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Abstract—In industrial production, timely and accurate 

detection and identification of surface defects in steel materials 

were crucial for ensuring product quality, enhancing production 

efficiency, and reducing production costs. This study addressed 

the problem of surface defect detection in steel materials by 

proposing an algorithm based on an improved version of 

YOLOv5. The algorithm achieved lightweight and high efficiency 

by incorporating the MobileNet series network. Experimental 

results demonstrated that the improved algorithm significantly 

reduced inference time and model file size while maintaining 

performance. Specifically, the YOLOv5-MobileNet-Small model 

exhibited slightly lower performance but excelled in inference 

time and model file size. On the other hand, the YOLOv5-

MobileNet-Large model achieved a slight performance 

improvement while significantly reducing inference time and 

model file size. These results indicated that the improved 

algorithm could achieve lightweighting while maintaining 

performance, showing promising applications in steel surface 

defect detection tasks. It provided an efficient and feasible 

solution for this important domain, offering new insights and 

methods for similar surface defect detection problems and 

contributing to research and applications in related fields. 
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I. INTRODUCTION 

Surface defect detection [1] was paramount in industrial 
production as it aided in promptly identifying and rectifying 
flaws on product surfaces, ensuring product quality adhered to 
standards, enhancing production efficiency, and reducing reject 
rates. This not only helped in cost and resource savings but also 
enhanced product safety and reliability, maintaining a 
company's reputation and market competitiveness. Extensive 
research had been conducted by numerous scholars in this 
field. 

In existing research, Zhang Guo et al. [2] proposed an 
FFS-YOLO model based on the improved YOLOv4-tiny 
model for detecting PCB surface defects. While this model 
enhanced detection accuracy and light weighted the model, the 
detection metrics only included mAP@0.5, FPS, and model 
size, lacking comprehensive evaluation metrics such as recall 
and precision, requiring further research and validation. Dong 
Yongfeng et al. [3] presented a defect detection joint 
optimization algorithm based on attention mechanism, showing 
promising results in classifying multiple defect types. 
However, the algorithm's joint loss function involved 
numerous hyperparameters, making manual adjustments 

challenging, and it did not address real-time issues. Divyanshi 
Dwivedi et al. [4] tackled renewable energy asset surface 
defect detection using the latest deep learning model ViT. 
While effective in image classification tasks, this approach still 
needed to address challenges related to data quality and 
environmental adaptability. Wu Jiling et al. [5] proposed an 
improved Faster R-CNN algorithm, optimizing feature 
extraction networks, region of interest pooling, and anchor box 
sizes. Additionally, they introduced feature pyramids and 
deformable convolutions, achieving satisfactory detection 
results. Future research should focus on lightweighting 
detection models while enhancing detection speed without 
compromising accuracy to facilitate proactive industrial 
deployment. 

YOLOv5 exhibited efficient end-to-end detection 
capabilities, while MobileNet was a lightweight convolutional 
neural network. Their combination addressed the need for both 
detection performance and model efficiency, aligning with the 
requirements for real-time operation and deployment 
convenience in steel surface defect detection tasks. In contrast, 
existing models like Faster R-CNN, although they 
demonstrated good detection accuracy, were less suitable for 
industrial real-time detection scenarios due to their complex 
network structures and substantial computational demands, 
which resulted in low inference efficiency. Additionally, they 
lacked optimization designs targeted at lightweighting. 

This study addressed the issue of detecting surface defects 
in steel materials by proposing an algorithm based on an 
improved version of YOLOv5. Compared to existing methods, 
our algorithm incorporated a lightweight MobileNet network, 
which significantly reduced the model inference time and file 
size while maintaining detection performance. Additionally, it 
notably enhanced real-time capabilities and deployment 
convenience. 

Furthermore, our evaluation metrics were more 
comprehensive, including not only common metrics such as 
mean Average Precision (mAP) and inference time but also 
precision and recall rates, providing a more objective reflection 
of the algorithm's performance. Our algorithm demanded less 
in terms of data quality and environmental adaptability, 
demonstrating stronger generalization capabilities. It was 
highly practical and applicable, offering a new efficient 
solution for quality control in the steel industry and bringing 
fresh insights and methods to similar surface defect detection 
issues, thereby possessing significant theoretical and practical 
value. 
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Overall, this study was dedicated to proposing an efficient, 
lightweight, and high-performing algorithm for detecting 
surface defects in steel materials. It aimed to address the 
shortcomings of existing methods in terms of real-time 
performance, lightweight design, comprehensive evaluation 
metrics, and generalization capabilities. This work contributed 
to research and applications in related fields. 

II. DEEP LEARNING YOLO ALGORITHM 

YOLOv5 was regarded as the pinnacle of the YOLO series, 
highly favored by both the academic and industrial 
communities for its outstanding detection accuracy and fastest 
detection speed [6]. The network architecture of YOLOv5 
followed the overall layout of YOLOv3 and YOLOv4, mainly 
comprising four parts: the input layer, backbone network, neck 
network, and prediction layer, as shown in Fig. 1. 

 

Fig. 1. YOLOv5 structure. 

Input: The mosaic data augmentation method was 
employed, which involved randomly cropping four images 
(each with corresponding bounding boxes) and then stitching 
them together into a new image. This method significantly 
increased the background information of target objects. 

Backbone: The Focus structure and CSP structure played 
different but complementary roles in deep learning models. 
The Focus structure was primarily used to reduce 
computational complexity and improve inference speed, while 
the CSP structure, through reasonable branch design, enabled 
the model to learn more features while reducing computational 
complexity, thereby enhancing the model's performance. The 
combination of these two structures could effectively optimize 
the model's performance, making it more efficient and reliable 
in practical applications. 

Neck: FPN+PAN structure was utilized. FPN (Feature 
Pyramid Network) and PAN (Path Aggregation Network) were 
two common network structures for object detection, used to 
handle multi-scale feature maps. FPN propagated strong 
semantic features through upsampling, while PAN propagated 
strong localization features through downsampling. Combining 
FPN and PAN enhanced semantic expression and localization 
capabilities at multiple scales, thereby improving the 
performance and robustness of object detection models at 
different scales. 

Prediction: GIoU Loss was introduced as the loss function 
for bounding boxes. This loss function effectively addressed 
the problem of non-overlapping bounding boxes, thereby 
improving the accuracy and precision of object detection. The 
application of GIoU Loss enabled the model to better 
understand the position and shape of objects, thereby 
improving detection accuracy. NMS helped to find the optimal 

position of detected objects and removed overlapping detection 
boxes, further enhancing the accuracy and robustness of object 
detection. This step made the model's output results clearer and 
more reliable, providing a more trustworthy solution for object 
detection tasks in real-world scenarios [7-8]. 

III. IMPROVED YOLOV5 ALGORITHM WITH MOBILENET 

A. MobileNet Algorithm 

In 2017, the Google team introduced MobileNetv1, which 
replaced ordinary convolutional modules with depthwise 
separable convolutions to achieve lightweight convolutional 
neural networks [9]. By using depthwise separable 
convolutions, the parameter count of MobileNetv1 was 
reduced to around 1/8 to 1/9 of its original size. Compared to 
VGG16, it only sacrificed approximately 0.9% of classification 
accuracy while reducing the parameter count to only 1/32. 

MobileNetv2 introduced "residual modules" on the basis of 
MobileNetv1. These residual modules first used 1x1 
convolutions for dimensionality expansion, followed by 1x1 
convolutions for dimensionality reduction, also known as 
inverted residual modules. Furthermore, to prevent significant 
loss of low-dimensional information under the ReLU activation 
function, MobileNetv2 used linear activation functions for the 
last layer convolution [10]. 

MobileNetv3 is an improved version of MobileNetv2, with 
superior accuracy and smaller model size. MobileNetv3-Large 
and MobileNetv3-Small are neural network structures 
optimized for mobile devices using Neural Architecture Search 
(NAS) technology. Although the backbone network structures 
of the two are similar, they contain different numbers of Bneck 
modules [11-12]. MobileNetv3-Large has 15 Bneck modules, 
while MobileNetv3-Small contains only 11 Bneck modules. 
The specific structure of the Bneck module is illustrated in Fig. 
2. These improvements enable MobileNetv3 to maintain its 
lightweight nature while enhancing model accuracy, making it 
an ideal choice for mobile devices. 

 

Fig. 2. Specific structure of Bneck module.  

The MobileNetV3 network integrates various advanced 
neural network structures, including depthwise separable 
convolutions from MobileNetV1, linear bottleneck inverted 
residual structures from MobileNetV2, and the lightweight 
attention model from MnasNet. Additionally, it introduces the 
non-linear Swish function, computed as shown in Eq. (1). 

)(*][ xxxswish  (1) 
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In the Eq. (1), swish[x]represents the non-linear activation 

function, where x denotes the input feature, and 
)(x

represents the sigmoid activation function. 

MobileNetV3 ultimately adopts a new activation function, 
denoted as h-swish[x], to replace the original Swish[x] 
function. This change is due to the high computational cost of 
computing the Sigmoid function on mobile devices. The new 
activation function h-swish[x] significantly improves detection 
speed, especially in deep networks. The computation process is 
shown in Eq. (2). 

ℎ − 𝑠𝑤𝑖𝑠ℎ[𝑥] = 𝑥 ∗ 𝑅𝑒𝑙𝑢6
𝑥 + 3

6
(2) 

B. The Improved YOLO Algorithm 

YOLOv5 was considered a regression-based one-stage 
object detection algorithm [13-14]. In order to enhance the 
model's performance, the MobileNetv3 network was utilized to 
replace the original backbone network, CSPDarkNet53. Apart 
from this change in the backbone network, the rest of YOLOv5 
remained consistent with the original model. MobileNetv3, 
compared to CSPDarkNet53, featured a more lightweight 
network structure and higher computational efficiency. 
Consequently, it facilitated accelerated execution of object 
detection while preserving model accuracy. This improvement 
contributed to YOLOv5's superior performance in real-time 
object detection scenarios. The structure is depicted in Fig. 3. 

In the improved version of YOLOv5 after the incorporation 
of MobileNetv3, the obtained feature matrix underwent a series 
of transformations. Initially, it was processed through a 1x1 
convolution, followed by input into the pyramid spatial 
module. Down-sampling occurred at three parallel max-
pooling points, and the resulting outputs were added to the 
feature matrix of the input module in depth before convolution. 
In the neck section, a spatial pyramid structure was employed 
to propagate strong semantic features from top to bottom, 
while the path aggregation network propagated robust 
displacement features from bottom to top. The fusion of these 
two mechanisms enhanced the capability to extract feature 
information. 

 
Fig. 3. Improved YOLOv5 network structure diagram.  

In the improved YOLOv5, after being processed through 
MobileNetv3, the obtained feature matrix was initially 
processed through a 1x1 convolution. This step helped in 
reducing feature dimensions, thereby lowering computational 
costs and model complexity. Subsequently, the feature matrix, 
post 1x1 convolution, was input into the pyramid spatial 

module, which performed down-sampling at three parallel 
max-pooling points. This process aided in extracting features at 
different scales and enhanced the model's multi-scale 
perception of targets. 

The down-sampled results were then added in depth to the 
feature matrix of the input module before undergoing 
convolution. This method of depth addition facilitated the 
fusion of features from different levels, thereby enhancing the 
model's representational capacity. A spatial pyramid structure 
was employed in the neck section to propagate strong semantic 
features from top to bottom. Simultaneously, the path 
aggregation network propagated robust displacement features 
from bottom to top. Through the combined use of this 
structure, feature information was adequately extracted and 
fused, thereby improving the accuracy and robustness of object 
detection. This design enabled the model to better understand 
and accurately detect and locate targets, resulting in more 
stable and reliable detection results in various complex 
scenarios for YOLOv5. 

IV. EXPERIMENT VALIDATION AND COMPARISON 

A. Experiment Environment and Dataset 

The experiment was conducted on a Windows 10 system 
with an Intel i7-11700 CPU running at 2.50GHz and an 
NVIDIA GeForce RTX 3080Ti GPU, along with 32 GB of 
RAM. The development environment utilized PyCharm 
Community 2018.3.5 with Python 3.8 as the interpreter. The 
experimental data were sourced from the NEU-CLS dataset 
[15], comprising a total of 1800 steel surface defect images, 
with 300 images for each of the six defect types, the 
hyperparameters used in this study were as follows: the initial 
learning rate was set at 0.01, the cyclic learning rate at 0.2, the 
number of training epochs at 200, and the weight decay was set 
at 0.0005. 

Performance metrics of the YOLOv5 object detection 
algorithm are typically validated using three evaluation 
metrics: precision, recall, and mean Average Precision (mAP). 

Precision: Precision is the ratio of true positive data (TP) 
correctly classified by the classifier to all data classified as 
positive by the classifier (TP + false positive (FP)). The 
specific calculation method is as shown in Eq. (3): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 
(3) 

where, TP represents the number of true positive samples 
predicted as positive, and FP represents the number of negative 
samples falsely predicted as positive. 

Recall: Recall refers to the ratio of true positive data (TP) 
correctly classified by the classifier to all data classified as 
positive by the classifier (TP + false negative (FN)). The 
specific calculation method is as shown in Eq. (4): 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
(4) 

where, FN represents the number of positive samples 
falsely predicted as negative. 
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MAP (mean Average Precision): mAP indicates the 
average precision of the detector on different categories. In 
object detection tasks, AP (Average Precision) is usually used 
as the precision metric, and then the average of APs for all 
categories is calculated to obtain mAP. Here, AP is the area 
enclosed by the PR (Precision-Recall) curve and the two axes, 
namely, X and Y. 

B. Experimental Results 

1) Improved YOLOv5-Mobilenet-Small: After training for 

200 epochs to obtain the optimal weights, the results on the 

test set were as follows: mAP@0.5 was 0.657, and F1 score 

was 0.640. The results are shown in Fig. 4. 

 
(a) Confusion Matrix 

 
(b) PR Curve 

 
(c) F1 Score Graph 

 
(d) Validation Detection Image 

Fig. 4. Results of YOLOv5-mobilenet-small.  

2) Improved YOLOv5-Mobilenet-Large: After training for 

200 epochs to obtain the optimal weights, the results on the 

test set were as follows: mAP@0.5 was 0.696, and F1 score 

was 0.660. The results are shown in Fig. 5. 

 
(a) Confusion Matrix 

 
(b) PR Curve 

 
(c) F1 Score Graph 
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(d) Validation Detection Image 

Fig. 5. Results of YOLOv5-Mobilenet-Large. 

TABLE I.  COMPARISON OF RESULTS FOR DIFFERENT NETWORK 

ARCHITECTURES 

 
Precis

ion 
Recall 

mAP@.

5 

parameter

s 

Inferenc

e Time

（ms） 

PT 

File 

Size 
(MB

) 

Yolov5 0.689 0.671 0.682 20873139 3.9 40.1 

Yolov5-

Mobilenet
-Small 

0.665 0.631 0.657 5160643 3.2 10 

Yolov5-

Mobilenet
-Large 

0.667 0.676 0.696 5899785 3.5 11.5 

In Table I, the detection results of YOLOv5, YOLOv5-
Mobilenet-Small, and YOLOv5-Mobilenet-Large were 
compared. From the experimental results, it was observed that 
the improved network YOLOv5-Mobilenet-Small showed 
slight decreases (not exceeding 0.04) in Precision, Recall, and 
mAP@0.5, while significantly reducing inference time and 
decreasing the size of the .pt file. Similarly, the enhanced 
network YOLOv5-Mobilenet-Large exhibited slight decreases 
(not exceeding 0.03) in Precision but slight improvements in 
Recall and mAP@0.5 compared to YOLOv5. Additionally, it 
also reduced inference time significantly and considerably 
decreased the size of the .pt file. These experimental results 
demonstrated that the improved algorithms achieved the goal 
of lightweight performance while maintaining detection effect. 
Notably, YOLOv5-Mobilenet-Small had the fewest 
parameters, inference time, and model file size, making it 
suitable for applications with limited computational resources 
and memory. Conversely, although YOLOv5-Mobilenet-Large 
required higher computational resources compared to 
YOLOv5-Mobilenet-Small, it exhibited slight performance 
improvements and may have been more suitable for tasks 
requiring higher detection result. 

Additionally, we found that the algorithm exhibited 
variations in performance across different types of defects in 
the dataset. For some defect types with lower recall values, 
such as crazing (approximately 0.2), the complexity of their 
appearance features might have made it difficult for the 
algorithm to effectively capture and recognize them. In such 
cases, our algorithm needed further optimization, utilizing 
more refined feature extraction or improved data augmentation 
strategies to achieve higher recall. 

For defect types with moderate recall values, such as 
rolled-in scale (approximately 0.5), inclusion (approximately 
0.6), and scratches (approximately 0.7), it was evident that the 
algorithm possessed a certain detection capability for these 
types, yet there was still room for improvement. We could 
consider adjusting the model's hyperparameters and refining 
the anchor box settings to achieve higher recall. 

For defect types with high recall values, such as patches 
and pitted surface (approximately 0.9), the detection 
performance of the algorithm was quite ideal. This was 
because their appearance features, such as distinct shapes and 
contrasts, were more readily captured and recognized by the 
algorithm. 

Overall, the variability in the algorithm's performance 
across different defect types may have stemmed from the 
characteristics of the dataset itself, the varying complexity of 
defect appearances, and the algorithm's differing adaptability to 
certain specific patterns. In future work, we will continue to 
optimize the algorithm, striving to enhance its detection 
capabilities for various defect types and to explore more 
effective methods for handling complex and diverse defect 
patterns. 

V. CONCLUSION 

This study focused on the detection of surface defects in 
steel materials and proposed an improved steel surface defect 
detection algorithm based on YOLOv5. The algorithm replaced 
the backbone network of YOLOv5 with the MobileNet series 
network, enabling the model to have a more lightweight 
network structure and higher computational efficiency. In the 
task of steel surface defect detection, the algorithm's 
performance was enhanced, allowing for faster defect detection 
and improved detection effect. Experimental results indicated 
that by introducing MobileNet, the YOLOv5 architecture 
improved its performance to some extent, exhibiting clear 
advantages not only in terms of parameter count, inference 
time, and model file size but also in enhancing the result of 
object detection. Among them, the YOLOv5-Mobilenet-Large 
model slightly outperformed in performance, while the 
YOLOv5-Mobilenet-Small model showed more efficiency. 
This is significant for industries such as steel production and 
quality control, as it promises higher levels of production 
efficiency and quality assurance.Future work will further 
optimize the network structure and improve data augmentation 
strategies, focusing on enhancing the recognition capabilities 
for these challenging defect types. Additionally, techniques 
such as model compression will be considered to develop more 
accurate, versatile, and efficient lightweight defect detection 
solutions. 
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