
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

383 | P a g e

www.ijacsa.thesai.org

AdvAttackVis: An Adversarial Attack Visualization

System for Deep Neural Networks

DING Wei-jie1*, Shen Xuchen2, Yuan Ying3, MAO Ting-yun4, SUN Guo-dao5, CHEN Li-li6, CHEN bing-ting7

Department of Computer and Information Security, Zhejiang Police College, Hangzhou 310053 China1, 3

Key Laboratory of Public Security Information Application Based on Big-data Architecture, Ministry of Public Security,

Hangzhou 310053 China1

Xiaoshan District branch of Hangzhou Public Security Bureau, Hangzhou 310053 China2

Zhejiang Dahua Technology Co., Ltd. Hangzhou 310053, China4, 6

College of Computer Science and Technology, Zhejiang University of Technology, Hangzhou 310023 China5

College of Computer Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing 210016 China7

Abstract—Deep learning has been widely used in various

scenarios such as image classification, natural language

processing, and speech recognition. However, deep neural

networks are vulnerable to adversarial attacks, resulting in

incorrect predictions. Adversarial attacks involve generating

adversarial examples and attacking a target model. The

generation mechanism of adversarial examples and the prediction

principle of the target model for adversarial examples are

complicated, which makes it difficult for deep learning users to

understand adversarial attacks. In this paper, we present an

adversarial attack visualization system called AdvAttackVis to

assist users in learning, understanding, and exploring adversarial

attacks. Based on the designed interactive visualization interface,

the system enables users to train and analyze adversarial attack

models, understand the principles of adversarial attacks, analyze

the results of attacks on the target model, and explore the

prediction mechanism of the target model for adversarial

examples. Through real case studies on adversarial attacks, we

demonstrate the usability and effectiveness of the proposed

visualization system.

Keywords—Deep learning; deep neural networks; adversarial

attacks; adversarial examples; interactive visualization

I. INTRODUCTION

With the development of artificial intelligence, deep neural
networks are widely applied to various scenarios such as image
classification, natural language processing and speech
recognition. However, More and more studies reveal that deep
neural networks are vulnerable to adversarial attacks [1].
Adversarial attacks are to generate adversarial examples by
adding weak adversarial perturbations to the input examples.
The generated adversarial examples can interfere with the
decision-making of deep neural networks, resulting in incorrect
predictions. Thus, adversarial attacks pose a serious threat to the
application of deep learning. Delving into adversarial attacks
helps to reveal the weaknesses of deep learning models, which
in turn motivates researchers to design effective defense
strategies to improve the robustness of neural networks.

The goal of adversarial attacks is to generate adversarial
examples which can induce deep learning models to make
incorrect predictions. Szegedy et al. [1] discovered early that
deep neural networks are vulnerable to adversarial examples in

the field of image classification. Specifically, the input images
with adversarial noise (i.e., adversarial examples) can induce
image classification models to produce incorrect classification
results. Since then, a number of adversarial attack methods have
been proposed. Goodfellow et al. [2] proposed a classical
gradient-based attack method namely FGSM. The method adds
the gradients that increases the loss function to the original
image to generate an adversarial example. The idea based on
gradient derives many gradient-based attack methods such as
PGD [3], BIM [4] and ILCM [4]. To obtain adversarial
examples with high perceptual quality, Carlin and Wagner [12]
proposed an optimization-based attack method which produces
adversarial examples with small perturbations and high attack
success rates by minimizing the objective function. The above
attack methods require access to the target model (i.e., the
attacked model) when generating adversarial examples,
resulting in low efficiency in generating adversarial examples.
To obtain adversarial examples quickly, Xiao et al. [5] presented
an attack method based on generative adversarial networks
(GAN). This method can directly generate adversarial examples
with a high attack success rate without accessing the target
model again after the generator is trained.

Adversarial attacks involve generating adversarial examples
and attacking target models. However, the generation
mechanism of adversarial examples and the prediction principle
of the target model for adversarial examples are complicated,
which makes it difficult for deep learning users especially
beginners to understand adversarial attacks. To address this
problem, we present an adversarial attack visualization system
called AdvAttackVis, which can assist users to learn, understand
and explore adversarial attacks. The visualization system is
implemented based on B/S architecture, which is easy for deep
learning users to use. Based on the underlying models and the
designed interactive visualizations, the system enables users to
train and explore adversarial attack models, understand the
principles of adversarial attacks, analyze the results of
adversarial attacks, and explore the prediction mechanism of the
target model for adversarial examples. Through a case study
where AdvGAN (attack model) attacks an MNIST classifier
(target model), we demonstrate the usability and effectiveness
of our system. AdvAttackVis provides end-to-end support for
adversarial attack analysis. We have also specifically designed

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

384 | P a g e

www.ijacsa.thesai.org

visualization views from different analysis perspectives,
providing noval insights for analyzing adversarial attacks. This
enables users to explore and understand the attack process
comprehensively, whereas existing tools often only support
post-analysis of existing attacks.

Our contributions can be summarized as follows:

 A visual analysis scheme for end-to-end interpretability
of adversarial attacks. The scheme combines interactive
visualizations with underlying algorithms to help users
delve into adversarial attacks.

 An adversarial attack visualization system for deep
neural networks. The system offers powerful interactive
visualization views to assist users in exploring
adversarial attacks.

 We demonstrate the usability and effectiveness of the
visualization system via a real case study base on the
MNIST handwritten digital image dataset.

II. RELATED WORK

A. Adversarial Attacks

Adversarial attacks involve generating adversarial examples
and attacking the target model. Szegedy et al. [1] first proposed
the concept of adversarial examples. Specifically, an adversarial
example is generated by adding weak adversarial interference to
the original image. It could induce the target model to output
wrong predictions with high confidence, which reveals the
vulnerability of deep neural networks and raises concerns about
the security of deep learning models. Goodfellow et al. [2]
argued that this vulnerability is caused by the local linearity of
neural networks, especially when a linear activation function
(e.g., ReLU [1]) is used in the model. Arpit et al. [7] analyzed
the memory ability of neural networks for training data and
found that models with high memory levels are more susceptible
to adversarial examples. Gilmer et al. [10] believed that
adversarial examples are attributed to the high-dimensional
geometric structure of data manifold and then analyzed argued
the relationship between adversarial examples and the high-
dimensional geometry of data manifold.

From the perspective of the attack environment, adversarial
attacks can be divided into white-box attacks and black-box
attacks [7]. In white-box attacks, the attacker can obtain
information about the target model such as training data, model
structure, model parameters and model output. Therefore, the
attacker can directly utilize the gradient of the loss function and
classification hyperplane of the neural network to calculate the
required perturbations, thereby generating adversarial examples.
FGSM [2] is a classical white-box attack method which obtains
adversarial examples by adding perturbations to the input
images. Madry et al [3] improved FGSM and proposed PGD to
further improve the attack success rate. To generate the
adversarial examples with high perceptual quality, Carlini and
Wagner [12] proposed an optimization-based attack method
which obtains the smallest adversarial perturbation by iteratively
optimizing the objective function. However, in practical
applications, attackers usually have no access to the detailed
information of the target model, which makes it impossible to
implement white-box attacks. To overcome this limitation,

researchers have proposed black-box attacks where the attacker
only needs the output labels or probability vectors of the target
model. Single-pixel attack [14] is a classical black-box attack
method which obtains an adversarial example by changing the
value of the selected pixel in the original image. Sarkar [15]
proposed two black-box attack methods namely UPSET and
ANGRI. UPSET generates general perturbations for all output
categories while ANGRI produces specific perturbations for
different images. Their generated adversarial examples can
induce the image classification model to output specific
categories. Xiao et al. [5] proposed an attack method based on
generating adversarial networks (GAN). The method first
applies knowledge distillation to obtain an agent model with
similar performance to the target model and then generates
adversarial examples that are effective against the target model.

In the white-box or black-box attack scenario, adversarial
attacks can be further divided into targeted attacks and
untargeted attacks [7-9]. Targeted attacks induce the deep
learning model to recognize adversarial examples as a specific
class while untargeted attacks simply require the model to output
the incorrect class. The white-box attack method FGSM [2] can
support both targeted and untargeted attacks. For black-box
attacks, AdvGAN [5] can achieve targeted and untargeted
attacks by designing the loss function of the target model.

However, existing work on interpretability analysis of
adversarial attacks is still relatively lacking. They mostly focus
on the surface effects of attacks, such as success rates,
perturbation sizes, etc., while rarely delving into the causes of
attacks, characteristics of attack samples, and the impact of
attacks on model behavior.

B. Visualization of Deep Learning Models

Deep learning models are regarded as black-box models
because their decision-making mechanisms are not clear to
human cognition. In recent years, researchers have proposed
different visualization techniques [16] [29] [30] to reveal the
inner workings of deep learning models and assist users to
understand, analyze and learn deep learning. TensorBord is a
visualization tool launched by the TensorFlow deep learning
framework, which can visualize computational graph and
training logs. However, TensorBord lacks an interactive visual
design that goes deep into the model, so users are unable to gain
a deep understanding of the internal mechanism of the model.
Liu et al. [19] proposed an interactive visualization technology
namely CNNVis to help users understand, diagnose and
improve convolutional neural networks (CNN). This technology
visualizes the convolutional neural network as a directed acyclic
graph where neurons in the convolutional layers are clustered
and connections between neurons are bundled to reduce visual
clutter. It allows users to interactively inspect the details of the
model (e.g., activation values and weights). Recently, Wang et
al [20] proposed CNN Explainer, a convolutional neural
network visualization system that explains convolution and
pooling operations via rich interactive visualizations. It can
effectively help deep learning beginners quickly understand
complex convolutional neural networks.

Researchers have made great progress in visualizing neural
networks. Some of these works attempts to introduce
visualization techniques to assist in the analysis of adversarial

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

385 | P a g e

www.ijacsa.thesai.org

attacks, they mostly provide limited, static visualization views,
lacking rich interactive features and flexible exploration
mechanisms. Users find it difficult to dynamically adjust views,
filter data, and locate interesting attack patterns according to
their analysis needs. In contrast, AdvAttackVis designs multiple
visualization views, supporting flexible interactive operations
and view coordination, empowering users with full autonomy
and flexibility to explore the overview and details of attacks
from different perspectives and granularities.

III. VISUALIZATION SYSTEM OVERVIEW

In this section, we introduce the overall framework of the
AdvAttackVis system. As shown in Fig. 1, the system is
designed based on B/S (Browser-Server) architecture. It consists
of the front-end and back-end. The two parts are described
below.

Fig. 1. Framework of AdvAttackVis.

The front-end provides a visual interface to help users
understand, analyze, and explore adversarial attacks. It is mainly
composed of six visualization views: the attack result overview
view, the control panel, the cluster analysis view, the model
view, the attack result explanation view, and the parallel
coordinate view. The attack result overview view is used to
analyze the adversarial attack results including the attack
success rate and the distribution of attack results. This view
provides a visual analysis of the attack effects from an overall
perspective, allowing users to quickly understand the most
prominent categories of model vulnerabilities to guide the next
step of in-depth analysis. The control panel provides parameter
settings for model training and adversarial attacks so that the
user can train a satisfactory adversarial attack model. The cluster
analysis view is designed to compare the clusters of the original
examples and the adversarial examples, which helps users
qualitatively analyze the performance changes of the target
model. The model view displays the main modules of an
adversarial attack model to help users understand the model
architecture and working flow. The attack result explanation
view offers saliency maps [27] of adversarial examples, which
provides a visual explanation of the classification results of the
adversarial examples. In the parallel coordinate view, users can
analyze the changes in confidence scores of the original example
and the adversarial example. In addition, information
collaboration is achieved through link interaction between
multiple views. Users can select points of interest in one view,

and other views automatically update to display the
characteristics of these points.

The backend mainly consists of three parts: the adversarial
attack module, the saliency map generation module and the data
storage module. As the core of the backend, the adversarial
attack module contains an attack model and a target model. The
former generates adversarial examples to attack the latter. The
saliency map generation module generates a saliency map for
each adversarial example to explain why the adversarial attack
succeeds or fails. The data storage module is used to store public
datasets (e.g., training and testing sets), model parameters,
adversarial examples, training logs and user settings.

For simplicity, we illustrate our system using the MNIST
dataset [28] which is a classic handwritten digit classification
dataset. Specifically, we construct a MNIST classification
model as the target model and employ AdvGAN as the attack
model. In the following sections, we first describe the
underlying models of our system, including the target model,
attack model and saliency map generation model. Then, we
introduce the visual interface of the system. Finally, we
demonstrate the effectiveness of our system through case studies.

IV. UNDERLYING MODEL

In this section, we introduce three main underlying models
of the visualization system: the target model, the attack model,
and the salient map generation model.

A. Target Model

We construct a MNIST classification model based on
convolutional neural network as the target model. The MNIST
dataset is very classic and easy to understand. The model
structure used in this dataset is also relatively simple, but
includes the main components of modern neural networks,
making it very suitable for demonstrating the characteristics of
deep learning. Therefore, using this dataset helps beginners
understand how the model works. Specifically, the MNIST
dataset [21] contains ten classes of handwritten digital grayscale
images from 0 to 9. It contains 60,000 training images and
10,000 testing images. An MNIST classification model is
constructed to recognize handwritten digital images. The model
mainly consists of four convolutional layers, two pooling layers,
two fully connected layers and a Softmax layer. It employs
ReLU [1] as the activation function. Its overall architecture is
shown in Table I. We train the MNIST classification model by
the Adam optimizer [22] for 30 epochs with the batch size of
128. The model with the highest test accuracy (99.1%) is
selected as the target model.

B. Attack Model

We employ AdvGAN [5] as the attack model. Compared to
traditional gradient-based attack methods, AdvGAN not only
generates more realistic and diverse attack samples more stably
and efficiently but also employs a black-box attack approach.
This enhances the generalization performance of AdvAttackVis
across different attack models. AdvGAN produces adversarial
samples using generators of generate adversarial networks
(GANs). As shown in Fig. 2, AdvGAN contains three

components: a generator 𝐺 , a discriminator 𝐷 and a target

model 𝑓 (i.e., the trained MNIST classification model). The

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

386 | P a g e

www.ijacsa.thesai.org

generator and discriminator form a GAN. The generator takes
the original example x as input. The generated perturbation

𝐺(𝑥) is added to the original example x to form an adversarial

example 𝑥 + 𝐺(𝑥).

TABLE I. NETWORK ARCHITECTURE OF THE MNIST CLASSIFICATION

MODEL

Layer Parameter

Convolution + ReLU 3×3×32

Convolution + ReLU 3×3×32

Max Pooling 2×2

Convolution + ReLU 3×3×64

Convolution + ReLU 3×3×64

Max Pooling 2×2

Fully Connected + ReLU 200

Fully Connected + ReLU 200

Softmax 10

Fig. 2. Framework of the AdvGAN model.

During training AdvGAN, the generator aims to generate
fake examples that can fool the discriminator, while the
discriminator aims to correctly discriminate fake examples from
real examples. The generator and the discriminator confront
each other, forcing the generator to eventually generate realistic
adversarial examples. To be specific, GAN is trained based on
the following adversarial loss:

𝐿𝐺𝐴𝑁 = 𝐸𝑥𝑙𝑜𝑔𝐷(𝑥) + 𝐸𝑥 𝑙𝑜𝑔 (1 − 𝐷(𝑥 + 𝐺(𝑥))) (1)

where 𝐷(.) represents the probability (i.e., confidence)
which the discriminator discriminates the input as a real example.
Moreover, AdvGAN needs to constrain the output of the
generator. That is, the generated adversarial examples should
induce the target model to output wrong predictions. For
targeted attacks, the corresponding loss function is as follows:

𝐿𝑎𝑑𝑣
𝑓

= 𝐸𝑥𝑙𝑓(𝑥 + 𝐺(𝑥), 𝑡) (2)

where 𝑡 denotes the target class and 𝑙
𝑓

 represents the

cross-entropy loss function. However, for untargeted attacks, 𝑡
represents the ground truth. The adversarial example can be
misclassified into other classes by maximizing the distance
between the prediction and the ground truth. To limit the

magnitude of the perturbation 𝐺(𝑥), AdvGAN usually adds a
soft hinge loss to constrain the training process:

𝐿ℎ𝑖𝑛𝑔𝑒 = 𝐸𝑥𝑚𝑎𝑥(0, ‖𝐺(𝑥)‖2 − 𝑐) (3)

where 𝑐 indicates the user-specified upper bound and

𝐿
ℎ𝑖𝑛𝑔𝑒

 can stabilize the training process of GAN. Finally, the

objective function of AdvGAN is as follows:

𝐿 = 𝐿𝑎𝑑𝑣
𝑓

+ 𝛼𝐿𝐺𝐴𝑁 + 𝛽𝐿ℎ𝑖𝑛𝑔𝑒 (4)

where 𝛼 and 𝛽 control the importance of each component,

𝐿
𝐺𝐴𝑁

 makes the perturbed example 𝑥 + 𝐺(𝑥) similar to the

original example 𝑥, and 𝐿
𝑎𝑑𝑣

𝑓
 improves the attack success rate

of adversarial examples. We train the generator and the

discriminator by solving the min-max game 𝑎𝑟𝑔 𝑚𝑖𝑛
𝐺

𝑚𝑎𝑥
𝐷

 𝐿.

The trained generator can quickly generate adversarial examples
for the original examples.

C. Saliency Map Generation Model

A saliency map [31] can reflect which regions of the input
image are important for the decision-making of the target model.
That is, the saliency map of an adversarial example can explain
why the attack on the target model succeeds or fails from a visual
perspective. We construct the saliency map generation model
based on Grad-CAM [23]. The saliency map generation
algorithm for adversarial examples is shown in Algorithm 1.

Algorithm 1 Saliency map generation algorithm for
antithetical examples

Input: The original example 𝑥, the generator 𝐺, the target
model 𝑓
Output: A saliency map of the adversarial example

1. 𝑥′ = 𝑥 + 𝐺(𝑥)；// Generate an adversarial example

2. 𝑐 = 𝑎𝑟𝑔𝑚𝑎𝑥(𝑓(𝑥′))；// Predict the class of the adversarial

example.

3. 𝑠 = 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 (𝑥′)；// Generate a saliency map.

4. 𝑠′ =
𝑠−min (𝑠)

max(𝑠)−min (𝑠)
；

5. return 𝑠′;

Grad-CAM generates saliency maps based on the feature
maps of the last convolutional layer of the target model.

Specifically, the weight 𝑤
𝑘

𝑐
 of the k-th feature map 𝐴

𝑘
 for

category 𝑐 is the mean of gradients:

𝑤𝑘
𝑐 =

1

𝑧
∑ ∑

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘𝑗𝑖 (5)

where 𝑦
𝑐

 denotes the output of the target model for

category 𝑐, 𝑖 and 𝑗 is the horizontal and vertical coordinates

of the feature map 𝐴
𝑘
 respectively, and 𝑧 denotes the size of

the feature map 𝐴
𝑘
. Then, the weighted feature maps are merged

into a saliency map:

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝑤𝑘

𝑐𝐴𝑘
𝑘) (6)

where ReLU [1] is used to remove negative values of the
saliency map.

V. VISUAL INTERFACE

In this section, we introduce the visual interface of our
system. As shown in Fig. 3, it mainly includes six visualization
views: (A) the attack result overview view, (B) the control panel,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

387 | P a g e

www.ijacsa.thesai.org

(C) the cluster analysis view, (D) the model view, (E) the attack
result interpretation view, and (F) the parallel coordinate view.

A. The Attack Result Overview View

This view is used to analyze the attack success rate of the
adversarial examples of each category (e.g., categories 0 to 9 of
MNIST) and the distribution of the attack results. As shown in
Fig. 3(A), a histogram is used to display the attack success rate
for each category. The scatter plots show the distribution of
attack results for each category, allowing users to inspect which
category each adversarial example is identified as. For each
scatter plot, we take category as the horizontal coordinate and
confidence as the vertical coordinate. Each scatter represents an
adversarial example and its color encodes the ground truth of the
adversarial example. When users click on a scatter, the scatter is
highlighted in black. Meanwhile, the attack result explanation
view and the parallel coordinate view present the explanation
result and the parallel coordinate plot of the adversarial example,
respectively.

B. The Control Panel

In the control panel, users can adjust the parameters of the
attack model and select the dimensionality reduction algorithm
for generating the cluster analysis view. When users click the
"Start Training" button, the system starts training the attack
model and saves the model with the highest success rate. After
the attack model is trained, users can adjust the "Number of
Adversarial Examples" item to control the number of adversarial
examples. When users click the "Start Attack" button, the
system generates a specified number of adversarial examples to
attack the target model. The attack results are shown in the attack
result overview view. The system provides three dimensionality
reduction algorithms as options for the cluster analysis view,
namely Principal Component Analysis (PCA) [24], Multi-
Dimensional Scaling (MDS) [25] and t-distributed Stochastic
Neighbor Embedding (t-SNE) [26]. When users select a
dimensionality reduction algorithm, the system generates a

cluster analysis view by projecting the high-dimensional feature
vectors of examples to 2D plane.

C. The Cluster Analysis View

This view is designed to compare the clusters of the original
examples and the adversarial examples, which allows users to
qualitatively analyze the degree of damage to the performance
of the target model. As shown in Fig. 3(C), the view consists of
two parts. The left shows the clusters of the original examples
while the right presents the clustering results of the adversarial
examples. Each dot denotes an example and its color encodes
the ground truth of the example. In general, the left obtains clear
clusters due to the good classification performance of the target
model for the original examples. However, the clusters in the
right are difficult to be distinguished, which suggests that the
adversarial examples interfere with the performance of the target
model. Moreover, the view offers interactives (i.e., selection,
zooming and highlighting) to facilitate user comparison and
analysis of examples.

D. The Model View

The model view presents an overall overview of the attack
model to help users understand the overall architecture and data
flow of the model. For the attack model AdvGAN, we design
different rectangular blocks to represents the Generator,
Discriminator and target model (e.g., the trained MNIST
classification model), respectively. Users can click on a
rectangular block to inspect the internal structure of the
corresponding module more closely. The small histogram on the
right side of the target model displays the classification results
of the target model for adversarial examples. During the training
phase of the attack model, this view provides the change curve
of the attack success rate to help users observe the real-time
training situation of the model. When the attack model is trained,
users can click on the "Input Example" rectangle to load
examples to explore adversarial attacks.

Fig. 3. The visual interface of the AdvAttackVis system.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

388 | P a g e

www.ijacsa.thesai.org

E. The Attack Result Interpretation View

The view can provide explanations for the classification
results of the adversarial examples. Specifically, the view
generates a saliency map for each adversarial example (see
Algorithm 1). The saliency maps reveal the contribution of
different regions and pixels of the input image to the model's
decision. Intuitively, adversarial perturbations should target
those key pixels that influence the model's decision, in order to
deceive the model more effectively. Therefore, by visualizing
the differences between adversarial and original samples on
saliency maps, users can intuitively understand the mechanism
of adversarial perturbations, namely how attackers manipulate
pixel values subtly to deceive the model. As shown in Fig. 3(D),
this view offers the saliency maps of the original example and
the adversarial example for comparative analysis. Taking a
MNIST image as an example, its saliency map is similar to a
mosaic map where the lighter color of a pixel indicates that the
target model pays more attention to that pixel. Compared with
the saliency map of the original image, that of the adversarial
example usually changes dramatically, which suggests that the
adversarial example interferes with the decision-making of the
target model.

F. The Parallel Coordinate View

In the parallel coordinate view, a parallel coordinate plot is
designed to help users analyze the classification results and the
confidence changes of the adversarial examples. As shown in
Fig. 3(E), the plot contains four vertical parallel lines from left
to right. They represent the classification confidence of the
original example, the classification result of the original
examples, the classification result of the adversarial example
and the classification confidence of the adversarial example,
respectively. A curve in the parallel coordinate plot indicates
an adversarial example and its color encodes the class of the
adversarial example. As illustrated in Fig. 4, the curve
corresponding to the handwritten digit "6" has the values "1.00",
"6", "9" and "9" from left to right. This means that the original
example is identified as "6" by the MNIST classification model
with confidence "100%" but the adversarial example (i.e., the
original example with an adversarial perturbation) is
misidentified as "9" with confidence "61%".

Fig. 4. The curve corresponding to the handwritten digital image "6" in the

parallel coordinate view.

VI. CASE STUDY

This section verifies the usability and effectiveness of the
visualization system through a case study based on the MNIST
dataset.

To train the AdvGAN model, we select the MNIST dataset
as the training data in the control panel (Fig. 3(A)) and click
on the "Untargeted Attack" item to set the adversarial attack as
an untargeted attack. Then we set the parameters of its objective
function (i.e., c=0.3, α=1 and β=1) and the parameters of the
model training (i.e., epochs=30, batch size=128 and learning
rate=0.001). Finally, we click on the "Start Training" item to
start model training. In addition, we select the t-SNE
dimensionality reduction algorithm to generate the cluster
analysis view.

After the AdvGAN model is trained, we set the value of the
"Number of Adversarial Examples" item in the control panel to
2075 and click the "Start Attack" button to start the adversarial
attack. Specifically, the system first randomly selects 2075
images from the MNIST testing set that can be correctly
classified by the MNIST classification model (i.e., the target
model), and then inputs them into the trained generator to
generate 2075 adversarial examples to attack the MNIST
classification model. As shown in Fig. 5, the total attack success
rate is 99.6%. The histogram shows that only the adversarial
examples with class 0 and class 6 fail against the target model.
In other words, the MNIST classification model can correctly
predict the category of these adversarial examples. As shown in
the red dashed box in Fig. 6, there are six failed examples in the
adversarial examples with class 0, while there is only one failed
example in the adversarial examples with class 6. Although
these seven adversarial examples do not cause the MNIST
classification model to output wrong results, they indeed
decrease the classification confidence of the MNIST
classification model to a certain extent. Specifically, as shown
in Fig. 7, the MNIST classification model predicts the classes of
the seven failed samples with 100% confidence before adding
the adversarial interferences to the original examples. However,
when the adversarial interferences are added to the original
examples (i.e., generating the adversarial examples), the MNIST
classification model correctly classifies the adversarial
examples with a maximum of 73% confidence. This means that
the addition of the adversarial interferences can interfere with
the model's judgment to some extent even if the attack fails.

Fig. 5. The total attack success rate of 2075 adversarial examples and the

attack success rate for each category.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

389 | P a g e

www.ijacsa.thesai.org

 (a)Adversarial examples

with class 0
 (b) Adversarial examples

with class 6

Fig. 6. Seven failed examples in the adversarial examples with class 0 and

class 6.

Fig. 7. Confidence change of the seven failed examples before and after the

adversarial attack.

The degree of interference suffered by the target model can
be analyzed through the cluster analysis view, as shown in Fig. 8.
In this case, the left view shows that there are highly
distinguishable clusters in the original examples, which shows
that the target model is capable of distinguishing classes well
before being attacked. However, when the original examples
become adversarial examples against the target model, the
cluster results of the adversarial examples become cluttered, as
shown in the right view of Fig. 8. This indicates that the
adversarial attack has a great effect on the category
discrimination ability of the target model. For example, the two
examples of class “5” (i.e., “2248” and “2250”) in the left view
have similar features and thus are close to each other. When
these two examples become adversarial examples, their
positions in the right view are far apart. This means that the
addition of adversarial perturbations has a significant impact on
their features, thus causing them to be misclassified by the target
model.

From the scatter plots in the attack result overview view
(Fig. 3(A)), we can find that most of the adversarial examples
are misclassified by the MNIST classification model with high
confidence (i.e., large values on the vertical coordinate). In order
to explore the successful adversarial examples, we select a
successful adversarial example with low confidence (i.e., a small
value on the vertical coordinate) from each category (i.e., each
scatter plot) for further analysis. Fig. 9 shows the confidence
changes of the selected 10 adversarial examples before and after
adding adversarial disturbances. Specifically, each example is
correctly classified by the MNIST classification model with a
confidence level close to or equal to 100% before adding the
adversarial interference. However, they are incorrectly
classified into other categories by the model with a lower
confidence level after adding the adversarial interferences to
them. For example, the adversarial example with category 4 is
classified as 9 with 24% confidence. For successful untargeted
attacks, the low confidence level indicates that the making
decision of the MNIST classification model is influenced by the
adversarial disturbances. To further explore the reasons why the
selected 10 adversarial examples (see Fig. 9) are misclassified,
we analyze the saliency maps of these examples in the attack
result interpretation view. As shown in Fig. 10, there are a total
of 10 pictures. Each picture is composed of 4 small pictures.
They are the original image (row 1, column 1), the adversarial
example (row 1, column 2), the saliency map of the original
image (row 1, column 2), and the saliency map of the adversarial
example (row 1, column 2). For each saliency map, the lighter
the color of a pixel is, the more attention the MNIST
classification model pays to the pixel (i.e., the more important
the pixel is to the final classification result). Comparing the
saliency map of the original image with that of the adversarial
examples, we can find that when adversarial perturbations are
added to the original image (i.e., producing an adversarial
example), the attention area of the MNIST classification model
changes, resulting in the predictions of the model to be disturbed.
For example, for the original image "0", the pixel color of the
contour area of digital "0" in its saliency map is lighter, which
reveals that the MNIST classification model mainly focuses on
the contour area of digital "0". However, when the original
image becomes an adversarial example, the white pixels in the
upper-left region of digital "0" in the adversarial example’s
saliency map become denser. This reveals that the MNIST
classification model shifts its attention to the upper-left region
of digital "0", resulting in the incorrect prediction.

Fig. 8. Cluster results of the original examples and the adversarial examples.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

390 | P a g e

www.ijacsa.thesai.org

Fig. 9. The parallel coordinate plot of the selected 10 successful adversarial

examples.

Fig. 10. Interpretation results of 10 successful attack samples.

VII. CONCLUSION AND FUTURE WORK

In this paper, we present an adversarial attack visualization
system called AdvAttackVis which can effectively assist users
in learning, understanding, and exploring adversarial attacks.
The visualization system offers interactive visualization views
to help users train and analyze the adversarial attack models,
understand the principles of adversarial attacks, analyze the
success rate of adversarial attacks and the distribution of attack
results, and explore the prediction mechanism of the target
model for adversarial examples. It facilitates end-to-end analysis
of adversarial attacks. Our multi-view visual analysis
environment enables users to gain a deep understanding of the
effects and impacts of adversarial attacks. Additionally, the
system incorporates interpretability analysis techniques, such as
saliency analysis, which can assist users in inferring the reasons
behind adversarial attacks. Through the case study base on the
MNIST handwritten digital image dataset, we demonstrate the
usability and effectiveness of the system.

In the future, we will implement more interactive
visualizations to help users explore the internal states of the
target model. For example, by analyzing the changes in feature
maps of each convolutional layer layer by layer, users can track
how misclassifications caused by attacks accumulate and
propagate within the model, deepening their understanding of
the underlying mechanisms of adversarial attacks and enhancing
their analytical abilities. Through interactive visualization of the
internal states of the model, users can gain insights into the
intermediate processes of model inference, identify anomalous
behaviors introduced by attacks, and infer their causes and
impacts.

ACKNOWLEDGMENT

This research work was partly supported by Humanities and
Social Sciences Research Project of the Ministry of
Education(Grant No.22YJA840004) and Natural Science
Foundation of Zhejiang Province(Grant No. LGF19G010001)
and Basic Project of Strengthening Police by Science and
Technology of the Ministry of Public Security (Grant
No.2020GABJC35).

REFERENCES

[1] Szegedy C , Zaremba W , Sutskever I , et al. Intriguing properties of neural
networks[J]. Computer Science, 2013.

[2] Goodfellow I J , Shlens J , Szegedy C . Explaining and Harnessing
Adversarial Examples[J]. Computer Science, 2014.

[3] MADRY A, MAKELOV A, SCHMIDT L, et al. Towards deep learning
models resistant to adversarial attacks[J]. arXiv: 1706. 06083, 2017.

[4] KURAKIN A, GOODFELLOW I, BENGIO S. Adversarial examples in
the physical world[C]. ICLR(workshop). 2017.

[5] XIAO C, LI B, ZHUJ Y, et al. Generating Adversarial Examples with
Adversarial Networks[C]. Proceedings of the 27-th Inter-national Joint
Conference on Artificial Intelligence, 2018: 3905-3911.

[6] GLOROT X, BORDES A, BENGIO Y. Deep Sparse Rectifier Neural
Networks[J]. Journal of Machine Learning Research, 2011, 15: 315-323.

[7] ARPIT D, JASTRZEBSKI S, BALLAS N, et al. A closer look at
memorization in deep networks[C]. Proceedings of the 34th International
Conference on Machine Learning Volume 70. JMLR. org, 2017: 233-242.

[8] AKHTAR N, MIAN A. Threat of Adversarial Attacks on Deep Learning
in Computer Vision: A Survey[J]. IEEE Access, 2018, 6:14410-14430.

[9] ZhOU Y, HAN M, LIU L, et al. The Adversarial Attacks Threats on
Computer Vision: A Survey[C]. Proceedings of The 16th IEEE
International Conference on Mobile AdHoc and Smart Systems. IEEE,
2019.

[10] GILMER J, METZ L, FAGHRI F, et al. Adversarial Spheres[J]. arXiv
preprint arXiv: 1801.02774, 2018.

[11] GILMER J, METZ L, FAGHRI F, et al. The relationship between high
dimensional geometry and adversarial examples[J]. arXiv preprint arXiv:
1801.02774, 2018.

[12] CARLINI N, WAGNER D. Towards evaluating the robustness of neural
networks[C]. IEEE Symposium on Security and Privacy (SP). IEEE,
2017: 39-57.

[13] KURAKIN A, GOODFELLOWI, BENGIO S, et al. Adversarial
examples in the physical world[C]. International Conference on Learning
Representations, 2017.

[14] Su J, VARGAS D V, Kouichi S. One pixel attack for fooling deep neural
networks [J]. IEEE Transactions on Evolutionary Computation, 2017.

[15] SARKAR S, BANSAL A, MAHBUB U, et al. UPSET and ANGRI:
Breaking High Performance Image Classifiers [J]. 2017.

[16] JIAWEI Z, Yang W, et al. Manifold: A Model-Agnostic Framework for
Interpretation and Diagnosis of Machine Learning Models.[J]. IEEE
Transactions on Visualization & Computer Graphics, 2018.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

391 | P a g e

www.ijacsa.thesai.org

[17] KAHNG M, THORAT N, CHAU D H, et al. GAN Lab: Understanding
Complex Deep Generative Models using Interactive Visual
Experimentation[J]. IEEE Transactions on Visualization & Computer
Graphics, 2018.

[18] KWON B C, CHOI M J, KIM J T, et al. RetainVis: Visual Analytics with
Interpretable and Interactive Recurrent Neural Networks on Electronic
Medical Records[J]. IEEE Transactions on Visualization & Computer
Graphics, 2018:1-1.

[19] Liu M, Shi J, Zhen L, et al. Towards Better Analysis of Deep
Convolutional Neural Networks[J]. IEEE Transactions on Visualization
& Computer Graphics, 2017, 23(1):91-100.

[20] Wang Z J, Turko R, Shaikh O, et al. CN-N Explainer: Learning
Convolutional Neural Networks with Interactive Visualization [J]. 2020.

[21] Lecun Y, Bottou L. Gradient-based learning applied to document
recognition[J]. Proceedings of the IEEE, 1998, 86(11):2278-2324.

[22] KINGMA D, BA J. Adam: A Method for Stochastic Optimization[J].
Computer Science, 2014.

[23] SELVARAJU R R, COGSWELL M, DASA, et al. Grad-CAM: Visual
Explanations from Deep Networks via Gradient-based Localization[J].
International Journal of Computer Vision, 2020, 128(2):336-359.

[24] WOLD, S., ESBENSEN, K.; GELADI, P. Principal component analysis.
Chemom. Intell. Lab. Syst. 1987, 2, 37–52.

[25] KRUSKAL, J. Multidimensional scaling by optimizing goodness of fit to
a nonmetric hypothesis. Psychometrika 1964, 29, 1–27.

[26] MAATEER, L.V.D.; HINTON, G.E. Visualizing Data using t-SNE. J.
Mach. Learn. Res. 2008, 9, 2579–2605.

[27] Arun N, Gaw N, Singh P, et al. Assessing the (Un)Trustworthiness of
Saliency Maps for Localizing Abnormalities in Medical Imaging:,
10.1101/2020.07.28.20163899[P]. 2020.

[28] Y. LeCun, L. Bottou, Y. Bengio and P. Haffner: Gradient-Based Learning
Applied to Document Recognition, Proceedings of the IEEE,
86(11):2278-2324, November 1998.

[29] Matthew H F, Minsuk K, Robert P, et al. Visual Analytics in Deep
Learning: An Interrogative Survey for the Next Frontiers: IEEE,
10.1109/TVCG.2018.2843369[P]. 2018.

[30] Yuan J, Chen C, Yang W, et al. A survey of visual analytics techniques
for machine learning[J]. Computational Visual Media, 2021, 7(1):3-36.

[31] Itti, Laurent, Koch, et al. A Model of Saliency-Based Visual Attention for
Rapid Scene Analysis.[J]. IEEE Transactions on Pattern Analysis &
Machine Intelligence, 1998.

