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Abstract—Deep learning has been widely used in various 

scenarios such as image classification, natural language 

processing, and speech recognition. However, deep neural 

networks are vulnerable to adversarial attacks, resulting in 

incorrect predictions. Adversarial attacks involve generating 

adversarial examples and attacking a target model. The 

generation mechanism of adversarial examples and the prediction 

principle of the target model for adversarial examples are 

complicated, which makes it difficult for deep learning users to 

understand adversarial attacks. In this paper, we present an 

adversarial attack visualization system called AdvAttackVis to 

assist users in learning, understanding, and exploring adversarial 

attacks. Based on the designed interactive visualization interface, 

the system enables users to train and analyze adversarial attack 

models, understand the principles of adversarial attacks, analyze 

the results of attacks on the target model, and explore the 

prediction mechanism of the target model for adversarial 

examples. Through real case studies on adversarial attacks, we 

demonstrate the usability and effectiveness of the proposed 

visualization system. 
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I. INTRODUCTION 

With the development of artificial intelligence, deep neural 
networks are widely applied to various scenarios such as image 
classification, natural language processing and speech 
recognition. However, More and more studies reveal that deep 
neural networks are vulnerable to adversarial attacks [1]. 
Adversarial attacks are to generate adversarial examples by 
adding weak adversarial perturbations to the input examples. 
The generated adversarial examples can interfere with the 
decision-making of deep neural networks, resulting in incorrect 
predictions. Thus, adversarial attacks pose a serious threat to the 
application of deep learning. Delving into adversarial attacks 
helps to reveal the weaknesses of deep learning models, which 
in turn motivates researchers to design effective defense 
strategies to improve the robustness of neural networks. 

The goal of adversarial attacks is to generate adversarial 
examples which can induce deep learning models to make 
incorrect predictions. Szegedy et al. [1] discovered early that 
deep neural networks are vulnerable to adversarial examples in 

the field of image classification. Specifically, the input images 
with adversarial noise (i.e., adversarial examples) can induce 
image classification models to produce incorrect classification 
results. Since then, a number of adversarial attack methods have 
been proposed. Goodfellow et al. [2] proposed a classical 
gradient-based attack method namely FGSM. The method adds 
the gradients that increases the loss function to the original 
image to generate an adversarial example. The idea based on 
gradient derives many gradient-based attack methods such as 
PGD [3], BIM [4] and ILCM [4]. To obtain adversarial 
examples with high perceptual quality, Carlin and Wagner [12] 
proposed an optimization-based attack method which produces 
adversarial examples with small perturbations and high attack 
success rates by minimizing the objective function. The above 
attack methods require access to the target model (i.e., the 
attacked model) when generating adversarial examples, 
resulting in low efficiency in generating adversarial examples. 
To obtain adversarial examples quickly, Xiao et al. [5] presented 
an attack method based on generative adversarial networks 
(GAN). This method can directly generate adversarial examples 
with a high attack success rate without accessing the target 
model again after the generator is trained. 

Adversarial attacks involve generating adversarial examples 
and attacking target models. However, the generation 
mechanism of adversarial examples and the prediction principle 
of the target model for adversarial examples are complicated, 
which makes it difficult for deep learning users especially 
beginners to understand adversarial attacks. To address this 
problem, we present an adversarial attack visualization system 
called AdvAttackVis, which can assist users to learn, understand 
and explore adversarial attacks. The visualization system is 
implemented based on B/S architecture, which is easy for deep 
learning users to use. Based on the underlying models and the 
designed interactive visualizations, the system enables users to 
train and explore adversarial attack models, understand the 
principles of adversarial attacks, analyze the results of 
adversarial attacks, and explore the prediction mechanism of the 
target model for adversarial examples. Through a case study 
where AdvGAN (attack model) attacks an MNIST classifier 
(target model), we demonstrate the usability and effectiveness 
of our system. AdvAttackVis provides end-to-end support for 
adversarial attack analysis. We have also specifically designed 
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visualization views from different analysis perspectives, 
providing noval insights for analyzing adversarial attacks. This 
enables users to explore and understand the attack process 
comprehensively, whereas existing tools often only support 
post-analysis of existing attacks. 

Our contributions can be summarized as follows: 

 A visual analysis scheme for end-to-end interpretability 
of adversarial attacks. The scheme combines interactive 
visualizations with underlying algorithms to help users 
delve into adversarial attacks. 

 An adversarial attack visualization system for deep 
neural networks. The system offers powerful interactive 
visualization views to assist users in exploring 
adversarial attacks. 

 We demonstrate the usability and effectiveness of the 
visualization system via a real case study base on the 
MNIST handwritten digital image dataset. 

II. RELATED WORK 

A. Adversarial Attacks 

Adversarial attacks involve generating adversarial examples 
and attacking the target model. Szegedy et al. [1] first proposed 
the concept of adversarial examples. Specifically, an adversarial 
example is generated by adding weak adversarial interference to 
the original image. It could induce the target model to output 
wrong predictions with high confidence, which reveals the 
vulnerability of deep neural networks and raises concerns about 
the security of deep learning models. Goodfellow et al. [2] 
argued that this vulnerability is caused by the local linearity of 
neural networks, especially when a linear activation function 
(e.g., ReLU [1]) is used in the model. Arpit et al. [7] analyzed 
the memory ability of neural networks for training data and 
found that models with high memory levels are more susceptible 
to adversarial examples. Gilmer et al. [10] believed that 
adversarial examples are attributed to the high-dimensional 
geometric structure of data manifold and then analyzed argued 
the relationship between adversarial examples and the high-
dimensional geometry of data manifold. 

From the perspective of the attack environment, adversarial 
attacks can be divided into white-box attacks and black-box 
attacks [7]. In white-box attacks, the attacker can obtain 
information about the target model such as training data, model 
structure, model parameters and model output. Therefore, the 
attacker can directly utilize the gradient of the loss function and 
classification hyperplane of the neural network to calculate the 
required perturbations, thereby generating adversarial examples. 
FGSM [2] is a classical white-box attack method which obtains 
adversarial examples by adding perturbations to the input 
images. Madry et al [3] improved FGSM and proposed PGD to 
further improve the attack success rate. To generate the 
adversarial examples with high perceptual quality, Carlini and 
Wagner [12] proposed an optimization-based attack method 
which obtains the smallest adversarial perturbation by iteratively 
optimizing the objective function. However, in practical 
applications, attackers usually have no access to the detailed 
information of the target model, which makes it impossible to 
implement white-box attacks. To overcome this limitation, 

researchers have proposed black-box attacks where the attacker 
only needs the output labels or probability vectors of the target 
model. Single-pixel attack [14] is a classical black-box attack 
method which obtains an adversarial example by changing the 
value of the selected pixel in the original image. Sarkar [15] 
proposed two black-box attack methods namely UPSET and 
ANGRI. UPSET generates general perturbations for all output 
categories while ANGRI produces specific perturbations for 
different images. Their generated adversarial examples can 
induce the image classification model to output specific 
categories. Xiao et al. [5] proposed an attack method based on 
generating adversarial networks (GAN). The method first 
applies knowledge distillation to obtain an agent model with 
similar performance to the target model and then generates 
adversarial examples that are effective against the target model. 

In the white-box or black-box attack scenario, adversarial 
attacks can be further divided into targeted attacks and 
untargeted attacks [7-9]. Targeted attacks induce the deep 
learning model to recognize adversarial examples as a specific 
class while untargeted attacks simply require the model to output 
the incorrect class. The white-box attack method FGSM [2] can 
support both targeted and untargeted attacks. For black-box 
attacks, AdvGAN [5] can achieve targeted and untargeted 
attacks by designing the loss function of the target model. 

However, existing work on interpretability analysis of 
adversarial attacks is still relatively lacking. They mostly focus 
on the surface effects of attacks, such as success rates, 
perturbation sizes, etc., while rarely delving into the causes of 
attacks, characteristics of attack samples, and the impact of 
attacks on model behavior. 

B. Visualization of Deep Learning Models 

Deep learning models are regarded as black-box models 
because their decision-making mechanisms are not clear to 
human cognition. In recent years, researchers have proposed 
different visualization techniques [16] [29] [30] to reveal the 
inner workings of deep learning models and assist users to 
understand, analyze and learn deep learning. TensorBord is a 
visualization tool launched by the TensorFlow deep learning 
framework, which can visualize computational graph and 
training logs. However, TensorBord lacks an interactive visual 
design that goes deep into the model, so users are unable to gain 
a deep understanding of the internal mechanism of the model. 
Liu et al. [19] proposed an interactive visualization technology 
namely CNNVis to help users understand, diagnose and 
improve convolutional neural networks (CNN). This technology 
visualizes the convolutional neural network as a directed acyclic 
graph where neurons in the convolutional layers are clustered 
and connections between neurons are bundled to reduce visual 
clutter. It allows users to interactively inspect the details of the 
model (e.g., activation values and weights). Recently, Wang et 
al [20] proposed CNN Explainer, a convolutional neural 
network visualization system that explains convolution and 
pooling operations via rich interactive visualizations. It can 
effectively help deep learning beginners quickly understand 
complex convolutional neural networks. 

Researchers have made great progress in visualizing neural 
networks. Some of these works attempts to introduce 
visualization techniques to assist in the analysis of adversarial 
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attacks, they mostly provide limited, static visualization views, 
lacking rich interactive features and flexible exploration 
mechanisms. Users find it difficult to dynamically adjust views, 
filter data, and locate interesting attack patterns according to 
their analysis needs. In contrast, AdvAttackVis designs multiple 
visualization views, supporting flexible interactive operations 
and view coordination, empowering users with full autonomy 
and flexibility to explore the overview and details of attacks 
from different perspectives and granularities. 

III.  VISUALIZATION SYSTEM OVERVIEW 

In this section, we introduce the overall framework of the 
AdvAttackVis system. As shown in Fig. 1, the system is 
designed based on B/S (Browser-Server) architecture. It consists 
of the front-end and back-end. The two parts are described 
below. 

 

Fig. 1. Framework of AdvAttackVis. 

The front-end provides a visual interface to help users 
understand, analyze, and explore adversarial attacks. It is mainly 
composed of six visualization views: the attack result overview 
view, the control panel, the cluster analysis view, the model 
view, the attack result explanation view, and the parallel 
coordinate view. The attack result overview view is used to 
analyze the adversarial attack results including the attack 
success rate and the distribution of attack results. This view 
provides a visual analysis of the attack effects from an overall 
perspective, allowing users to quickly understand the most 
prominent categories of model vulnerabilities to guide the next 
step of in-depth analysis. The control panel provides parameter 
settings for model training and adversarial attacks so that the 
user can train a satisfactory adversarial attack model. The cluster 
analysis view is designed to compare the clusters of the original 
examples and the adversarial examples, which helps users 
qualitatively analyze the performance changes of the target 
model. The model view displays the main modules of an 
adversarial attack model to help users understand the model 
architecture and working flow. The attack result explanation 
view offers saliency maps [27] of adversarial examples, which 
provides a visual explanation of the classification results of the 
adversarial examples. In the parallel coordinate view, users can 
analyze the changes in confidence scores of the original example 
and the adversarial example. In addition, information 
collaboration is achieved through link interaction between 
multiple views. Users can select points of interest in one view, 

and other views automatically update to display the 
characteristics of these points. 

The backend mainly consists of three parts: the adversarial 
attack module, the saliency map generation module and the data 
storage module. As the core of the backend, the adversarial 
attack module contains an attack model and a target model. The 
former generates adversarial examples to attack the latter. The 
saliency map generation module generates a saliency map for 
each adversarial example to explain why the adversarial attack 
succeeds or fails. The data storage module is used to store public 
datasets (e.g., training and testing sets), model parameters, 
adversarial examples, training logs and user settings. 

For simplicity, we illustrate our system using the MNIST 
dataset [28] which is a classic handwritten digit classification 
dataset. Specifically, we construct a MNIST classification 
model as the target model and employ AdvGAN as the attack 
model. In the following sections, we first describe the 
underlying models of our system, including the target model, 
attack model and saliency map generation model. Then, we 
introduce the visual interface of the system. Finally, we 
demonstrate the effectiveness of our system through case studies. 

IV. UNDERLYING MODEL 

In this section, we introduce three main underlying models 
of the visualization system: the target model, the attack model, 
and the salient map generation model. 

A. Target Model 

We construct a MNIST classification model based on 
convolutional neural network as the target model. The MNIST 
dataset is very classic and easy to understand. The model 
structure used in this dataset is also relatively simple, but 
includes the main components of modern neural networks, 
making it very suitable for demonstrating the characteristics of 
deep learning. Therefore, using this dataset helps beginners 
understand how the model works. Specifically, the MNIST 
dataset [21] contains ten classes of handwritten digital grayscale 
images from 0 to 9. It contains 60,000 training images and 
10,000 testing images. An MNIST classification model is 
constructed to recognize handwritten digital images. The model 
mainly consists of four convolutional layers, two pooling layers, 
two fully connected layers and a Softmax layer. It employs 
ReLU [1] as the activation function. Its overall architecture is 
shown in Table I. We train the MNIST classification model by 
the Adam optimizer [22] for 30 epochs with the batch size of 
128. The model with the highest test accuracy (99.1%) is 
selected as the target model. 

B. Attack Model 

We employ AdvGAN [5] as the attack model. Compared to 
traditional gradient-based attack methods, AdvGAN not only 
generates more realistic and diverse attack samples more stably 
and efficiently but also employs a black-box attack approach. 
This enhances the generalization performance of AdvAttackVis 
across different attack models. AdvGAN produces adversarial 
samples using generators of generate adversarial networks 
(GANs). As shown in Fig. 2, AdvGAN contains three 

components: a generator 𝐺 , a discriminator 𝐷  and a target 

model 𝑓 (i.e., the trained MNIST classification model). The 
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generator and discriminator form a GAN. The generator takes 
the original example x as input. The generated perturbation 

𝐺(𝑥) is added to the original example x to form an adversarial 

example 𝑥 + 𝐺(𝑥). 

TABLE I.  NETWORK ARCHITECTURE OF THE MNIST CLASSIFICATION 

MODEL 

Layer Parameter 

Convolution + ReLU 3×3×32 

Convolution + ReLU 3×3×32 

Max Pooling 2×2 

Convolution + ReLU 3×3×64 

Convolution + ReLU 3×3×64 

Max Pooling 2×2 

Fully Connected + ReLU 200 

Fully Connected + ReLU 200 

Softmax 10 

 
Fig. 2. Framework of the AdvGAN model. 

During training AdvGAN, the generator aims to generate 
fake examples that can fool the discriminator, while the 
discriminator aims to correctly discriminate fake examples from 
real examples. The generator and the discriminator confront 
each other, forcing the generator to eventually generate realistic 
adversarial examples. To be specific, GAN is trained based on 
the following adversarial loss: 

𝐿𝐺𝐴𝑁 = 𝐸𝑥𝑙𝑜𝑔𝐷(𝑥) + 𝐸𝑥 𝑙𝑜𝑔 (1 − 𝐷(𝑥 + 𝐺(𝑥)))  (1) 

where 𝐷(. )  represents the probability (i.e., confidence) 
which the discriminator discriminates the input as a real example. 
Moreover, AdvGAN needs to constrain the output of the 
generator. That is, the generated adversarial examples should 
induce the target model to output wrong predictions. For 
targeted attacks, the corresponding loss function is as follows: 

𝐿𝑎𝑑𝑣
𝑓

= 𝐸𝑥𝑙𝑓(𝑥 + 𝐺(𝑥), 𝑡)          (2) 

where 𝑡  denotes the target class and 𝑙
𝑓

 represents the 

cross-entropy loss function. However, for untargeted attacks, 𝑡 
represents the ground truth. The adversarial example can be 
misclassified into other classes by maximizing the distance 
between the prediction and the ground truth. To limit the 

magnitude of the perturbation 𝐺(𝑥), AdvGAN usually adds a 
soft hinge loss to constrain the training process: 

𝐿ℎ𝑖𝑛𝑔𝑒 = 𝐸𝑥𝑚𝑎𝑥(0, ‖𝐺(𝑥)‖2 − 𝑐)       (3) 

where 𝑐  indicates the user-specified upper bound and 

𝐿
ℎ𝑖𝑛𝑔𝑒

 can stabilize the training process of GAN. Finally, the 

objective function of AdvGAN is as follows: 

𝐿 =  𝐿𝑎𝑑𝑣
𝑓

+ 𝛼𝐿𝐺𝐴𝑁 + 𝛽𝐿ℎ𝑖𝑛𝑔𝑒         (4) 

where 𝛼 and 𝛽 control the importance of each component, 

𝐿
𝐺𝐴𝑁

 makes the perturbed example 𝑥 + 𝐺(𝑥)  similar to the 

original example 𝑥, and 𝐿
𝑎𝑑𝑣

𝑓
 improves the attack success rate 

of adversarial examples. We train the generator and the 

discriminator by solving the min-max game 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

 𝐿. 

The trained generator can quickly generate adversarial examples 
for the original examples. 

C. Saliency Map Generation Model 

A saliency map [31] can reflect which regions of the input 
image are important for the decision-making of the target model. 
That is, the saliency map of an adversarial example can explain 
why the attack on the target model succeeds or fails from a visual 
perspective. We construct the saliency map generation model 
based on Grad-CAM [23]. The saliency map generation 
algorithm for adversarial examples is shown in Algorithm 1. 

Algorithm 1 Saliency map generation algorithm for 
antithetical examples 

Input: The original example 𝑥, the generator 𝐺, the target 
model 𝑓 
Output: A saliency map of the adversarial example 

1. 𝑥′ = 𝑥 + 𝐺(𝑥)；// Generate an adversarial example 

2. 𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑥′))；// Predict the class of the adversarial 

example. 

3. 𝑠 = 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 (𝑥′)；// Generate a saliency map. 

4. 𝑠′ =
𝑠−min (𝑠)

max(𝑠)−min (𝑠)
； 

5. return 𝑠′; 

Grad-CAM generates saliency maps based on the feature 
maps of the last convolutional layer of the target model. 

Specifically, the weight 𝑤
𝑘

𝑐
 of the k-th feature map 𝐴

𝑘
 for 

category 𝑐 is the mean of gradients: 

𝑤𝑘
𝑐 =

1

𝑧
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘𝑗𝑖                (5) 

where 𝑦
𝑐

 denotes the output of the target model for 

category 𝑐, 𝑖 and 𝑗 is the horizontal and vertical coordinates 

of the feature map 𝐴
𝑘
 respectively, and 𝑧 denotes the size of 

the feature map 𝐴
𝑘
. Then, the weighted feature maps are merged 

into a saliency map: 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝑤𝑘

𝑐𝐴𝑘
𝑘 )         (6) 

where ReLU [1] is used to remove negative values of the 
saliency map. 

 

V. VISUAL INTERFACE 

In this section, we introduce the visual interface of our 
system. As shown in Fig. 3, it mainly includes six visualization 
views: (A) the attack result overview view, (B) the control panel, 
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(C) the cluster analysis view, (D) the model view, (E) the attack 
result interpretation view, and (F) the parallel coordinate view. 

A. The Attack Result Overview View 

This view is used to analyze the attack success rate of the 
adversarial examples of each category (e.g., categories 0 to 9 of 
MNIST) and the distribution of the attack results. As shown in 
Fig. 3(A), a histogram is used to display the attack success rate 
for each category. The scatter plots show the distribution of 
attack results for each category, allowing users to inspect which 
category each adversarial example is identified as. For each 
scatter plot, we take category as the horizontal coordinate and 
confidence as the vertical coordinate. Each scatter represents an 
adversarial example and its color encodes the ground truth of the 
adversarial example. When users click on a scatter, the scatter is 
highlighted in black. Meanwhile, the attack result explanation 
view and the parallel coordinate view present the explanation 
result and the parallel coordinate plot of the adversarial example, 
respectively. 

B. The Control Panel 

In the control panel, users can adjust the parameters of the 
attack model and select the dimensionality reduction algorithm 
for generating the cluster analysis view. When users click the 
"Start Training" button, the system starts training the attack 
model and saves the model with the highest success rate. After 
the attack model is trained, users can adjust the "Number of 
Adversarial Examples" item to control the number of adversarial 
examples. When users click the "Start Attack" button, the 
system generates a specified number of adversarial examples to 
attack the target model. The attack results are shown in the attack 
result overview view. The system provides three dimensionality 
reduction algorithms as options for the cluster analysis view, 
namely Principal Component Analysis (PCA) [24], Multi-
Dimensional Scaling (MDS) [25] and t-distributed Stochastic 
Neighbor Embedding (t-SNE) [26]. When users select a 
dimensionality reduction algorithm, the system generates a 

cluster analysis view by projecting the high-dimensional feature 
vectors of examples to 2D plane. 

C. The Cluster Analysis View 

This view is designed to compare the clusters of the original 
examples and the adversarial examples, which allows users to 
qualitatively analyze the degree of damage to the performance 
of the target model. As shown in Fig. 3(C), the view consists of 
two parts. The left shows the clusters of the original examples 
while the right presents the clustering results of the adversarial 
examples. Each dot denotes an example and its color encodes 
the ground truth of the example. In general, the left obtains clear 
clusters due to the good classification performance of the target 
model for the original examples. However, the clusters in the 
right are difficult to be distinguished, which suggests that the 
adversarial examples interfere with the performance of the target 
model. Moreover, the view offers interactives (i.e., selection, 
zooming and highlighting) to facilitate user comparison and 
analysis of examples. 

D. The Model View 

The model view presents an overall overview of the attack 
model to help users understand the overall architecture and data 
flow of the model. For the attack model AdvGAN, we design 
different rectangular blocks to represents the Generator, 
Discriminator and target model (e.g., the trained MNIST 
classification model), respectively. Users can click on a 
rectangular block to inspect the internal structure of the 
corresponding module more closely. The small histogram on the 
right side of the target model displays the classification results 
of the target model for adversarial examples. During the training 
phase of the attack model, this view provides the change curve 
of the attack success rate to help users observe the real-time 
training situation of the model. When the attack model is trained, 
users can click on the "Input Example" rectangle to load 
examples to explore adversarial attacks. 

 
Fig. 3. The visual interface of the AdvAttackVis system. 
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E. The Attack Result Interpretation View 

The view can provide explanations for the classification 
results of the adversarial examples. Specifically, the view 
generates a saliency map for each adversarial example (see 
Algorithm 1). The saliency maps reveal the contribution of 
different regions and pixels of the input image to the model's 
decision. Intuitively, adversarial perturbations should target 
those key pixels that influence the model's decision, in order to 
deceive the model more effectively. Therefore, by visualizing 
the differences between adversarial and original samples on 
saliency maps, users can intuitively understand the mechanism 
of adversarial perturbations, namely how attackers manipulate 
pixel values subtly to deceive the model. As shown in Fig. 3(D), 
this view offers the saliency maps of the original example and 
the adversarial example for comparative analysis. Taking a 
MNIST image as an example, its saliency map is similar to a 
mosaic map where the lighter color of a pixel indicates that the 
target model pays more attention to that pixel. Compared with 
the saliency map of the original image, that of the adversarial 
example usually changes dramatically, which suggests that the 
adversarial example interferes with the decision-making of the 
target model. 

F. The Parallel Coordinate View 

In the parallel coordinate view, a parallel coordinate plot is 
designed to help users analyze the classification results and the 
confidence changes of the adversarial examples. As shown in 
Fig. 3(E), the plot contains four vertical parallel lines from left 
to right. They represent the classification confidence of the 
original example, the classification result of the original 
examples, the classification result of the adversarial example 
and the classification confidence of the adversarial example, 
respectively.  A curve in the parallel coordinate plot indicates 
an adversarial example and its color encodes the class of the 
adversarial example. As illustrated in Fig. 4, the curve 
corresponding to the handwritten digit "6" has the values "1.00", 
"6", "9" and "9" from left to right. This means that the original 
example is identified as "6" by the MNIST classification model 
with confidence "100%" but the adversarial example (i.e., the 
original example with an adversarial perturbation) is 
misidentified as "9" with confidence "61%". 

 
Fig. 4. The curve corresponding to the handwritten digital image "6" in the 

parallel coordinate view. 

VI. CASE STUDY 

This section verifies the usability and effectiveness of the 
visualization system through a case study based on the MNIST 
dataset. 

To train the AdvGAN model, we select the MNIST dataset 
as the training data in the control panel (Fig. 3(A)) and  click 
on the "Untargeted Attack" item to set the adversarial attack as 
an untargeted attack. Then we set the parameters of its objective 
function (i.e., c=0.3, α=1 and β=1) and the parameters of the 
model training (i.e., epochs=30, batch size=128 and learning 
rate=0.001). Finally, we click on the "Start Training" item to 
start model training. In addition, we select the t-SNE 
dimensionality reduction algorithm to generate the cluster 
analysis view. 

After the AdvGAN model is trained, we set the value of the 
"Number of Adversarial Examples" item in the control panel to 
2075 and click the "Start Attack" button to start the adversarial 
attack. Specifically, the system first randomly selects 2075 
images from the MNIST testing set that can be correctly 
classified by the MNIST classification model (i.e., the target 
model), and then inputs them into the trained generator to 
generate 2075 adversarial examples to attack the MNIST 
classification model. As shown in Fig. 5, the total attack success 
rate is 99.6%. The histogram shows that only the adversarial 
examples with class 0 and class 6 fail against the target model. 
In other words, the MNIST classification model can correctly 
predict the category of these adversarial examples. As shown in 
the red dashed box in Fig. 6, there are six failed examples in the 
adversarial examples with class 0, while there is only one failed 
example in the adversarial examples with class 6. Although 
these seven adversarial examples do not cause the MNIST 
classification model to output wrong results, they indeed 
decrease the classification confidence of the MNIST 
classification model to a certain extent. Specifically, as shown 
in Fig. 7, the MNIST classification model predicts the classes of 
the seven failed samples with 100% confidence before adding 
the adversarial interferences to the original examples. However, 
when the adversarial interferences are added to the original 
examples (i.e., generating the adversarial examples), the MNIST 
classification model correctly classifies the adversarial 
examples with a maximum of 73% confidence. This means that 
the addition of the adversarial interferences can interfere with 
the model's judgment to some extent even if the attack fails. 

 

Fig. 5. The total attack success rate of 2075 adversarial examples and the 

attack success rate for each category. 
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      (a)Adversarial examples 

with class 0 
 (b) Adversarial examples 

with class 6 

Fig. 6. Seven failed examples in the adversarial examples with class 0 and 

class 6. 

 

Fig. 7. Confidence change of the seven failed examples before and after the 

adversarial attack. 

The degree of interference suffered by the target model can 
be analyzed through the cluster analysis view, as shown in Fig. 8. 
In this case, the left view shows that there are highly 
distinguishable clusters in the original examples, which shows 
that the target model is capable of distinguishing classes well 
before being attacked. However, when the original examples 
become adversarial examples against the target model, the 
cluster results of the adversarial examples become cluttered, as 
shown in the right view of Fig. 8. This indicates that the 
adversarial attack has a great effect on the category 
discrimination ability of the target model. For example, the two 
examples of class “5” (i.e., “2248” and “2250”) in the left view 
have similar features and thus are close to each other. When 
these two examples become adversarial examples, their 
positions in the right view are far apart. This means that the 
addition of adversarial perturbations has a significant impact on 
their features, thus causing them to be misclassified by the target 
model. 

From the scatter plots in the attack result overview view 
(Fig. 3(A)), we can find that most of the adversarial examples 
are misclassified by the MNIST classification model with high 
confidence (i.e., large values on the vertical coordinate). In order 
to explore the successful adversarial examples, we select a 
successful adversarial example with low confidence (i.e., a small 
value on the vertical coordinate) from each category (i.e., each 
scatter plot) for further analysis. Fig. 9 shows the confidence 
changes of the selected 10 adversarial examples before and after 
adding adversarial disturbances. Specifically, each example is 
correctly classified by the MNIST classification model with a 
confidence level close to or equal to 100% before adding the 
adversarial interference. However, they are incorrectly 
classified into other categories by the model with a lower 
confidence level after adding the adversarial interferences to 
them. For example, the adversarial example with category 4 is 
classified as 9 with 24% confidence. For successful untargeted 
attacks, the low confidence level indicates that the making 
decision of the MNIST classification model is influenced by the 
adversarial disturbances. To further explore the reasons why the 
selected 10 adversarial examples (see Fig. 9) are misclassified, 
we analyze the saliency maps of these examples in the attack 
result interpretation view. As shown in Fig. 10, there are a total 
of 10 pictures. Each picture is composed of 4 small pictures. 
They are the original image (row 1, column 1), the adversarial 
example (row 1, column 2), the saliency map of the original 
image (row 1, column 2), and the saliency map of the adversarial 
example (row 1, column 2). For each saliency map, the lighter 
the color of a pixel is, the more attention the MNIST 
classification model pays to the pixel (i.e., the more important 
the pixel is to the final classification result). Comparing the 
saliency map of the original image with that of the adversarial 
examples, we can find that when adversarial perturbations are 
added to the original image (i.e., producing an adversarial 
example), the attention area of the MNIST classification model 
changes, resulting in the predictions of the model to be disturbed. 
For example, for the original image "0", the pixel color of the 
contour area of digital "0" in its saliency map is lighter, which 
reveals that the MNIST classification model mainly focuses on 
the contour area of digital "0". However, when the original 
image becomes an adversarial example, the white pixels in the 
upper-left region of digital "0" in the adversarial example’s 
saliency map become denser. This reveals that the MNIST 
classification model shifts its attention to the upper-left region 
of digital "0", resulting in the incorrect prediction. 

 
Fig. 8. Cluster results of the original examples and the adversarial examples. 
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Fig. 9. The parallel coordinate plot of the selected 10 successful adversarial 

examples. 

 

 
Fig. 10. Interpretation results of 10 successful attack samples. 

VII. CONCLUSION AND FUTURE WORK 

In this paper, we present an adversarial attack visualization 
system called AdvAttackVis which can effectively assist users 
in learning, understanding, and exploring adversarial attacks. 
The visualization system offers interactive visualization views 
to help users train and analyze the adversarial attack models, 
understand the principles of adversarial attacks, analyze the 
success rate of adversarial attacks and the distribution of attack 
results, and explore the prediction mechanism of the target 
model for adversarial examples. It facilitates end-to-end analysis 
of adversarial attacks. Our multi-view visual analysis 
environment enables users to gain a deep understanding of the 
effects and impacts of adversarial attacks. Additionally, the 
system incorporates interpretability analysis techniques, such as 
saliency analysis, which can assist users in inferring the reasons 
behind adversarial attacks. Through the case study base on the 
MNIST handwritten digital image dataset, we demonstrate the 
usability and effectiveness of the system. 

In the future, we will implement more interactive 
visualizations to help users explore the internal states of the 
target model. For example, by analyzing the changes in feature 
maps of each convolutional layer layer by layer, users can track 
how misclassifications caused by attacks accumulate and 
propagate within the model, deepening their understanding of 
the underlying mechanisms of adversarial attacks and enhancing 
their analytical abilities. Through interactive visualization of the 
internal states of the model, users can gain insights into the 
intermediate processes of model inference, identify anomalous 
behaviors introduced by attacks, and infer their causes and 
impacts. 
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