperplane in an N-dimensional space that can effectively 

separate the data points into distinct classes within the given 

space. The hyperplane postulates that the boundary separating 

the nearest centroids of different classes should be maximized. 

The determination of the hyperplane's measurement is 

dependent upon the quantity of highlights. When the number of 

input features is two, the hyperplane may be described as a 

straight line that fairly separates the data points. When the 

number of input highlights reaches three, the hyperplane 

transforms into a two-dimensional plane. It gets difficult to 

make assumptions when the number of highlights exceeds 

three. There exists a multitude of potential hyperplanes that 

may be selected to separate the two groups of data points 

effectively. Our objective is to identify a plane that exhibits 
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optimal discrimination, namely, the greatest separation 

between data points belonging to different classes. The act of 

maximizing the elimination of edges provides a modest level of 

support, hence enhancing the accuracy of classifying future 

information. 

2) Adaboost: There are numerous machine learning 

calculations to select from for your issue explanations. One of 

these calculations for prescient modeling is called AdaBoost. 

The AdaBoost calculation, brief for Versatile Boosting, may be 

a Boosting strategy utilized as a Gathering Strategy in Machine 

Learning. It is called Versatile Boosting, as the weights are re-

assigned to each occasion, with higher weights allowed to 

classify occurrences inaccurately. What this calculation does is 

that it builds a show and gives rise to weights to all the 

information focuses. At that point, it allocates higher weights to 

wrongly classified focuses. All the higher-weight focuses are 

given more significance within the other demonstration. It'll 

keep training models until and unless a lower mistake is made. 

The foremost suited and thus most common calculation utilized 

with AdaBoost is choice trees with one level. Because these 

trees are so brief and, as it were, contain one decision for 

classification, they are often called choice stumps. An 

AdaBoost classifier may be a meta-estimator that starts by 

fitting a classifier on the initial dataset and, after that, fits extra 

duplicates of the classifier on the same dataset but where the 

weights of erroneously classified occasions are balanced such 

that consequent classifiers center more on troublesome cases. 

AdaBoost limits misfortune work related to any classification 

mistake and is best utilized with powerless learners. The 

strategy was primarily planned for twofold classification issues 

and can be used to boost the execution of choice trees. Slope 

Boosting is utilized to unravel the differentiable misfortune 

work issue. 

3) Multilayer perceptron (MLP): The multilayer 

perceptron (MLP) has the potential to enhance and strengthen 

the forward neural architecture. The system is composed of 

three distinct levels, namely the input layer, yield layer, and 

covered-up layer, as seen in Fig. 1. The input layer is 

responsible for receiving the input flag that needs to be 

processed. The yield layer is responsible for executing the 

designated task, such as prediction and categorization. The 

presence of several hidden layers in a multilayer perceptron 

(MLP) serves as a crucial computational mechanism, allowing 

for the transformation of input data into output predictions. 

Similar to a feedforward architecture in a multilayer perceptron 

(MLP), the flow of information in the forward direction occurs 

from the input layer to the output layer. The neurons of the 

Multilayer Perceptron (MLP) are trained using the 

backpropagation learning algorithm. Multilayer perceptrons 

(MLPs) are designed to handle continuous tasks effectively and 

have the ability to address problems that are not easily 

separable. The primary applications of multilayer Perceptron 

(MLP) are design categorization, pattern recognition, 

prediction, and estimate. 

 

Fig. 1. System modeling utilizing an MLP neural network 
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4) Gaussian kernel (GK): The GK is defined as follows in 

one-dimensional, two-dimensional, and neuronal dimensions: 

𝐺1  𝐷(𝑥;  𝜎) =
1

√2𝜋𝜎
𝑒

−
𝑥2

2𝜎2 , 𝐺2  𝐷(𝑥, 𝑦′, 𝜎) =
1

2𝜋𝜎2 𝑒
−

𝑥2+𝑦2

2𝜎2 ,

𝐺𝑁𝐷(𝑥⃑;  𝜎) =
1

(√2𝜋𝜎)
𝑁 𝑒

−
|𝑥̃|2

2𝜎2 (1) 

The σ value determines the width of the Gaussian kernel. In 
statistics, the Gaussian probability density function is the 
standard deviation, while its square, 𝜎2 is the variance. When 
we discuss the Gaussian as an aperture function in observations, 
we will use "s" to refer to the inner scale or simply the scale. 
This paper's scale is limited to positive values, where σ > 0. 
During the observation process, s can never be reduced to zero. 
This implies observing through a tiny aperture, which is 
practically impossible. The inclusion of the factor of 2 in the 
exponent is merely a matter of convention. It allows us to have 
a more simplified formula for the diffusion equation, which we 
will discuss in more detail later. The convention is to include a 
semicolon between the spatial and scale parameters to 
distinguish between them clearly. 

5) Random forest (RF): As shown in Fig. 2, the Random 

Forest (RF) classifier is a technique that involves the 

simultaneous training of many decision trees using 

bootstrapping, followed by the aggregation of their outputs by 

a process referred to as bagging. The process of bootstrapping 

entails the simultaneous training of several decision trees on 

different subsets of the training dataset, employing varying 

subsets of the available characteristics. By ensuring the 

uniqueness of each decision tree inside the random forest, the 

total variance of the RF classifier is reduced. The Random 

Forest classifier combines the judgments made by individual 

trees in order to get a final conclusion, allowing it to 

demonstrate strong generalization capabilities. In comparison 

to other classification approaches, the Random Forest (RF) 

classifier often achieves superior accuracy while avoiding the 

problem of overfitting [19]. 

Similar to the Decision Tree (DT) classifier, the Random 
Forest (RF) classifier does not need feature scaling. 
Nevertheless, the Random Forest (RF) classifier has superior 
robustness in the selection of training samples and handling 
noise within the training dataset compared to the Decision Tree 
(DT) classifier. Although the RF classifier is more difficult to 
read, it has the advantage of simplified hyperparameter 
adjustment in comparison to the DT classifier. 

6) Mouth brooding fish (MBF): According to Fig. 3, 

Paternal mouthbrooders, often known as mouth-brooding fish, 

are a group of animals in which the male fish assumes the 

responsibility of incubating the fertilized eggs inside his oral 

cavity until they reach the hatching stage. The manifestation of 

this distinctive kind of parental care is mostly seen in certain 

species of cichlids, which constitute a diversified assemblage 

of freshwater fish distributed throughout numerous regions 

globally [21]. In the phenomenon of mouth brooding, after the 

deposition of eggs by the female, the male proceeds to fertilize 

them and then collects them into his oral cavity by the use of 

his lips. The male exhibits parental care by safeguarding the 

eggs inside his oral cavity, so shielding them from any threats 

posed by predators. Additionally, he ensures enough oxygen 

supply to the eggs by a recurrent process of expelling and re-

ingesting them, facilitating their oxygenation [22]. During the 

incubation stage, which exhibits variability in length contingent 

upon the species under consideration, the male abstains from 

consuming sustenance and dedicates his efforts exclusively 

towards the protection and preservation of the eggs. After the 

eggs have hatched, it is common for the fry, which refers to the 

juvenile fish, to be temporarily sheltered inside the oral cavity 

of the male fish until they have acquired the strength to explore 

their surroundings independently. The observed behavior 

exemplifies noteworthy parental investment, which serves to 

enhance the likelihood of offspring survival via the provision 

of protection throughout the crucial first phases of 

development. There are variances seen across different species 

in terms of their mouth-brooding behaviors, including factors 

such as the period of incubation and the extent of parental care 

shown after the discharge of the fry. 

In nature, marriage is a crucial mechanism that aids colonies 
or populations in achieving optimal outcomes by promoting 
convergence. However, it only sometimes yields favorable 
outcomes when it occurs. Mouth-brooding fish allow their best 
cichlids to mate. Thus, the MBF algorithm selects one pair of 
parents from each cichlid using a probability distribution or 
Roulette Wheel selection (where higher point values have a 
higher likelihood). Cichlids that hatch in a new position replace 
their parents in the population without moving [24]. Before 
assessing the fitness of the newly hatched fish using a fitness 
function, we need to ensure that the new positions for the 
offspring are within the boundaries of the search space. 

B. Evaluation Criteria 

The primary factors for comparing the results are F-score, 
accuracy, specificity, sensitivity, and precision [25]. Precision 
refers to a slight variation between two or more measurements, 
whereas accuracy represents the disparity between a result and 
its actual value. The end outcomes should align well, as 
indicated by precision. The F1 score is the weighted average of 
precision and recall, including false positives and negatives. 
Specificity is the test's ability to identify unstick people 
correctly. Mathematically, a test with high specificity that 
produces a positive result can confirm a disease because it rarely 
produces positive results in healthy people. A test's sensitivity 
determines whether it detects a disease. High-sensitivity tests 
have few false negatives, reducing disease cases missed. The 
specificity of a test refers to its capability to correctly identify 
someone who does not have a disease as being negative. To put 
it differently, specificity refers to the percentage of individuals 
who do not have Disease X and receive a damaging result on 
their blood test. A particular test ensures that all healthy 
individuals are accurately recognized as healthy, meaning no 
incorrect positive results exist. 
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Fig. 2. A dataset with two classes (Y = 1) and four features (X1, X2, X3, and X4) is employed to build a Random Forest (RF) classifier. The RF classifier is an 

ensemble method that uses bootstrapping and aggregation to train multiple decision trees. Each tree is trained on unique subsets of training samples and features 

[20] 

 

Fig. 3. Mouth Brooding Fish Algorithm [23] 

The term "True Negative," sometimes abbreviated as "TN," 
refers to the outcome that accurately identifies the number of 
negative instances that have been properly classified. Likewise, 
the acronym "TP" denotes True Positive, indicating the ratio of 
accurately recognized positive instances. The term "FP" is used 
to denote the occurrence of false positives, which refers to the 
number of cases that are negative but are incorrectly classified 
as positive. On the other hand, the word "FN" is used to denote 
the False Negative value, which refers to the count of real 
positive cases that have been misclassified as negative. The 
metric of accuracy is often used for the classification of data. 
The correctness of a model may be determined by using a 
confusion matrix, which is calculated using the following 
equation [26]. 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑁+𝑇𝑃

𝑇𝑁+𝐹𝑃+𝐹𝑁+𝑇𝑃
   (2) 

Moreover, precision (P), sensitivity (Sn), also known as true 
positive rate (TPR), specificity (Sp), and F-score values 

considered for the calculations based on the values of the 
confusion matrix are as follows [26]: 

𝑃 =
𝑇𝑃

𝐹𝑃+𝑇𝑃
   (3) 

𝑆𝑛 =
𝑇𝑃

𝐹𝑁+𝑇𝑃
   (4) 

𝑆𝑝 =
𝑇𝑁

𝐹𝑃+𝑇𝑁
   (5) 

𝐹 − 𝑠𝑐𝑜𝑟𝑒 = 2 ×
𝑃×𝑆𝑛

𝑃+𝑆𝑛
  (6) 

IV. DATASET 

Malware is a pernicious computer software that poses a 
significant threat to the security integrity of computer systems. 
Malicious software instructions are concealed among a 
substantial amount of data, hence rendering conventional 
protection mechanisms often ineffective in preventing malware 
attacks. Malicious attacks, such as viruses, worms, and Trojans, 
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have the potential to inflict damage on a wide range of internet-
connected devices [27]. The structure of malware attacks may 
vary. However, they may be identified by their nature due to the 
crucial use of online information. The presence of malware on 
websites poses a significant threat to both individual customers 
and enterprises. Malware continues to pose a significant cyber 
danger, as shown by the observation of over 357 million 
varieties of malware in 2016 [28]. According to AVTEST, a 
total of ninety-five million websites were found to be infected 
with malware in 2017 [29]. The distinguishing characteristics of 
malware may be discerned from site content and browser history 
or data. The data obtained from malware may provide insights 
into the characteristics of the virus itself, but it does not often 
reveal the interrelationships between key data points. Moreover, 
such data is generally insufficient to identify behavior that can 
be classified as 'suspicious.' In all instances, perpetrators use 
several strategies in their endeavor to breach a target's system. 

The use of the Android Malware Detection dataset in this 
simulation is seen as both innovative and suitable. The 
simulation incorporates many pre-processing techniques, 
including the conversion of non-numerical variables into 
numerical representations and the removal of missing values. 
These operations are necessary due to the categorical and textual 
nature of some features. Furthermore, each input data point 
undergoes a translation process to be represented inside the 0-1 
interval and then normalized. The probability of misplacing a 
device remains higher than the probability of contracting 
malware. Implementing robust encryption measures 
significantly enhances the security of electronic devices, making 
them very resistant to unauthorized access and data theft. It is 
important to establish a robust password for both the device and 
the SIM card. The dataset known as TUNADROMD has a total 
of 4465 instances and encompasses 241 distinct attributes. The 
classification target attribute may consist of a binary 
categorization, distinguishing between malware and good ware. 
(Note: The following text is the pre-processed form of 
TUANDROMD). 

Variables: 

1-214: Permission-based features 

215-241: API-based features 

Class Labels 

Class: 1) Malware 2) Goodware 

In this study, we utilized the dataset available at 
https://www.kaggle.com/datasets/subhajournal/android-
malware-detection, which serves as a comprehensive resource 
for Android malware detection research. This dataset comprises 
a diverse collection of samples, including both malicious 
applications and benign ones, providing a robust foundation for 
evaluating the efficacy of different detection methods. The 
dataset offers detailed information about each sample, such as 
permissions requested, API calls made, and other relevant 
features, enabling a thorough analysis of malware behavior and 
characteristics. By leveraging this dataset, we were able to 
conduct rigorous experiments to compare the performance of 
MBF with other established algorithms for Android malware 
detection, using standard evaluation metrics such as precision, 
recall, and F1-score. This dataset served as a crucial component 
in ensuring the validity and reliability of our findings, 
contributing to the advancement of research in this critical 
domain of cybersecurity. 

V. RESULTS AND DISCUSSION 

This section provides a discussion of the main findings 
derived from the study. Furthermore, the efficacy of the 
suggested algorithm in the field of data categorization is 
substantiated by an examination of the relevant literature. The 
evaluation of a classification model's performance in statistics 
and machine learning may be conducted via the use of a 
confusion matrix, as seen in Fig. 4. The provided information 
offers a comprehensive summary of the categorization results, 
including the quantities of true positive, true negative, false 
positive, and false negative estimates. According to the data 
shown in Fig. 4, the MBF algorithm exhibits superior 
performance compared to the other algorithms. Confusion 
matrices are an often used evaluation measure in the context of 
classification problem-solving. The use of this approach may be 
advantageous for both binary and multiclass classification 
problems. Confusion matrices provide a tabular representation 
of the observed and predicted values, displaying the counts for 
each combination. 

 
MBF CM      Kernel CM 
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Adaboost CM     MLP CM 

 
RF CM       SVM CM 

Fig. 4. Confusion matrix for the selected algorithms 

Fig. 5 illustrates that MBF has superior sensitivity, 
indicating a noteworthy proportion of genuine positive cases 
that the model correctly identified or classified as positive. 
When it comes to TPR, SVM has the lowest performance. 
Additionally, based on the data shown in Fig. 6, the accuracy of 
MBF is satisfactory. The weighted combination of each machine 
learning model's outputs is the foundation for the working 
ensemble model's structure. The MBF method seeks to 
determine the most optimum weighted sum of probability values 
computed by each model for each issue class. The MBF 
algorithm's objective function is also the classification's final 
accuracy value. Thus, after adding up the weighted probability 
values of each class, they are determined for each class sample 
by the MBF algorithm, and the accuracy value is determined by 
comparing the labels assigned by the algorithms. The MBF 
algorithm is associated with the expected labels. Also, the 
machine learning models were compared with the proposed 
ensemble's primary method by calculating the classification's 
evaluation criteria. 

Fig. 7 to 11 demonstrate the values of F-score, accuracy, 
specificity, and sensitivity obtained for the various selected 
models. MBF is superior in terms of the criteria values obtained 
in the work. The Adaboost does not have acceptable 

performance in data classification. Accordingly, SVM can be an 
excellent alternative to MBF as it has the highest values of F-
score, accuracy, specificity, and sensitivity after that. The results 
reported in Table I match those in Fig. 7 to 11. MBF, with a 
value of about 99.67%, is slightly different from Adaboost, 
which has an accuracy of 99.56%. Compared to the other 
selected models, the F-score, precision, sensitivity, and 
specificity values obtained for MBF are remarkable, with 
98.57%, 99.65%, 97.51%, and 97.51%, respectively. 

The findings of this study underscore the remarkable 
performance of MBF as a novel approach for Android malware 
detection and better than previous ones [30]. Across all 
evaluated metrics including accuracy, F-score, precision, 
sensitivity, and specificity, MBF consistently outperforms the 
other algorithms tested, including SVM, Adaboost, MLP, 
Gaussian Kernel, and RF. With an accuracy of 99.67% and an 
F-score of 98.57%, MBF demonstrates exceptional accuracy 
and robustness in identifying both known and unknown malware 
threats. Additionally, MBF achieves high precision and 
sensitivity, indicating a low false positive rate and a high true 
positive rate, respectively, which are crucial for effective 
malware detection in real-world scenarios. 
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Fig. 5. The true positive rate for the selected models 

 

Fig. 6. The accuracy of the proposed method based on iteration and fitness 

The superiority of MBF over the previous algorithms 
[5,8,17] lies in its utilization of ensemble learning techniques, 
which leverage the strengths of multiple models to enhance 
predictive performance. By combining the predictions from 
various base models, MBF achieves a synergistic effect that 
effectively mitigates the limitations of individual algorithms. 
Furthermore, the utilization of ensemble learning allows MBF 
to adapt and evolve over time, enabling it to effectively detect 

new and evolving malware threats. These findings not only 
highlight the efficacy of MBF in Android malware detection but 
also underscore the importance of exploring innovative 
approaches, such as ensemble learning, to address the escalating 
challenges posed by malicious actors in the mobile ecosystem. 

In Fig. 7, the F-score values illustrate the balance between 
precision and recall achieved by each model. Fig. 8 showcases 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

206 | P a g e  

www.ijacsa.thesai.org 

the accuracy values, indicating the overall correctness of the 
predictions made by the models. Specificity values, depicted in 
Fig. 9, represent the true negative rate, indicating how well the 
models distinguish benign samples from malicious ones. Fig. 10 
displays the sensitivity values, reflecting the true positive rate or 
the models' ability to correctly identify malicious samples. 
Lastly, Fig. 11 presents the precision values, indicating the 
proportion of correctly identified positive cases among all cases 
identified as positive by the models. 

These figures provide a comprehensive visual representation 
of the performance of each model across different evaluation 
metrics, offering insights into their relative strengths and 
weaknesses in Android malware detection. They serve as 
valuable tools for understanding and interpreting the results of 
your study, facilitating comparisons and highlighting the 
superiority of certain models, such as MBF, over others. 

 

Fig. 7. F-score values of the selected models 

 

Fig. 8. Accuracy values of the selected models 
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Fig. 9. Specificity values of the selected models 

 

Fig. 10. Sensitivity values of the selected models 
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Fig. 11. Precision values of the selected models 

TABLE I.  COMPARISON BETWEEN THE SELECTED METHODS BASED ON THE STATISTICAL RESULTS 

Criteria SVM Adaboost MLP Gaussian Kernel RF MBF 

Accuracy 0.9956 0.9908 0.9943 0.9956 0.9943 0.9967 

F_score 0.9811 0.9597 0.9750 0.9811 0.9751 0.9857 

Precision 0.9959 0.9707 0.9848 0.9959 0.9865 0.9965 

Sensisivity 0.9668 0.9489 0.9654 0.9668 0.9640 0.9751 

Specificity 0.9668 0.9489 0.9654 0.9668 0.9640 0.9751 

VI. CONCLUSION 

In summary, a new ensemble model is developed for 
classification problems in the current study. The dataset 
considered in this simulation is related to Android malware 
detection, which is considered a new and suitable dataset. Due 
to the categorical and textual nature of some features, several 
pre-processing steps, including coding non-numerical variables 
into numbers and removing missing values, have been 
performed in the simulation. Also, all input data are mapped and 
normalized to intervals of 0 and 1. The structure of the working 
ensemble model is based on the weighted combination of the 
outputs of each of the used machine learning models. Finding 
the most optimal weighted sum of probability values calculated 
by each model for each class of the problem is the goal of the 
MBF algorithm. The F-score, accuracy, specificity, and 
sensitivity values for the chosen models are shown in Fig. 7 to 
11. When it comes to the criterion values that were found during 
the job, MBF is better. In terms of data categorization, the 
Adaboost's performance is unacceptable. Because SVM has the 
greatest values of F-score, accuracy, specificity, and sensitivity 
after MBF, it can be a great substitute for MBF. The outcomes 
shown in Fig. 7 to 11 correspond with those in Table I. With an 
accuracy of 99.56%, Adaboost and MBF differ somewhat, with 
MBF having a value of around 99.67%. The F-score, accuracy, 
sensitivities, and specificities for MBF are impressive compared 
to the other chosen models; they are 98.57%, 99.65%, 97.51%, 
and 97.51%, respectively. Further research on the use of deep 

learning and insider threat identification issues is warranted. 
Further attempts could prove quite beneficial to the literature. 
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