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Abstract—Wi-Fi based indoor positioning has been considered 

as the most promising approach for civil location-based service 

due to the widespread availability Wi-Fi systems in many 

buildings. One of the most favorable approaches is to employ 

received signal strength indicator (RSSI) of Wi-Fi access points as 

the signals for estimating the mobile object locations. However, 

developing a solution to obtain high positioning accuracy while 

reducing system complexity using traditional methods as well as 

deep learning based methods is still a very challenging task. This 

paper presents a proposal to combine the Truncated Singular 

Value Decomposition (SVD) technique with a Long Short -Term 

Memory (LSTM) model to enhance the performance of indoor 

positioning system. Experimental results on a public dataset 

demonstrate that the proposed approach outperforms other state-

of-the-art solutions by means of positioning accuracy as well as 

computational cost. 
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I. INTRODUCTION 

Indoor positioning has attracted significant interest [1, 2, 3, 
4] due to its potential applications for various Location-based 
Service (LSB) in rescue operations, military, medical care, civil 
activities, etc. While satellite based positioning systems have 
successfully applied in many outdoor applications, the satellite 
signal is rarely available inside buildings. Therefore, it is still a 
very challenging task to develop a solution that achieves 
accurate position estimates at low cost due to the frequent 
change of environment, people movement, etc. 

Various indoor positioning approaches have been proposed 
utilizing different types of signals including Wi-Fi, Bluetooth, 
visible light, acoustic, etc. and their combination [3, 5]. Among 
them, many approaches utilize Received Signal Strength 
Indicator (RSSI) from Wi-Fi Access Points (APs) due to 
widespread deployment of WLANs and Wi-Fi equipped devices 
[6]. It is worth noting that Wi-Fi RSSI signal can be captured 
easily by all smart phones which many people own. Therefore, 
Wi-Fi RSSI based indoor positioning is considered as the most 
promising approach for civil LSB applications since it requires 
no extra infrastructures [6, 7]. 

In indoor environment, traditional localization techniques 
such as trilateration based and triangulation based often require 
line-of-sight (LoS) condition between the transmitter and the 
receiver. Unfortunately, this condition is often false due to 

obstacles and room partitions in buildings [2]. These approaches 
also often require some prior knowledge of the infrastructure 
such as AP locations and additional devices. On the other hand, 
Wi-Fi RSSI fingerprinting based techniques do not require the 
mentioned conditions have been become the most promising 
approach [3, 6, 8, 9], especially for civilian applications. This 
method operates in two phases, one for training, and the other 
for online localization/classification [8]. In the training phase, 
RSSI data are captured at the predetermined reference points 
(RPs) from available Wi-Fi APs to build the radio map database. 
In the localization phase, the online captured data are compared 
to the radio map to determine the target location based on the 
similarity between online data and training data. The flow of 
fingerprinting is visually depicted in Fig. 1. 

 
Fig. 1. The flow of Wi-Fi fingerprinting. 

Traditional fingerprinting based approaches being used for 
estimating position of an object can be classified into 
deterministic and probabilistic methods [10, 11]. Among those 
two methods, previous studies have indicated that the 
probabilistic approaches often deliver better positioning results 
compared to the deterministic approach [12, 13]. The critical 
problem with traditional solutions is that their computational 
cost in the classification phase is often very high when the region 
of interest is large [8, 9]. This leads to the reduction of 
positioning accuracy in real time applications due to the 
movement of the mobile object between Wi-Fi RSSI scanning 
time and the time the system delivers the positioning result. 
Therefore, improving the performance of Wi-Fi indoor 
positioning system (WF-IPS) is a challenge since it needs to 
satisfy both requirements: reducing positioning error and 
reducing execution time. 
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Recently, various artificial neural network (ANN) based 
approaches have been developed for WF-IPS. Since the 
transformation between the observed RSSI values and mobile 
object location is nonlinear, it is difficult to derive a close form 
solution. Therefore, ANN is considered a suitable and reliable 
approach to approximate this transformation. Compared to 
traditional algorithms, deep learning approaches have proved 
their effectiveness when applying to WF-IPS [8]. Several 
solutions for WF-IPS have been proposed utilizing different 
ANN models such as multilayer perception (MLP) [14], stacked 
autoencoder (SAE) [15], convolution neural network [3, 9, 16], 
recurrent neural network (RNN) and its variations [8, 17], etc., 
or their combinations which are considered as hybrid or 
ensemble system. In addition to ANN based methods, several 
solutions combining dimensionality reduction and the use of 
LSTM models have emerged to enhance the accuracy of indoor 
positioning systems based on Wi-Fi fingerprints (WF-IPS) [18, 
19]. These solutions emphasize the significance of 
dimensionality reduction in processing RSSI data to improve the 
performance and efficiency of the system [20]. 

Although having been extensively investigated in the 
literature, determining a sufficient neural network model is still 
of particular interest among the research community. Wi-Fi data 
often has a high dimensionality, and when applied to machine 
learning models, processing a large volume of data becomes 
extremely expensive. Therefore, there have been many studies 
advocating for the use of combined solutions to reduce data 
dimensionality including Truncated SVD, Principal Component 
Analysis (PCA), and autoencoders [20]. Prominent studies in 
this field have demonstrated that reducing data dimensionality 
not only improves model performance but also significantly 
reduces the required computational resources. 

Having inspiration from the advantages of data 
dimensionality reduction in classification and regression 
problem, this article introduces a solution for WF-IPS which 
combines Truncated SVD and LSTM models to improve 
positioning accuracy while reducing computational costs. To 
ensure a fair performance comparison of the proposed approach 
with state-of-the-art solutions, the dataset provided in study [33] 
is utilized in this study. In summary, our contributions are as 
follows: 

 Truncated SVD is utilized for data dimensionality 
reduction as well as noise removal, demonstrating its 
superiority over PCA in various scenarios. 

 We demonstrate that utilizing truncated SVD for 
dimensionality reduction reduces the computational load 
while improving performance in location prediction and 
execution time compared to the other state-of-the-art 
approaches on the same dataset. 

 We conduct a thorough analysis of the improvements 
gained from employing our proposed solution in 
different test scenarios, highlighting its overall 
effectiveness. 

The rest of the article is organized as follows. In Section II, 
the related works are presented. The proposed approach of 
combining Truncated SVD and LSTM model is presented in 
Section III. In Section IV, the experimental results are 

extensively presented to demonstrate the superiority of the 
proposed approach. The conclusions of the paper are drawn in 
Section V. 

II. RELATED WORKS 

Recently, many researchers have focused on the challenges 
of indoor positioning systems (IPS) based on Wi-Fi 
fingerprinting using machine learning and deep learning 
techniques. Collecting Wi-Fi fingerprint signals often results in 
high-dimensional data, which poses challenges during both the 
training and localization phases of machine learning models. 
Dimensionality reduction is an important solution for high-
dimensional indoor positioning problems, although there might 
be a trade-off between dimensionality reduction and model 
accuracy [21, 22]. Minimizing computational costs during the 
position estimation phase is crucial for real-time monitoring 
systems. Therefore, designing a model with low computational 
cost makes indoor positioning systems more feasible. In the 
following content, machine learning and deep learning 
techniques with data dimensionality reduction are explored. 

Various types of neural networks have been utilized to 
develop solutions for WF-IPS. Among them, Recurrent Neural 
Network (RNN) seem to be very attractive in many previous 
research [17, 18, 19, 23, 24]. In study [17], the authors presented 
the evaluation of RNN and LSTM (a variant of RNN) as the 
deep learning technique to build a WF-IPS system. The 
experimental evaluation on a public available dataset showed 
that their proposed RNN and LSTM model can deliver almost 
the same accuracy on floor classification (99.7%) as well as 
position estimates (2.5-2.7 meters). The computation time 
between the two models was also presented, RNN required less 
time than LSTM model both on training and testing procedures. 
In study [23], the authors proposed a local feature-based deep 
LSTM approach for a WF-IPS. The robust local features are 
extracted, and the noise is eliminated by a local feature extractor 
applying sliding windows. The local features are then fed into a 
deep LSTM for target position estimation. Their proposed 
approach is conducted in real environments and compared with 
other state-of-the-art approaches for indoor positioning. The 
experimental results indicate the mean localization error of their 
approach has been improved by 18.98% to 53.46% compared to 
the others. 

A novel method that transforms RSSI signals into principal 
components (PCs) using all the effects of APs is proposed in 
[25]. Instead of selecting APs, this research replaces the 
captured Wi-Fi RSSI with a subset of PCs to enhance 
localization accuracy and reduce computational costs. Test 
results in a real WLAN environment showed that the average 
distance error decreased by 33.75%, and complexity decreased 
by 40% in comparison with other methods. Authors in [26] 
introduced a new technique for clustering location data into 
subregions using an algorithm named fuzzy C-means. Useful 
APs were then selected to reduce the dimensionality of RSSI 
fingerprint data during the training procedure. In the online 
phase, the Nearest Neighbor (NN) method was used to select 
subregions and compute location coordinates of the target 
utilizing the Relative Distance Fuzzy Localization algorithm. 
Test results demonstrated that their proposed model reduced 
computation time and improved localization accuracy. In study 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

283 | P a g e  

www.ijacsa.thesai.org 

[27] a magnetic field indoor fingerprinting system based on 
CNNs was proposed. The Recurrence Plots were utilized as 
sequence fingerprints and the localization problem is 
approaching from a regression framework. The real-world 
experimental results show the advantages of their proposal 
compared to the other studies, though its computation cost is 
high. In study [28], an LSTM network was used to learn high-
level representations of extracted local temporal features, then 
to eliminate the noise impact, a local feature extraction approach 
was employed to extract powerful local features. In study [29], 
to avoid quality degradation, spatial features of Wi-Fi signals are 
extracted by a residual-based network at the same time slice and 
then an LSTM network is employed to extract temporal features 
of Wi-Fi signals between successive time slices. Research [30] 
proposed a data dimensionality reduction technique to enhance 
performance of Wi-Fi IPS based on Multiple Service Set 
Identifiers. Test results of the proposed system achieved 
localization error of less than 0.85 m over an area of 3000 m2, 
with a cumulative distribution function of 88% at a localization 
error of 2 m. 

In general, there is often a trade-off between accuracy and 
computational speed in indoor Wi-Fi RSSI-based positioning 
models due to high dimensionality data. However, studies 
combining dimensionality reduction and machine learning have 
shown significant effectiveness in both accuracy and 
computational speed. In this research, we propose the use of 
dimensionality reduction with Truncated SVD combined with 
LSTM for indoor Wi-Fi signal-based location estimation. To 
ensure fairness in performance evaluation, we utilized [17, 19] 
as a reference document to conduct a comprehensive 
comparison and assess localization performance on both 
positioning accuracy and system complexity using the same 
dataset. 

III. PROPOSED APPROACH 

The proposed approach which combines Truncated SVD and 
LSTM model (Truncated SVD-LSTM) for performance 
enhancement of Wi-Fi fingerprinting based indoor positioning 
is systematically presented in this section. 

A. System Architecture 

The structure of the proposed indoor positioning system 
consists of two main phases as is illustrated in Fig. 2. This block 
diagram provides a visual representation of the operation of the 
indoor positioning model, allowing us to understand how data 
flows from the initial data collection phase to the final estimation 
of the user's location. 

The proposed indoor positioning model is separated into two 
phases: the offline training phase and the online testing phase. 
During the offline training phase, data collected from various 
sources are aggregated and normalized. The data are then passed 
through the Truncated SVD for dimensionality reduction. The 
utilization of Truncated SVD helps eliminate unnecessary 
information and reduce the complexity of the original data. Once 
the data has been dimensionally reduced, they are ready to be 
utilized for training the LSTM model. During the offline training 
phase, the LSTM model learns how to predict the target position 
based on the reduced training data processed by Truncated SVD 
and known locations. After the model has been trained, it can be 

used to estimate the target position in real-time. In the online 
testing phase, each new data sample collected from a target 
device is processed by normalization and Truncated SVD in the 
same way as in the offline phase. Subsequently, the dimensional 
reduced data sample is fed into the already trained LSTM model 
to estimate the target real-time position. The result of the testing 
phase is the predicted position of the target within the area of 
interest. 

 

Fig. 2. System architecture of the proposed WF-IPS. 

B. The Proposed Approach for Combining  Truncated SVD 

and LSTM Model 

1) Introduction to Truncated SVD: Truncated SVD [31] is 

a technique developed for dimensionality reduction. It is 

commonly utilized to solve the various problems where high-

dimensional data are presented. This phenomenon, namely 

“curse of dimensionality”, often affects the performance of the 

machine learning based system. Truncated SVD is built upon 

the concept of SVD, which decomposes a matrix A into three 

separate matrices Σ,U,V  corresponding to singular values, 

left and right singular vectors of the matrix A , as presented in 

Eq. (1). 

  
T

M N M M M N N N   A U Σ V                       (1) 

Truncated SVD retains the top k singular values and their 

associate singular vectors. The main concept of Truncated SVD 
is finding a representation of the original matrix with a much 
lower dimensionality while preserving the most data 
information such as data patterns and data relationships. To 
effectively reduce the data dimensionality according to any 

specific problem, determining the best value of k is of important 

task. Mathematical expression of Truncated SVD is presented in 
Eq. (2). 

  
T

M N k k k k k k k k     A A U Σ V  (2) 

2) Introduction to LSTM: In this study, the LSTM model 

[32] is employed to develop an indoor positioning solution. The 

target location is predicted via the LSTM linear regression 

model utilizing the low dimensional data processed by 

Truncated SVD. LSTM model selectively forgets or remembers 

information over long data sequences. In the LSTM, long-term 

dependencies are captured for modeling context and sequential 
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patterns. There are a memory cell and three gates namely input 

gate
ti , forget gate

tf , and output gate 
to in an LSTM cell as 

shown in Fig. 3. The input gate regulates the information 

transmitted to the cell. The forget gate decides how much 

information transmitted to the cell should be retained. Output 

sequences and hidden state are produced and updated by output 

gate. The memory cell is responsible for storing information 

over time in the network. The mathematical expressions for the 

LSTM network at each time step t are presented in Eq. (3) to 

Eq. (8). 

  , , 1t i x t i h t ii W x W h b 
                            (3) 

  , , 1t f x t f h t ff W x W h b 
   
 

                       (4) 

  , , 1tanht c x t c h t cC W x W h b
                           (5) 

 
1t t t t tC f C i C                                       (6) 

  , , 1t o x t o h t oo W x W h b 
                             (7) 

  tanht t th o C                                        (8) 

Where, , , ,t t t tx h C C are the input, output, cell state and 

updated cell state at time step t , respectively, 
1 1,t tC h 

are the 

previous cell state and hidden state. 

, , , , , , ,i f c o i f c oW W W W b b b b are, respectively, the weight 

matrices and the bias vectors of the input, forget, updated cell 
state and output gate layers. The activation functions utilized in 

LSTM cell are  and tanh . 

 

Fig. 3. LSTM cell structure. 

3) Proposed model: Fig. 4 introduces the general model 

that integrates data dimensionality reduction using Truncated 

SVD and LSTM neural network to address indoor localization 

based on Wi-Fi RSSI data. 
The original RSSI data consists of a large number of features 

 N , and Truncated SVD is employed to reduce the data 

dimensionality to k features  k N , thus reducing 

complexity and enhancing the generalization capability of the 
model. The low dimensional data samples are then fed into the 
LSTM model for training and predicting the device's position 

within the indoor environment. The format of the RSSI data can 
be seen as follows: 

 

11 12 1

21 22 2

1 2

N

N

M N

M M MN

RSSI RSSI RSSI

RSSI RSSI RSSI
RSSI

RSSI RSSI RSSI



 
 
 

  
 
  

 

 
Fig. 4. Combination of Truncated SVD and LSTM for indoor positioning. 

This is a collection of RSSI values obtained at each location 

in the training set, where  and M N represent the number of 
RSSI samples and the number of detected APs in the dataset. 

The workflow of our proposal is described in Fig. 5. 

 

Fig. 5. The principle of the proposed approach. 
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IV. RESULTS AND DISCUSSION 

The effectiveness of the proposed approach is extensively 
presented and analyzed in this section. The experimental results 
are produced by using a public dataset [33]. Localization error 
and computational cost are the focused performance 
characteristics for comparison between our proposal and other 
state-of-the-art methods. 

A. Wi-Fi RSSI Dataset 

The dataset [33] was collected on the 3rd and 5th floors of a 
university’s library building. Data collection involved facing 
specific directions and gathering six fingerprints per location, 
with six consecutive samples per point to exclude any initial 
measurements. The training, Test-01, and Test-05 datasets 
covered "Up" and "Down" directions, while Test-04 and Test-
05 focused on "Left" and "Right." Collection followed a 
sequence: (1) direct 3rd floor, (2) reverse 3rd floor, (3) direct 5th 
floor, and (4) reverse 5th floor. Training, Test-01, and Test-05 
always included data from all directions monthly. Test- 04 data 
were from horizontal corridors. Due to time constraints, Test-02 
and Test-03 considered only two directions, covering 308.4 m² 
on both floors. The datasets were organized into 15 collection 
months, resulting in 16,704 training and 46,800 test samples, 
collected comprehensively for Wi-Fi RSSI-based indoor 
positioning. Table I presents the main characteristics of the 
dataset. For data preprocessing, the values for undetected APs 
are replaced by -100 dBm which is the weakest signal in the 
dataset for the whole work presented in the following content of 
this paper. 

TABLE I.  DATASET CHARACTERISTICS 

Characteristics Values 

Training samples 16,704 

Testing samples 46,800 

Number of measurements taken at each RP 12 

Number of observable APs 448 

Number of floors 2 

Coverage 308.4 m² 

Number of training RP 48 

Number of test positions 212 

Period of measurement campaign 15 months 

Training RSSI range -98 dBm to -31 dBm 

Testing RSSI range -100 dBm to -32 dBm 

Constant value for undetected APs 100 dBm 

B. Data Normalization 

The tricky problems in the characteristics of Wi-Fi RSSI data 
that affect the performance of Wi-Fi IPS are the variation over 
time and the fluctuation due to the quick changes of indoor 
environment as well as the behavioral of the devices. To deal 
with such the problems, data normalization is considered the 
necessary step which reduces the data variation while 
maintaining information. Consequently, it helps to enhance the 
performance of dimensionality reduction techniques and 
learning capacity of deep learning model. In this study, two 
common normalization techniques, namely standard 

normalization and max-min normalization, were evaluated to 
come up with the best normalization solution. Each Wi-Fi RSSI 
sample is normalized as presented in Eq. (9) or Eq. (10) 
according to the chosen normalization technique. It is noted that 
all the RSSI values of undetected APs were replaced by -100 
dBm. 

 
j

jStdNorm

RSSI RSSI
RSSI

RSSI






                        (9) 

 
min

max min

j

jMaxMinNorm

RSSI RSSI
RSSI

RSSI RSSI





                   (10) 

where, , ,  and jStdNorm jMixMinNorm jRSSI RSSI RSSI are the 

normalized values corresponding to standard normalization and 
max-min normalization and the raw value of the RSSI of the j-

th AP in each RSSI sample. 
max min, , ,RSSI RSSI RSSI RSSI 

are 

the mean, standard deviation, maximum and minimum values of 
each RSSI sample. 

C. Determination of the Number of Dimensions for   

Truncated SVD  

An important task when using Truncated SVD technique to 
reduce data dimensionality is determining the number of 
dimensions to retain preserve data information. We conducted a 
survey to identify the number of dimensions to be kept. Fig. 6 
illustrates the relationship between the number of Truncated 
SVD dimensions and the amount of preserved information. As 
can be seen, when the number of dimensions is reduced to 100, 
the cumulative explained variance ratio almost reaches 100%, it 
means that the information loss after truncation is negligible. It 
is noted that the number of features of original data is 448, hence 
100 kept dimensions meet the target of dimensionality 
reduction. Therefore, in this study, the number of dimensions to 
be kept is set to 100. 

 
Fig. 6. The relationship between the number of dimensions and the preserved 

information. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

286 | P a g e  

www.ijacsa.thesai.org 

D. Model Optimization 

For optimizing our proposed model, the LSTM model 
presented in study [19] is first utilized as presented in Table II. 
It is worth noting that in study [19] the authors presented a 
solution for Wi-Fi fingerprinting based IPS by combining PCA 
with LSTM, their model was also evaluated on the dataset 
provided in study [33]. That explained the reason why their 
LSTM model was chosen as the starting point for our model 
optimization procedure. 

TABLE II.  GENERAL MODEL 

Characteristics Value 

Number of LSTM units 100 

Drop rate for LSTM layer 0.3 

Activation function for LSTM layer sigmoid 

Number of units for Dense layer 100 

Activation function for Dense layer sigmoid 

Dropout rate for Dense layer 0 

Number of units for Output layer 2 

Activation function for Output layer linear 

Learning rate 0.001 

Optimizer Adam 

Batch size 32 

Training epoch 100 

Before tuning hyperparameter of the LSTM model, data 
normalization techniques as presented in subsection B are first 
evaluated since it strongly affects the performance of 
dimensionality reduction as well as deep learning. As shown in 
Table III, standard normalization technique yields better Mean 
Distance Error (MDE) result compared to the min-max 
normalization. Therefore, for further hyperparameter tuning of 
the LSTM model, standard normalization was selected. It is 
noted that during the tuning process, the min-max normalization 
is still checked each time a hyperparameter is evaluated and all 
the results confirmed standard normalization technique is the 
better one. 

TABLE III.  MEAN DISTANCE ERROR WITH DIFFERENT DATA 

NORMALIZATION METHODS 

Normalization MDE (m) 

Min-max 2.231 

Standard 2.087 

For hyperparameter tuning, different configurations of 
LSTM were evaluated as illustrated in Table IV. Comparing the 
values between column “Value delivered the best MDE” in 
Table IV and column “Value” in Table II, it is obvious that the 
main structure of the LSTM model such as number of LSTM 
units and number of units for Dense layer remain unchanged. 
However, the optimized values of drop rate, activation function, 

batch size and training epoch were different. These changes 
make the optimized model operate faster during training on the 
same dataset as demonstrated in the next subsection. 

TABLE IV.  HYPERPARAMETER TUNING 

Characteristics 
Value options for 

tuning 

Value 

delivered the 

best MDE 

Number of LSTM units [40:20:140] 100 

Drop rate for LSTM layer [0.2, 0.25, 0.3] 0.2 

Activation function for LSTM 

layer 
[relu, tanh, sigmoid] relu 

Number of units for Dense 

layer 
[40: 20: 200] 100 

Activation function for Dense 

layer 
[relu, tanh, sigmoid] sigmoid 

Dropout rate for Dense layer [0.0, 0.1, 0.2, 0.3] 0 

Number of units for Output 

layer 
2 2 

Activation function for Output 

layer 
linear linear 

Learning rate [0.01 0.001, 0.0001] 0.001 

Optimizer Adam Adam 

Batch size [16, 32, 64, 128] 64 

Training epoch [20:10:100] 30 

E. Positioning Performance Evaluation 

To evaluate the localization error of our proposal, for a fair 
comparison, some state-of-the-art works conducted on the same 
dataset presented in [32] were selected as the benchmark deep 
learning-based models. Mean Distance Error (MDE) and Root 
Mean Squared Error (RMSE) are selected among typical 
evaluation metrics for comparing the positioning accuracy of 

different approaches. Denoting 
id as the localization distance 

error of the i-th RSSI test sample, and the coordinates of the true 

and the predicted position are  , ,,i true i truex y  and  , ,,i pred i predx y

, respectively, the localization distance error measured by 
Euclidean distance is computed by Eq. (11). MDE and RMSE 
are then correspondingly determined by Eq. (12) and Eq. (13). 

    
2 2

, . , .i i true i pred i true i predd x x y y                  (11) 

 1

testN

ii

test

d
MDE

N




                                    (12) 

 2

1

1 testN

ii
test

RMSE d
N 

                                 (13) 

Table V presents the achieved values based on the evaluation 
criteria, including Mean Squared Error (RMSE) and Mean 
Distance Error (MDE), for various localization solutions. The 
results clearly demonstrate that the proposed solution exhibits 
the lowest RMSE and MDE values, e.g., the MDE of the 
proposed model is reduced by approximately 6% and 21% 
compared to the results presented in study [19] and [17], 
respectively. Furthermore, Table VI highlights the superiority of 
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our proposed approach in terms of computational complexity. 
Specifically, our solution reduces training time by more than 
80% compared to both benchmark solutions. When using the 
proposed solution, the prediction time is improved by roughly 
20% compared to using LSTM without dimensionality 
reduction. It is noted that the testing time of the proposed 
solution is the same as the study presented in study [19] since 
the two models are very similar as mentioned in previous 
subsection. This underscores the efficiency and effectiveness of 
our approach in indoor localization scenarios. 

TABLE V.  POSITIONING ERROR COMPARISON 

Models MDE RMSE 

LSTM [17] 2.5-2.7 - 

PCA-LSTM [19] 2.18 1.95 

Proposed 2.05 1.75 

TABLE VI.  MODEL COMPLEXITY COMPARISON 

Models 

Number of 

trainable 

parameters 

Training time 

[s] 

Testing time [s] 

(whole test 

dataset) 

LSTM [17] NAa 581.3599b 10.1721b 

PCA-LSTM [19] 90,702 Approx. 500c,d 8,1c 

Proposed 90,702 85 c 8,1 c 

a. Not available 

b. NVIDIA GeForce GTX 1080 Ti as Graphical Processing Unit (GPU) 

c. NVIDIA Quadro P2200 as Graphical Processing Unit (GPU) 

d. 100 training epoch 

 

Fig. 7. Comparison of positioning error. 

Fig. 7 illustrates the cumulative error function based on 
Euclidean distance for different LSTM models. The solid line 
represents the prediction probability using the proposed 
Truncated SVD and LSTM solution. The dashed line and the 
dash dot line depict the CDF of distance error of the two 
benchmark approaches, [19] and [17], respectively. According 
to the data presented on Fig. 7, it is obvious that data 
dimensionality reduction based approaches outperform the other 
in which data preprocessing technique is not implemented. In 
addition, employing suitable data preprocessing and 

dimensional reduction techniques can lead to further 
enhancement of location prediction accuracy. 

The experimental results presented above illustrate the 
important role of Truncated SVD in the proposed approach. This 
is the main difference between our work and the one presented 
in [19]. In addition, fine tuning the parameters of LSTM model 
is also very essential during the development of the concrete 
solution for a specific indoor positioning system. 

V. CONCLUSIONS 

In this study, an approach called Truncated SVD-LSTM for 
indoor localization based on Wi-Fi fingerprints is introduced. To 
the best of our knowledge, this is the first time an indoor 
positioning solution has been built upon the fusion of Truncated 
SVD and LSTM model. Our solution focuses on reducing the 
dimensionality of the data to enhance positioning accuracy and 
computational cost of the model. We conducted experiments on 
a publicly available dataset and achieved impressive results. The 
experimental outcomes have unequivocally demonstrated that 
the integrated LSTM structure in our solution has attained an 
average localization error of 2.05 meters, with nearly 60% of 
cases having errors below 2 meters. This signifies an 
enhancement of approximately 6% and 21% compared to state-
of-the-art studies, [19] and [17], respectively, utilizing LSTM on 
the same dataset. The results also indicate that the proposed 
solution significantly reduces computational costs, especially 
for the training procedure. Compared to the state-of-the-art 
approach, the evaluation results demonstrated the superiority of 
the proposed solution. In the future, the supervised techniques 
for data dimensionality reduction should be investigated in order 
to extract information in a supervised manner which may help 
the localization model perform more efficiently. 
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