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Abstract—The brain-computer interface (BCI) based on 

steady-state visual evoked potentials (SSVEP) has attracted 

considerable attention due to its non-invasiveness, low user 

training requirements, and efficient information transfer rate. To 

optimize the accuracy of SSVEP detection, we propose an 

innovative hybrid EEG denoising model combining variational 

mode decomposition (VMD) with wavelet packet 

transform(WPT). This model ingeniously integrates VMD 

decomposition and WPT denoising techniques, employing 

detrended fluctuation analysis (DFA) thresholding to deeply filter 

the noisy data collected from wearable devices. The filtered 

components are then reconstructed alongside the unprocessed 

components. Finally, three classification algorithms are used to 

validate the proposed method on a wearable SSVEP-BCI dataset. 

Our proposed algorithm achieves accuracies of 71.27% and 

86.35% on dry and wet electrodes, respectively. Comparing the 

use of VMD combined with adaptive wavelet denoising and direct 

denoising with VMD, the classification accuracy of our method 

improved by 3.68% and 0.26% on dry electrodes, respectively, and 

by 3.28% and 0.66% on wet electrodes, respectively. The proposed 

approach demonstrates excellent performance and holds 

promising potential for application and generalization in the field 

of wearable EEG denoising. 

Keywords—Brain-computer interface; steady-state visual evoked 

potential; style; variational mode decomposition; wavelet packet 

transform 

I. INTRODUCTION 

Brain-computer interface (BCI) technology facilitates the 
direct conversion of brain signals into computer input signals, 
enabling direct human-computer interaction [1, 2]. When 
neurons in the brain are active, they generate weak electrical 
signals, which can be transmitted through the scalp, skull, and 
tissues to the surface of the scalp, forming electroencephalogram 
(EEG) signals [3, 4]. Steady-state visual evoked potentials 
(SSVEP) [5] are among the most common neurophysiological 
electrical signals in EEG. Compared to other 
electrophysiological signal sources, SSVEP-based BCIs offer 
higher information transfer rate, signal-to-noise ratios, and 
classification accuracies. To enhance the practicality of SSVEP-
based BCI systems, there is an increasing demand for wearable 
BCI systems. 

EEG electrodes play a crucial role in wearable BCI systems. 
Dry electrodes, which do not require conductive gel, offer a 
convenient and durable method for EEG signal acquisition [6, 
7]. However, due to the need for close contact with the scalp, 
dry electrodes often result in poorer signal quality and user 
experience. Additionally, portable devices are typically more 
susceptible to contamination from typical sources of noise 

compared to standard EEG systems [8-10]. Therefore, in 
wearable SSVEP-BCI data, noise reduction processing becomes 
particularly crucial. 

The processing of wearable physiological signals remains a 
hot research topic, with significant achievements in the field of 
EEG denoising. Peng et al.[11] first proposed a novel model for 
removing eye artifacts from EEG signals, based on discrete 
wavelet transform (DWT) and adaptive noise cancellation 
(ANC). The results demonstrated the effectiveness of this model 
in removing eye artifacts, making it particularly suitable for 
applications in portable environments. Similarly, Zhao et al.[12] 
also introduced a hybrid denoising method using DWT and 
adaptive predictive filtering (APF) for automatic identification 
and removal of eye artifacts. However, some drawbacks of time-
frequency transformation methods include limited resolution, 
windowing effects, occurrence of cross-terms, high complexity 
and computational costs, poor interpretability, sensitivity to 
noise, and challenges in parameter selection. EMD is an 
adaptive decomposition method that does not involve a complex 
selection process for basis functions. It offers higher resolution 
than traditional time-frequency analysis methods but suffers 
from drawbacks such as mode mixing, endpoint effects, and a 
lack of mathematical theory [13-15]. To overcome these 
limitations, improved EMD algorithms have been proposed, 
such as ensemble empirical mode decomposition (EEMD)[16] 
and complementary ensemble empirical mode decomposition 
(CEEMD) [17]. While these methods have improved the 
decomposition results, issues like mode mixing and endpoint 
effects persist, and all three methods lack mathematical 
theoretical support. In 2014, Dragomiretskiy and Rosso[18] 
introduced variational mode decomposition (VMD), which 
differs from EMD, EEMD, and CEEMD in that it is not 
"empirical" but rather supported by strong mathematical theory. 
VMD is a new adaptive signal decomposition algorithm and has 
shown promising results in denoising and time-frequency 
analysis [19-21]. 

However, a single time-frequency domain analysis methods 
lack uniformity in time-frequency resolution, making it 
challenging to accurately capture the changing characteristics of 
non-stationary signals across different time and frequency 
ranges. Subsequently, Narmada et al. [22] proposed a deep 
learning and heuristic-based adaptive pseudo-shadow wavelet 
denoising method, which enhances the denoising effect through 
a combination of EMD and DWT. Therefore, our study proposes 
a hybrid denoising technique combining VMD with wavelet 
packet transform (WPT), aiming to explore the intrinsic 
characteristics of SSVEP data. VMD, with its remarkable 
decoupling capability, effectively separates mixed components 
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in SSVEP signals. The wavelet-hybrid denoising technique 
effectively preserves the useful information in the signal while 
significantly attenuating the noise components, enhancing the 
purity of the signal. 

To comprehensively validate the practicality of this 
approach, we employed three recognition algorithms: canonical 
correlation analysis (CCA), filter bank canonical correlation 
analysis (FBCCA), and task-related component analysis 
(TRCA). These algorithms, each with its unique features, 
classify and recognize signals from different perspectives, 
providing a comprehensive performance evaluation. 
Additionally, this paper further investigates the application 
potential of this method in wearable SSVEP EEG signal 
recognition by comparing it with different denoising methods. 

The structure of the remaining part of this paper is as follows. 
The second part primarily elaborates on the methods used in this 
study. The third part provides an introduction to the dataset used 
and the determination of experimental parameters. The fourth 
part discusses relevant issues based on experimental results. 
Discussions continue in Section V. and the sixth part.summarize 
the work done in this paper. 

II. METHOD 

A. Overview 

The workflow of this method includes the following steps: 
firstly, the EEG signals are subjected to initial preprocessing and 
bandpass filtering to eliminate noise interference. Next, the 
VMD technique is employed to decompose the signals into K 
band-limited intrinsic mode functions (BLIMFs), which helps 
better capture the frequency characteristics of the signals. Then, 
detrended fluctuation analysis (DFA) is utilized for threshold 
determination to filter out BLIMFs that do not meet the 
threshold conditions, which are subsequently subjected to 
wavelet denoising. Wavelet denoising mainly utilizes wavelet 
packet transform (WPT), effectively reducing noise components 
in the signals. Finally, the reconstructed signals obtained by 
adding the threshold-filtered BLIMFs and further processed 
BLIMFs are inputted into three different classification 
algorithms for further recognition and classification, as 
illustrated in Fig. 1. 

B. VMD and Wavelet Hybrid Denoising 

1) Variational mode decomposition: Variational mode 

decomposition (VMD) is a novel and more effective non-

recursive signal preprocessing algorithm that can adaptively 

determine relevant frequency bands and compute individual 

mode components simultaneously. The VMD algorithm 

decomposes any signal x(t) into K discrete sub-signals or 

modes uk, where each mode is centered around its respective 

central frequency ωk. The expression for uk is given in Equation 

(1): 

      cosk k ku t A t t                            (1) 

In the equation, uk(t) represents the k-th intrinsic mode 
function (IMF), which is primarily designed to limit bandwidth; 
Ak(t) denotes the instantaneous amplitude of uk(t); ωk(t) stands 
for the instantaneous frequency of uk(t). Each component is 
centered around the central frequency ωk(t), and gaussian 
smoothing can be employed to estimate the bandwidth. Due to 
the sparsity of VMD decomposition, the decomposition problem 
can be formulated as follows. As shown in Equation (2): 

   
   

 

2

1,
2

1

min

. .

k

k k

K j t

t kku

K

kk

j
t u t e

t

s t u t x














    
     

    






     (2) 

In the equation, t denotes the time symbol, δ(t) represents the 
dirac delta function, * denotes convolution. To solve the 
aforementioned problem optimally, an augmented lagrangian 
function is introduced, transforming the constrained variational 
problem into an unconstrained variational problem, expressed 
as: 
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In the equation, α is a secondary penalty factor ensuring 
signal reconstruction accuracy; λ(t) represents the Lagrange 
multiplier operator. Equation (3) is then solved using the 
alternating direction method of multipliers (ADMM). In the 
fourier domain, the optimal uk(ω) is directly updated via wiener 
filtering [23].Therefore, wiener filtering is embedded in VMD 
to enhance its robustness to sampling and noise. This yields the 
time-domain mode uk(t): 
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Where  x̂   is the fourier transform of the signal  x t , 

 ifft   is the inverse fourier transform of, and    denotes the 

real part of the analytical signal. The updated equation for 
k  is 

as follows, and its optimization is also performed in the fourier 
domain. As shown in Equation (6): 
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Fig. 1.  Overall workflow diagram. 

In VMD decomposition, the penalty factor α and the number 
of mode components K directly influence the decomposition 
results. α primarily affects the accuracy of the decomposition 
results, while the value of K directly affects the correctness of 
the decomposition results. If the chosen K is smaller than the 
number of useful components in the signal (under-
decomposition), it may lead to incomplete decomposition and 
mode mixing. Conversely, if the chosen K is greater than the 
number of useful components in the signal (over-
decomposition), it may result in some irrelevant false 
components. Therefore, the selection of K is crucial for the 
results of VMD. 

2) The principle of VMD and wavelet hybrid denoising: 

Wavelet packet transform (WPT) is an advancement built upon 

the foundation of DWT. In DWT, a signal is decomposed into 

a series of high-frequency and low-frequency components, but 

only the low-frequency part is iteratively decomposed. In 

contrast, WPT simultaneously decomposes both high-

frequency and low-frequency components at each 

decomposition level. This means that it can analyze the 

frequency content of the signal in more detail. Wavelet packets 

inherit the advantages of wavelet transform, capturing both 

time-domain and frequency-domain features, which enables 

effective handling of unstable signals. Additionally, for both 

high-frequency and low-frequency signal components, wavelet 

packet transform provides good signal processing performance 

while maintaining the same time-frequency resolution. The 

full-band analysis capability of WPT is particularly suitable for 

applications where signal characteristics are not limited to the 

low-frequency range alone. Due to its fine-grained analysis 

characteristics, wavelet packet decomposition demonstrates its 

unique advantages in various applications. It not only offers 

improved performance in signal denoising and data 

compression but also exhibits unparalleled capabilities in 

biomedical signal processing, speech recognition, and seismic 

data analysis [24-27]. 

In the method proposed in this paper, after decomposing the 
modal components using VMD, a threshold judgment is applied 
to these components. Components that do not meet the threshold 
condition are further denoised using WPT. In the process of 
wavelet denoising, the selection of appropriate wavelet 
functions and decomposition levels is crucial. Previous research 
[28] has shown that the wavelet function 'db8' has more effective 
denoising effects for EEG signals from healthy subjects. 
However, to more accurately select wavelet functions suitable 
for EEG signals, this paper refers to the method in [29] and tries 
different Daubechies wavelet functions. The experimental 
results show that 'db4' and 'db8' have more significant denoising 
effects on EEG signals. Therefore, 'db4' was chosen as the 
wavelet function suitable for the experiment. For determining 
the decomposition levels, this paper follows the definition of 
decomposition levels based on Shannon entropy [30]. The 
process involves increasing the decomposition levels and then 
calculating the entropy of the detail coefficients and 
approximation coefficients. When the detail entropy is greater 
than the approximation entropy, the decomposition level at 
which to stop is determined. Based on experimental results, the 
decomposition level was determined to be 3. Finally, the 
denoised components obtained through wavelet denoising are 
added to the components that meet the threshold conditions to 
reconstruct cleaner EEG signals. 

C. The Three Recognition Algorithms 

This paper mainly employs three recognition algorithms, 
namely CCA, FBCCA, and TRCA, to classify wearable SSVEP 
EEG signals. 
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1) Canonical correlation analysis (CCA): The canonical 

correlation analysis (CCA) algorithm is a multivariate 

statistical analysis method that utilizes the correlation between 

composite variables to reflect the overall correlation between 

two sets of indicators. It is widely used in the analysis of SSVEP 

signals due to its effectiveness and robustness [31]. 

2) Filter bank canonical correlation analysis (FBCCA): 

Due to non-Gaussian background noise and its harmonics 

affecting SSVEP, the CCA method may not fully utilize the 

characteristics of SSVEP signals [32]. To address this issue, 

Chen et al. proposed FBCCA [33], which combines filter bank 

technology with CCA to enhance performance.Task-related 

component analysis (TRCA): The TRCA algorithm was first 

proposed by Nakanishi in 2018 [34]. It aims to enhance the 

signal-to-noise ratio and suppress spontaneous brain activity by 

maximizing the repeatability of inter-trial covariance using 

training data from target subjects, thereby extracting task-

related components. 

Assuming 
c sN Nk

iX



and

c sN Nk

jX



 represent the EEG 

signals of the i-th and j-th experiments corresponding to the k-
th stimulus frequency for a particular subject, where Nc denotes 
the number of EEG channels, Ns denotes the number of 
sampling points, and k=1,2,…,Nf, the constrained optimization 
problem of TRCA is reduced to the following Rayleigh-Ritz 
eigenvalue problem. As shown in Equation (7): 
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Where S and Q are respectively the sums of inter-trial 
covariance matrix and auto-covariance matrix, calculated as 
follows:  
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Where Nb  is the number of training experiments. 

The spatial filters can be obtained from the eigenvectors 
corresponding to the largest eigenvalue of the matrix Q-1S. 
Therefore, spatial filters corresponding to all stimulus 
frequencies can be computed. The correlation coefficient rk 

between the test data c sN N

tX


  and the averaged training 

template kX  is calculated by the following equation: 

 ,T T

k t kr X W X W
                          (10) 

Then, the maximum correlation coefficient among all 
correlation coefficients with the averaged training templates for 
all stimulus frequencies is found. The stimulus frequency 
corresponding to the maximum correlation coefficient is 
identified as the target stimulus. 

D. Performance Evaluation 

This paper evaluates the performance of the model using 
accuracy and F1score based on the confusion matrix. The 
expressions for accuracy and F1score are as follows: 

Accuracy=
TP TN
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where TP, TN, FP, and FN represent true positive, true 
negative, false positive,and false negative, respectively. 

III. DATASET AND PARAMETER SETTINGS 

A. Dataset 

The proposed method model was validated on a wearable 
SSVEP-BCI dataset [35]. The dataset comprised 102 healthy 
subjects with normal or corrected-to-normal vision (64 males, 
38 females, aged 8-52 years) recorded using SSVEP-based 
brain-computer interface, involving 12 targets. The 12 targets 
were encoded using the JFPM method, with a frequency range 
of 9.25 to 14.75 Hz in 0.5 Hz intervals, and a phase difference 
of 0.5 π between adjacent targets. For each subject, experiments 
were conducted using both dry and wet electrodes, with 10 
consecutive data blocks recorded for each electrode type. Each 
block contained 12 trials corresponding to each target displayed 
once in random order. Data were recorded according to the 
international 10-20 system, with 8 electrodes placed on the 
parieto-occipital area (POz, PO3, PO4, PO5, PO6, Oz, O1, O2) 
and 2 electrodes on the frontal area serving as reference and 
ground. Data extraction from the public dataset was performed 
at time points ranging from 0.64 to 2.64 seconds during the 
experiment (including 0.5 seconds before stimulus onset, 0.14 
seconds of visual delay, 2 seconds of stimulus presentation, and 
0.2 seconds after stimulus offset), with the first 20 subjects 
participating in our study. 

B. Experimental Environment and Parameter Settings 

The method proposed in this study has been implemented in 
MATLAB 2022b. To effectively utilize wavelet processing 
functions, the MATLAB environment in the research setup has 
been installed with the Time-Frequency Analysis Toolbox 
(TFA-Toolbox). 

1) Method for determining the number of modes K in VMD: 

Before conducting experiments, it is necessary to determine the 

number of modes K for VMD decomposition. In previous 

literature, the number of modes K is typically defined using the 

same number of EMD decompositions and wavelet packet 

decompositions [36], or selected by calculating the scaling 

exponent α of the input signal [23]. However, the 

aforementioned techniques have certain limitations when 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

318 | P a g e  

www.ijacsa.thesai.org 

dealing with experiment signals with complex frequency 

components. In this study, the energy difference principle is 

used as an auxiliary algorithm, with the experimental results of 

classification accuracy as the main basis, combined with the 

analysis of decomposition results to determine the value of K. 

Energy Difference Principle: VMD utilizes a variational 
framework-based constrained variational model to decompose 
signals, and the components obtained from the decomposition 
have orthogonal relationships in terms of energy. In other words, 
the sum of the energies of each component should be equal to 
the energy of the original signal, which adheres to the energy 
difference principle. If K is set too large, it will lead to over-
decomposition of the signal, resulting in spurious components 
and causing the sum of energies of the components generated by 
over-decomposition to exceed the sum of energies of the 
components generated by normal decomposition. Therefore, the 
optimal value of the parameter K for VMD can be determined 
by comparing energy differences. The formula for calculating 
signal energy is as follows: 
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In the formula, E represents the energy of the signal; y(i) 
represents the EEG signal sequence; n represents the number of 
sampling points. The formula for calculating the energy 
difference is as follows: 
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According to equation (16), η represents the difference 
between EK and EK-1. A larger value of η indicates a more 
pronounced over-decomposition phenomenon in VMD, 
whereas a smaller value of η may suggest under-decomposition 
of the signal. For non-stationary and complex signals such as 
EEG signals, η typically remains near small values under 
conditions of under-decomposition or appropriate 
decomposition. With an increase in the parameter K, the over-
decomposition phenomenon causes η to significantly increase. 
Therefore, the value of K at the inflection point can be 
considered as an effective number of modes for VMD 
decomposition. 

First, use FBCCA to classify the original EEG data to obtain 
the classification accuracy of dry and wet electrodes as a 
reference. Then, reconstruct the signal and perform 
classification under different numbers of modes, observing the 
results and analyzing the appropriate range of K values. In 
addition, with a step size of 0.5 seconds, gradually select data 
lengths of 0.5 seconds, 1 second, 1.5 seconds, and 2 seconds. 
The specific classification accuracies are shown in Table Ⅰ (the 
upper part represents the results for dry electrodes, and the lower 
part represents the results for wet electrodes): 

From Table Ⅰ, it can be observed that the appropriate value 
of K is approximately around 20. In order to determine the value 
of K more precisely and accurately, the energy difference 

principle is used. The experiment is conducted using data from 
the same participant, and the results are shown in Table Ⅱ. 

From the results in Table Ⅱ, it can be observed that analyzing 
the values of η reveals that when K=20, η suddenly increases, 
while other modal values remain approximately around 0.01. 
Therefore, based on the energy difference principle, the optimal 
choice for K is determined to be 20. Considering the 
comprehensive analysis above, the value of K in the proposed 
method should be set to 20 to ensure that the data can be 
accurately decomposed. 

2) DFA Threshold Determination Method: In the proposed 

method in this paper, a reliable threshold is needed to select the 

obtained different mode functions after VMD decomposition. 

Since these decomposed components also contain noise, the 

Hurst exponent is used to determine whether there is noise in 

the obtained BLIMFs[30]. 

In non-stationary time series, estimating the hurst exponent 
can be challenging as certain methods may yield misleading 
results. Considering the non-stationary nature of wearable EEG 
signals, traditional approaches may not be suitable. However, 
detrended fluctuation analysis (DFA) possesses the capability to 
detrend time series, making it an ideal choice for estimating the 
hurst exponent. Therefore, this paper employs the DFA method 
aiming to accurately reveal the scaling properties of the signal 
and detect its long-range correlations, thereby providing a 
deeper understanding of the dynamic nature of wearable EEG 
signals. The steps for computing the hurst exponent using DFA 
are outlined in Algorithm 1. 

Based on the DFA thresholding process (see Fig. 2), 
BLIMFs that meet the threshold criteria are retained, while those 
that do not meet the threshold criteria undergo further wavelet 
denoising. Finally, these two components are added together to 
generate a cleaner EEG signal. In this process, the parameter α 
represents the scaling exponent, playing a crucial role in 
measuring the roughness of the sequence. According to the 
empirical findings in [30], to address potential mode mixing 
issues, α is set to 0.75 in this study. 

 

Fig. 2.  Flowchart of DFA threshold determination 
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IV. EXPERIMENTAL RESULTS 

A. Recognition Results based on the Proposed Method in this 

Paper 

First, the EEG data are directly processed using CCA, 
FBCCA, and TRCA as reference algorithms to obtain 
classification accuracy. Subsequently, the data are divided into 
dry and wet electrodes for each channel and fed into the 
proposed model. The data undergo bandpass and notch filtering, 
followed by VMD decomposition with a mode number of 20. 

Then, DFA thresholding is applied to determine which mode 
components do not meet the threshold criteria. These 
components undergo wavelet denoising, primarily using WPT 
for experimentation. Finally, the denoised components are 
added to the components that meet the threshold criteria to 
reconstruct a clearer EEG signal. The reconstructed signals are 
classified using the three recognition algorithms. Recordings of 
recognition results are made using data lengths of 0.5s, 1s, 1.5s, 
and 2s, as shown in Tables Ⅲ and Ⅳ. 

TABLE I. CLASSIFICATION ACCURACY (MEAN ± STD %) 

Method 
Data length(s) 

0.5 1 1.5 2 

FBCCA 
15.17±9.38 

22.17±10.66 

29.46±16.39 

48.71±19.87 

44.38±20.44 

66.58±21.77 

58.42±22.14 

76.29±20.04 

VMD+FBCCA(Modes） 

K=5 
12.29±4.95 

16.83±8.99 

23.42±14.02 

33.75±17.48 

35.50±19.38 

49.17±20.62 

47.46±21.56 

60.62±21.80 

K=10 
13.33±8.12 

20.17±10.19 

27.42±18.81 

46.33±17.83 

43.00±21.85 

62.92±22.33 

56.33±23.14 

74.08±20.72 

K=15 
15.08±8.75 
22.71±9.71 

29.12±16.48 
47.25±19.10 

44.79±21.39 
66.83±19.64 

59.29±22.30 
76.46±19.68 

K=20 
15.20±8.75 

23.79±9.71 

32.12±17.48 

52.25±18.10 

46.79±19.35 

68.83±18.64 

61.23±21.30 

80.01±16.68 

K=25 
15.02±8.78 

21.99±9.76 

28.87±16.31 

48.67±19.73 

45.57±21.87 

67.33±20.11 

60.69±22.59 

78.46±18.65 

TABLE II. VALUES OF Η UNDER DIFFERENT NUMBERS OF MODES 

Modes η 

K=18 0.0092 

K=19 0.0106 

K=20 0.0213 

K=21 0.0158 

K=22 0.0067 
 

Algorithm 1: DFA steps for calculating the Hurst index 

1. Sequence normalization: For a given time series X, first calculate its cumulative time series as shown in the fol

lowing equation: 

 
1

( ) ( )
i

k
Y i X k 


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where µ is the mean value of the sequence X. 

2. Segmentation to compute the mean: The cumulative time series Y is divided into different time windows (or sc

ales), often called boxes, each of length n. 

3. Linear fitting: For each window, find the trend of the sequence Y(i) within that window by least squares linear f

itting. 

4. Calculate the root mean square deviation: Calculate the deviation between the actual data and the fitted line in

 each window, which is often referred to as "fluctuation". 

5. Fit a straight line: for different window lengths, the relationship between fluctuations and window length is plot

ted as a logarithmic plot, a straight line is fitted to this image, and its slope is calculated, the slope is the Hurst inde

x. 
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TABLE III. EXPERIMENTAL RESULTS OF DIRECTLY USING RECOGNITION ALGORITHMS (MEAN ± STD %) 

Method Data length(s) Electrode type Accuracy(%) F1 

 

 

 

CCA 

0.5 
dry  

wet 

11.25±9.78   

16.67±10.70 

8.88 

14.97 

1 
dry  

wet 

26.25±17.68  

41.04±20.59 

22.71 

38.86 

1.5 
dry  

wet 

41.25±19.67 

56.87±26.88 

38.52 

55.77 

2 
dry  

wet 

52.29±21.55 

66.46±25.57 

49.94 

64.96 

 

 

FBCCA 

0.5 
dry  

wet 

15.17±9.38 

22.17±10.66 

14.34 

21.04 

1 
dry  

wet 

29.46±16.39 

48.71±19.87 

28.34 

47.23 

1.5 
dry  

wet 

44.38±20.44 

66.58±21.77 

43.19 

64.96 

2 
dry  
wet 

58.42±22.14 
76.29±20.04 

57.36 
75.08 

 

 

 

TRCA 

0.5 
dry  

wet 

21.86±12.01 

52.14±19.01 

19.23 

50.26 

1 
dry  

wet 

45.37±19.30 

73.48±23.10 

44.39 

71.04 

1.5 
dry  

wet 

60.25±20.38 

79.35±22.49 

59.06 

77.30 

2 
dry  
wet 

66.47±21.58 
82.47±22.72 

65.38 
80.58 

TABLE IV. EXPERIMENTAL RESULTS OF THE PROPOSED METHOD (MEAN ± STD %) 

Method Data length(s) Electrode type Accuracy(%) F1 

 

 

 

CCA 

0.5 
dry  

wet 

13.29±9.90   

17.00±10.72 

11.16 

15.61 

1 
dry  

wet 

28.75±18.53  

42.71±19.31 

23.37 

40.68 

1.5 
dry  

wet 

43.08±18.30 

60.42±23.18 

38.36 

58.51 

2 
dry  

wet 

53.25±22.29 

69.58±23.54 

50.02 

68.06 

 

 

FBCCA 

0.5 
dry  

wet 

16.01±9.12 

23.42±9.75 

15.21 

22.31 

1 
dry  

wet 

32.50±16.65 

51.79±18.96 

31.51 

50.48 

1.5 
dry  

wet 

49.04±21.94 

72.46±18.40 

48.09 

71.22 

2 
dry  

wet 

63.08±23.42 

80.58±16.88 

62.12 

79.66 

 

 

 

TRCA 

0.5 
dry  

wet 

23.57±14.71 

55.39±20.04 

21.37 

53.98 

1 
dry  

wet 

48.59±22.38 

76.28±21.45 

47.59 

75.49 

1.5 
dry  

wet 

63.19±21.20 

83.58±18.38 

61.38 

81.05 

2 
dry  

wet 

71.27±20.49 

86.35±16.19 

70.21 

84.20 

From the experimental results in Table Ⅲ and Table Ⅳ, it 
can be observed that after applying the VMD and WPT hybrid 
denoising method, the three recognition methods show 
improvements across different data lengths. For instance, at 2 
seconds, the classification accuracy of CCA for dry and wet 
electrodes was initially 52.29% and 66.46%, respectively. After 
denoising, the classification accuracy increased to 53.25% and 
69.58%, respectively, representing improvements of 0.96% and 

3.12%, respectively. Similarly, for FBCCA at 2 seconds, the 
classification accuracy for dry and wet electrodes increased by 
4.66% and 4.29%, respectively, while for TRCA, the increase 
was 4.8% and 3.88%, respectively. This indicates a significant 
improvement, especially for dry electrodes, validating the 
superiority of the denoising method proposed in this paper. The 
experimental results of the proposed method are visualized in 
Fig. 3. 
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Fig. 3.  Illustrates the results obtained based on the method proposed in this paper: (a) represents the classification accuracy for dry electrodes, (b) represents the 

classification accuracy for wet electrodes, (c) represents the F1score for dry electrodes, (d) represents the F1score for wet electrodes 

From Fig. 3, it can be observed that TRCA shows significant 
improvements in classification accuracy and F1 score for dry 
and wet electrodes at data lengths of 1 second and 1.5 seconds. 
At 2 seconds, the classification accuracy for dry and wet 
electrodes reaches 71.27% and 86.35%, respectively. 

B. Comparing Different Denoising Methods 

To further denoise the BLIMFs obtained from VMD 
decomposition, this section compared the effectiveness of three 
different denoising methods: adaptive wavelet thresholding, 
removal of the highest and lowest frequency components, and 
DFA thresholding combined with wavelet packet transform 
(WPT). 

Firstly, adaptive wavelet denoising was applied to the 
BLIMFs obtained from VMD decomposition. This method 

dynamically adjusts the noise filter based on the signal 
characteristics, allowing for finer noise reduction. The wavelet 
function 'db4' was chosen, with a decomposition level of 3, and 
the threshold was adaptively selected using the 'Rigrsure' 
method. Secondly, spectral analysis was conducted on the 
decomposed BLIMFs components to remove the highest and 
lowest frequency components, aiming to eliminate noise caused 
by extreme frequency components. In contrast, the method 
proposed in this paper, which combines DFA thresholding with 
WPT, provides a more detailed treatment of the signal's 
frequency characteristics. WPT also utilizes the 'db4' wavelet 
function, with a decomposition level of 3. The resulting 
classification accuracy and F1score are presented in Tables Ⅴ 
and Ⅵ, respectively, while the visualizations are depicted in 
Fig. 4 and 5. 

TABLE V. EXPERIMENTAL RESULTS USING VMD WITH ADAPTIVE WAVELET DENOISING 

Method Data length(s) Electrode type Accuracy(%) F1 

 

 

 

CCA 

0.5 
dry  
wet 

11.04±9.34   
16.25±8.11 

9.18 
15.23 

1 
dry  

wet 

25.21±17.65  

43.96±18.56 

21.12 

41.85 

1.5 
dry  
wet 

42.08±21.57 
59.58±23.79 

38.43 
57.37 

2 
dry  

wet 

53.33±22.38 

66.79±24.84 

50.81 

64.71 

 

 

FBCCA 

0.5 
dry  
wet 

14.29±7.75 
19.79±9.58 

13.69 
18.58 

1 
dry  

wet 

29.50±16.11 

45.42±18.02 

28.67 

43.97 

1.5 
dry  

wet 

46.21±20.44 

65.79±19.66 

45.32 

64.38 

2 
dry  

wet 

60.46±22.58 

76.98±18.72 

59.67 

74.01 

 

 

 

TRCA 

0.5 
dry  

wet 

20.19±12.34 

53.29±20.04 

19.27 

51.23 

1 
dry  

wet 

46.39±20.03 

74.48±22.38 

45.38 

73.30 

1.5 
dry  

wet 

61.89±20.35 

81.59±19.29 

60.28 

80.02 

2 
dry  

wet 

67.59±21.38 

83.07±18.58 

66.07 

81.36 
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TABLE VI. EXPERIMENTAL RESULTS USING VMD WITH DIRECT REMOVAL OF HIGH AND LOW COMPONENTS 

Method Data length(s) Electrode type Accuracy(%) F1 

 

 

 

CCA 

0.5 
dry  
wet 

13.12±9.15 
14.79±6.38 

11.52 
13.30 

1 
dry  
wet 

26.67±17.55 
47.08±18.87 

23.90 
44.21 

1.5 
dry  

wet 

47.29±21.13 

66.46±22.46 

45.08 

65.04 

2 
dry  
wet 

58.13±21.31 
73.54±21.74 

55.92 
71.98 

 

 

FBCCA 

0.5 
dry  
wet 

15.20±8.38 
20.62±9.40 

14.45 
19.29 

1 
dry  

wet 

30.42±15.80 

46.67±18.30 

29.63 

45.31 

1.5 
dry  
wet 

47.62±20.96 
67.00±19.63 

46.53 
65.58 

2 
dry  

wet 

60.79±23.25 

77.08±18.82 

59.84 

74.91 

 

 

 

TRCA 

0.5 
dry  

wet 

22.38±13.49 

56.58±20.48 

20.38 

54.13 

1 
dry  

wet 

48.41±22.31 

74.39±22.19 

46.98 

73.27 

1.5 
dry  
wet 

64.02±21.15 
84.48±18.12 

63.07 
81.25 

2 
dry  

wet 

71.01±20.18 

85.69±17.68 

70.11 

83.21 

 

Fig. 4.  Experimental results using VMD withadaptive wavelet thresholding: (a) represents the classification accuracy for dry electrodes, (b) represents the 

classification accuracy for wet electrodes, (c) represents the F1score for dry electrodes, (d) represents the F1score for wet electrodes 
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Fig. 5.  Experimental results using VMD with direct removal of high and low components: (a) represents the classification accuracy for dry electrodes, (b) 

represents the classification accuracy for wet electrodes, (c) represents the F1score for dry electrodes, (d) represents the F1score for wet electrodes 

From the above results, it can be observed that compared 
to directly using the three recognition algorithms, using VMD 
with adaptive wavelet denoising and direct removal of high 
and low components both resulted in increased classification 
accuracy and F1score. However, neither of these denoising 
methods achieved the effectiveness of using VMD with WPT. 

V. DISCUSSION 

To visually demonstrate the increase in classification 
accuracy achieved by different denoising methods compared 
to not using any denoising method, three approaches were set 
as follows: using VMD combined with adaptive wavelet 
denoising as Method 1, employing VMD with direct removal 
of high and low-frequency components as Method 2, and 
utilizing VMD combined with WPT as Method 3. As shown 
in Fig. 6, the left side illustrates the increase in classification 
accuracy for dry electrodes after applying different denoising 
methods, while the right side reflects the improvement for wet 
electrodes. Through this comparison, we can clearly observe 
the enhancement effect of various denoising methods on 
classification accuracy, thereby providing a more accurate 
evaluation of the effectiveness of different denoising 
strategies. 

From Fig. 6, it can be observed that the increase in 
classification accuracy for dry and wet electrodes is highest 
when using Method 2 of denoising, especially for the CCA 
recognition algorithm. However, for the FBCCA and TRCA 
algorithms, the highest increase is observed when using 
Method 3. The reason for the significant increase in 
classification accuracy after applying Method 2, particularly 
for the CCA recognition algorithm, lies in its ability to 
selectively eliminate noise interference, thereby enhancing the 
accuracy of signal synchronization detection and 
complementing the performance of the CCA algorithm. 

This study primarily employs VMD for signal 
decomposition to demonstrate its superiority. Additionally, to 
delve into the impact of different decomposition methods on 
wearable EEG data, the data of the same subject are 
decomposed using EMD, EEMD, CEEMD, and VMD. 
Subsequently, WPT is uniformly applied for wavelet 
denoising, and the denoised signals are reconstructed. Fig. 7 
illustrates the power spectral density plots of these four 
decomposition methods, depicting the data from all samples 
of dry and wet electrodes of subject 5 at a stimulus frequency 
of 11.25 Hz. 

 

Fig. 6.  Increase in classification accuracy 
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Fig. 7.  Power spectral density plots of different decomposition methods 

Firstly, it is noticeable that the power spectral density of the 
signal decomposed and reconstructed using VMD is relatively 
higher at the stimulus frequency and its first, second, and even 
third harmonics. This indicates that VMD effectively preserves 
the characteristics of the original signal at these specific 
frequencies during decomposition. As an adaptive signal 
decomposition method, VMD seeks the optimal mode functions 
to match the intrinsic features of the signal, demonstrating its 
superiority in handling complex signals.Additionally, it can be 
observed that the power spectral density of signals decomposed 
using EEMD is relatively higher compared to CEEMD. This 
difference may arise from the distinct decomposition strategies 
employed by these methods. EEMD aids decomposition by 
adding white noise, effectively suppressing mode mixing 
phenomena and enhancing decomposition accuracy. On the 
other hand, CEEMD, an improved version of EEMD, further 
reduces reconstruction errors and mode mixing by introducing 
the concept of complete ensemble. However, in some cases, 
CEEMD may sacrifice the preservation of certain signal features 
due to its emphasis on noise and mixing elimination. While 
VMD, EEMD, and CEEMD are all effective methods for 
handling complex signals, they may exhibit different strengths 
and limitations depending on the nature of the signal being 
processed. In practical applications, it is essential to select the 
appropriate signal decomposition method based on the specific 
characteristics and requirements of the signal to obtain the most 
accurate and meaningful results. Moreover, the phenomenon 
where CEEMD performs less effectively than EEMD in certain 
cases warrants further research and exploration for optimization 
and improvement in future work. Comparing the results of our 
study on wearable SSVEP EEG data with existing research, in 
reference [37], FBCCA was used for classification on 2-second 
data lengths, yielding classification accuracies of 59.3% and 
77.9% for dry and wet electrodes, respectively. In contrast, our 
proposed method significantly improves these results, achieving 
3.78% and 2.68% higher classification accuracies for dry and 
wet electrodes using the same FBCCA classification. In 
reference [38], TRCA, Compact-CNN, Conv-CA, and DNN 
were used, resulting in classification accuracies of 83.17%, 

52.20%, 82.24%, and 71.42% for wet electrodes at the longest 
data length. In comparison, our method using denoising and 
TRCA classification improved wet electrode classification 
accuracies by 3.18%, 34.15%, 4.11%, and 14.93%, respectively. 
Our study provides a detailed comparison of methods at 
different stages, discussing their strengths and weaknesses, 
offering valuable reference and guidance for further research in 
wearable EEG signal processing. 

VI. CONCLUSIONS 

The paper proposes a denoising method combining 
Variational Mode Decomposition (VMD) with wavelet 
transformation and applies it to the recognition task of wearable 
SSVEP (Steady-State Visual Evoked Potential) brainwave 
signals. To validate the effectiveness of this method, the 
experiments are divided into two core parts. In the first part, 
three classification algorithms, namely CCA, FBCCA, and 
TRCA, are directly applied to identify the original signals, and 
their classification accuracy and F1score are recorded. 
Subsequently, these results are compared with the recognition 
results of signals processed using the denoising method 
proposed in this paper. Experimental results show that, after 
applying the denoising method proposed in this paper, the 
performance of the three classification algorithms improved 
significantly across different data lengths. The TRCA 
recognition algorithm achieved the highest classification 
accuracy for both dry and wet electrodes, reaching 71.27% and 
86.35%, respectively. In the second part of the experiment, the 
performance of various denoising methods is further compared, 
including the adaptive wavelet threshold method, the removal of 
extreme frequency components (high and low frequencies), and 
the threshold judgment combined with Wavelet Packet 
Transform (WPT) denoising method proposed in this paper. The 
core of the proposed method lies in preserving the useful feature 
information in the decomposed components through fine 
threshold judgment. The experimental results show that, 
whether for SSVEP brainwave signals collected from dry 
electrodes or wet electrodes, the denoising method proposed in 
this paper exhibits excellent classification accuracy and F1score. 
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In summary, the denoising method combining VMD with 
wavelet transformation proposed in this paper not only 
effectively improves the recognition performance of wearable 
SSVEP brainwave signals but also has certain generalization 
and application value, providing new ideas and methods for 
research and practice in related fields. Our next steps will 
involve exploring additional classification algorithms, 
optimizing denoising parameters, and processing longer 
duration data to further enhance recognition performance and 
broaden applicability. 
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