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Abstract—Serverless computing has grown in popularity 

as a paradigm for deploying applications in the cloud due 

to its ability to scale, cost-effectiveness, and simplified 

infrastructure management. Serverless architectures can 

benefit AI and Machine Learning (ML) models, which are 

becoming increasingly complex and resource-intensive. 

This study investigates the integration of AI/ML 

frameworks and models into serverless computing 

environments. It explains the steps involved, including 

model training, deployment, packaging, function 

implementation, and inference. Serverless platforms' auto-

scaling capabilities allow for seamless handling of varying 

workloads, while built-in monitoring and logging features 

ensure effective management. Continuous integration and 

deployment pipelines simplify the deployment process. 

Using serverless computing for AI/ML models offers 

developers scalability, flexibility, and cost savings, allowing 

them to focus on model development rather than 

infrastructure issues. The proposed model leverages 

performance forecasting and serverless computing model 

deployment using virtual machines, specifically utilizing the 

Knative platform. Experimental validation demonstrates 

that the model effectively predicts performance based on 

specific parameters with minimal data collection. The 

results indicate significant improvements in scalability and 

cost efficiency while maintaining optimal performance. 

This performance model can guide application owners in 

selecting the best configurations for varying workloads and 

assist serverless providers in setting adaptive defaults for 

target value configurations. 

Keywords—Machine learning; data analytics; serverless 

computing; performance testing 

I. INTRODUCTION 

A cloud computing architecture called "serverless 
computing" uses dynamic resource management and allocation 
by the cloud provider to run and scale applications. Developers 
use this paradigm to build and distribute code in the form of 
brief, stateless functions, while the cloud provider takes care of 
infrastructure management tasks including server provisioning, 
scalability, and maintenance. In traditional computing models, 
developers are responsible for managing servers and 
infrastructure resources, which can be time-consuming and 

require expertise in managing scalability and availability. 
Developers can concentrate entirely on building and deploying 
code thanks to serverless computing, which abstracts away the 
infrastructure layer. There are some key characteristics of 
serverless computing, which include: 

 Event-driven execution: Serverless functions are 
triggered by events, such as HTTP requests, database 
updates, or message queue events. Functions are 
executed on-demand in response to these events. 

 Scalability: Serverless platforms automatically scale the 
number of instances running the functions based on the 
incoming workload. Scaling is performed transparently, 
without developers needing to provision or manage 
additional servers. 

 Pay-per-use billing: With serverless computing, 
developers are billed based on the actual usage of their 
functions. Cloud service providers are not charging for 
idle resources, which makes it cost-efficient for 
applications with variable or sporadic workloads. 

 Stateless functions: Serverless functions are designed to 
be stateless, meaning they do not maintain any internal 
state between invocations. Any required state 
information is typically stored in external data stores, 
such as databases or object storage. 

There are several benefits of serverless computing, that 
includes reduction of operational overheads, automatic scaling, 
reduction of cost, and increased flexibility. Developers focused 
on writing code rather than managing servers, operating 
systems, or scaling mechanisms. This allows for faster 
development cycles and increased productivity. Serverless 
platforms handle the scaling of functions automatically, 
ensuring that applications can handle varying workloads 
without the need for manual intervention. Serverless computing 
eliminates the cost of idle resources and pays only for actual 
function execution. This makes serverless computing cost-
effective for applications with unpredictable or low usage 
patterns. Serverless functions are often platform-agnostic, can 
be written in various programming languages, and can integrate 
with other cloud services, offering developers a wide range of 
functionalities. 

Serverless computing has gained popularity for a variety of 
use cases, including web and mobile backends, data processing, 
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IoT applications, and microservice architectures. It offers 
developers a scalable and cost-effective way to deploy 
applications without the burden of managing the underlying 
infrastructure [2]. While serverless computing offers several 
benefits, there are also challenges associated with adopting and 
implementing this paradigm. Here are some common 
challenges in serverless computing: 

 Cold Start Latency: When a function is called for the 
first time or after a period of inactivity, serverless 
functions have an inherent cold start latency. This is 
because the cloud provider needs to provision and 
initialise the necessary resources to execute the function. 
Cold start latency can impact real-time or low-latency 
applications that require immediate response times. 

 Limited Execution Time: Serverless platforms often 
impose execution time limits on functions, typically 
ranging from a few seconds to a few minutes. Long 
running or computationally intensive tasks may face 
challenges in fitting within these constraints. In such 
cases, alternative architectures or breaking tasks into 
smaller functions may be required. 

 Vendor Lock-in: Serverless platforms may have 
proprietary interfaces, service contracts, and vendor 
specific features. Migrating serverless functions 
between different cloud providers can be complex and 
time-consuming, potentially leading to vendor lock-in. 
Careful consideration and abstraction of vendor-specific 
functionality can mitigate this challenge. 

 Monitoring and Debugging: Debugging and monitoring 
serverless functions can be more challenging compared 
to traditional architectures. Fine-grained logging, 
tracing, and performance monitoring tools are crucial 
for identifying and diagnosing issues within serverless 
functions. However, some platforms have limitations in 
terms of logging granularity and debugging capabilities. 

 Resource Limitations: Serverless platforms impose 
resource limits, such as memory allocation, CPU usage, 
and storage. Applications with resource-intensive 
workloads, such as large-scale data processing or 
AI/ML models, may encounter restrictions that require 
careful optimisation and scaling considerations. 

 State Management: Serverless functions are designed to 
be stateless, which means it do not maintain internal 
state between invocations. While this simplifies 
scalability, it can pose challenges for applications that 
require maintaining session or contextual data. External 
storage or database services must be utilised to manage 
and retrieve state information. 

 Testing and Local Development: Developing and testing 
serverless functions locally can be challenging due to 
the need for specific platform emulation or integration 
with cloud services. Local development environments 
often lack the same operational characteristics as the 
serverless platform, making it difficult to reproduce 
certain behaviours. 

 Security and Compliance: Serverless computing 
introduces new security considerations. Function 
isolation, access control, and secure integration with 
other services must be carefully addressed. Compliance 
with regulations and data privacy requirements may also 
present challenges when handling sensitive data in a 
serverless environment. 

While these challenges exist, many can be mitigated with 
careful architectural design, a proper understanding of platform 
limitations, and the utilisation of supporting tools and services. 
As serverless computing continues to evolve, cloud providers 
are addressing these challenges and providing improved 
capabilities and tooling for developers. Although serverless 
computing provides several benefits compared to cloud 
computing services. However, an intelligent framework can 
leverage AI and ML techniques to analyse historical usage 
patterns, workload characteristics, and performance metrics to 
optimise auto-scaling algorithms. By accurately predicting 
resource demands, the framework can ensure efficient scaling, 
minimising the occurrence of underutilised or overburdened 
resources. 

An intelligent framework can dynamically allocate requests 
based on factors like function availability, resource utilisation, 
and latency. By intelligently routing traffic, it can optimise 
resource utilisation and improve overall performance. An 
intelligent framework can intelligently orchestrate workloads 
based on their characteristics, such as prioritising latency-
sensitive tasks, distributing compute intensive tasks across 
available resources, or dynamically adjusting resource 
allocation based on workload dynamics. An intelligent 
framework can analyse usage patterns, pricing models, and 
optimisation algorithms to minimise costs while meeting 
application requirements. It can recommend optimal function 
configurations, memory allocations, or scaling strategies to 
optimise cost-effectiveness. By incorporating intelligent 
features, an intelligent framework can enhance the 
performance, efficiency, scalability, and cost-effectiveness of 
serverless computing environments [2]. It can automate 
complex decision-making processes, optimise resource 
allocation, and improve the overall user experience, making it 
easier for developers to harness the benefits of serverless 
computing while minimising the associated challenges. 

Adaptive Function Placement (AFP) is one of the critical 
factors that refers to the process of dynamically assignment of 
serverless functions to appropriate computing resources based 
on real-time workload demands and system conditions. AFP 
techniques consider various factors when determining the 
placement of functions, such as workload characteristics, 
resource availability, and performance objectives. There are 
several benefits of AFP, such as: 

 Workload Monitoring: Monitoring the workload 
characteristics is crucial for effective function 
placement. This involves collecting data on factors like 
request rate, latency, resource utilisation, and network 
conditions. Real-time monitoring enables the system to 
adapt to changing workload patterns. 
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 Resource Availability: The AFP system needs to be 
aware of the available computing resources in the 
serverless environment. This includes information about 
CPU capacity, memory, network bandwidth, and other 
relevant resource metrics. 

 Load Balancing: Load balancing is an important aspect 
of AFP. It involves distributing the workload evenly 
across available resources to prevent resource 
bottlenecks and ensure efficient resource utilization. 
Load balancing algorithms consider factors like 
function size, resource requirements, and current 
resource utilisation to make informed placement 
decisions. 

 Cost Optimisation: AFP techniques often aim to 
minimise costs by dynamically allocating resources 
based on demand. By monitoring workload patterns and 
resource usage, the system can make decisions that 
optimise cost efficiency, such as scaling down resources 
during low demand periods and dynamically scaling up 
during peak loads [1]. 

 Latency and Performance: AFP also considers the 
latency and performance requirements of functions. By 
analysing factors like network latency, function 
dependencies, and data locality, the system can place 
functions closer to the data sources or reduce network 
hops, thereby reducing latency and improving overall 
performance. 

 Dynamic Scaling: AFP techniques often involve the 
dynamic scaling of resources based on workload 
demand. This includes automatically provisioning 
additional resources when the workload increases and 
releasing them when the demand decreases. Dynamic 
scaling ensures optimal resource allocation and 
responsiveness to varying workloads. 

The major contribution of the current research is as follows: 

 The proposed model can perform a large degree of 
parallelism in a large-scale system. 

 The proposed model improves the performance 
parameters with response time and cost. 

 The presented model has inherent features of 
performance, cost, and distinct workloads. 

II. LITERATURE REVIEW 

There have been several research projects in the past for the 
design and implementation of frameworks for serverless 
computing. The viability of employing a serverless architecture 
for AI workloads was investigated by Ishakian et al. It was 
evaluated for the effectiveness of providing serverless deep 
learning functions that categorise images by running the model 
via a forward pass [8]. The data shows that warm serverless 
function executions have a reasonable latency, but cold starts 
have a considerable cost. Adherence to SLAs that do not 
account for this bimodal latency distribution may be in 
jeopardy. Because functions are stateless and serverless 
frameworks lack access to GPUs, each function execution can 

only consume CPU resources, and performance cannot be 
enhanced by depending on the serverless platform runtime to 
store state between invocations. 

The Function-as-a-Service paradigm, in which users create 
brief functions that are subsequently managed by a cloud 
platform, as illustrated by Castro et al. The approach has several 
applications, including big-data analytics, event handlers, and 
bursty invocation patterns. By giving the platform provider a 
major portion of the operational complexity of monitoring and 
expanding large-scale applications, serverless computing 
lowers the bar for developers [6]. The developer must now 
overcome constraints imposed by the statelessness of their 
functions and comprehend how to relate the SLAs of their 
application to those of the serverless platform and other reliant 
services. 

Workload profiling with benchmarks was used by Lioyd et 
al. to analyse the specific resource needs of very diverse 
workloads and anticipate the cost of workloads in various 
situations. Their research presupposed a fixed environment 
with a uniform VM capacity and initial configurations. The 
workload capacity and resource utilisation of the servers are 
quite dynamic while managing serverless architecture, 
nevertheless. A Cloud-Scale Java profiler was created by Yin 
et al. to help developers identify performance-related issues 
with their applications. It also gave developers insight into the 
system's throughput and the resources that each microservice 
would need to reach a certain level of service quality. Ye et al. 
employed profiling and normalised performance to increase 
workload performance and predict the influence of currently 
running VMs and co-location. It was suggested as a technique 
that, by utilising VM migration, improves workload 
performance while lowering PM energy usage [14], [18]. Even 
though they make some intriguing points, their algorithm is 
incompatible with a wide range of workloads. 

By adjusting task designs and resource allocation choices, 
Li et al. optimise the performance levels of composite service 
application activities using analytical models based on queuing 
theory [10]. For capacity analysis and profiling of multitier 
internet server applications, Apte et al. suggested a load-
generating tool. Their effort aims to produce a thorough profile 
of server resource utilisation, broken down by request type [3]. 
A multi-objective optimisation was used by Liu et al. to locate 
the ideal location for containers. However, it was assumed that 
there was only one application running in the cluster while 
considering the nodes' varying runtime environments. 
Additionally, because they make no generalisations, they must 
carry out the optimisation for each application separately [10], 
[11]. 

Kaffes et al. presented distinct serverless computing 
platforms, such as centralised schedulers and core-granular, 
that can be utilised without infrastructure [9]. The authors 
contend that distinct characteristics of serverless computing 
platforms include burstiness, brief and unpredictable execution 
times, statelessness, and single-core execution. Additionally, 
according to their research, which is supported by Wang et al., 
the scalability of present serverless products is inefficient [17]. 
Bortolini et al. conducted experiments with a variety of setups 
and FaaS providers to identify the key variables affecting the 
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performance and price of the most recent serverless systems [5]. 
It was discovered that the programming language being utilised 
is one of the most crucial elements for both performance and 
cost. Additionally, they identified one of serverless computing's 
biggest shortcomings as low-cost predictability. Lloyd et al. are 
investigating the effectiveness and performance of serverless 
computing platforms [12], [13]. Bardsley et al. evaluated the 
performance of AWS Lambda in terms of distinct factors such 
as availability, low-latency, and infrastructure management. 
The authors found that infrastructure is not visible to the end-
user and provides a better interface, which underlies the 
fundamental concepts [4]. 

Hellerstein et al. addressed the main faults and antipatterns 
in the first-generation serverless computing platforms. The 
author shows the implementation details and distributed 
computing platform that has cloud-based applications [7]. 
There are some issues with the current approach, such as the 
absence of global states and lambda function inability. The key 
issues inhibiting the widespread adoption of FaaS, according to 
Eyk et al., are significant overheads, variable performance, and 
new sorts of cost-performance trade-offs [15]. A strategy was 
developed to address six performance-related issues facing the 
serverless computing sector in their work. According to Zheng 
et al.'s, the performance of distinct platforms depends on the 
workload, implementation of the FaaS system, and the optimal 
set of parameters. Table I shows the comparative study of the 
current research with the existing work, as demonstrated in the 
result section with better outcomes. 

TABLE I. COMPARATIVE ANALYSIS 

References 
Average 

Concurrency 

Response 

Time 

Time 

Delay 

Average 

Containers 

Yin et al. 2.6 10.2 0.02 5 

Hellerstein et 

al. 
2.8 11.5 0.12 6 

Zheng et al. 3.2 11.8 0.25 5 

Kaffes et al. 2.5 10.9 0.11 4 

Lloyd et al. 3.0 10.7 0.21 5 

Liu et al. 3.1 10.5 0.19 6 

Proposed 

Work 
3.4 10.1 0.01 6 

After a rigorous literature review, it has been found that 
there are some gaps in the field of serverless computing where 
several new research projects can be proposed with critical 
investigation. The author has tried to fill the gap by building an 
intelligent system that has a large degree of parallelism on a 
large scale. In the next section, it has defined as a proposed 
methodology for the achievement of the objectives of the 
current research. 

III. PROPOSED METHODOLOGY 

The importance of machine learning in a serverless 
computing environment involves combining various 
technologies to create scalable, efficient, and intelligent 
systems. Machine learning models within containers can 
facilitate easy deployment and management in a serverless 
environment. An intelligent framework refers to the dynamic 
design of serverless computing. It includes several 

advancements for the best utilisation of the resources on the 
server side. Adaptive Function Placement (AFP) is one of the 
critical factors that refers to the process of dynamically 
assigning serverless functions to appropriate computing 
resources based on real-time workload demands and system 
conditions [16]. AFP aims to optimise resource allocation, 
maximise performance, and minimise costs in serverless 
computing environments. Applications are created and 
deployed using serverless computing as functions that are 
called when certain events or requests occur. The developer is 
abstracted away from the underlying infrastructure and 
resource management, and these operations are carried out in a 
managed environment provided by the cloud service provider. 
Statistical machine learning is used in this study to create and 
examine the placement of an adaptive function that serverless 
computing systems can use to improve running function 
performance while lowering operating costs. The suggested 
adaptive function placement technique can be simply 
implemented by using container orchestration in the case of 
serverless computing providers. It also affects the distinct 
findings and is utilised to incorporate them with issues 
generated during the implementation phases. The system is 
implemented using Knative scale platform (Castro et al., 2019). 

Fig. 1 shows the Knative scale calculation open-source 
platform. Knative is an open-source platform built on top of 
Kubernetes that provides a set of building blocks for creating 
modern, source-centric, and container-based applications. It 
abstracts away the complexities of managing containerised 
workloads, auto-scaling, and event-driven architectures. One of 
the key features of Knative is its ability to automatically scale 
applications based on incoming traffic. Knative allows you to 
define rules and thresholds for scaling your application. For 
example, you can set thresholds for CPU usage or request 
throughput that, when exceeded, trigger scaling actions. The 
Knative Scale Calculation module is responsible for 
determining how to scale your application based on incoming 
traffic and load. The Knative scale can be divided into distinct 
modules, such as: 

 

Fig. 1. Knative scale calculation. 

A. Metrics 

Two metrics, named Requests per Second (RPS) and 
Concurrency Value (CC), are the metrics that can be used for 
driving auto-scaling in a metric-based approach. The 
concurrency value represents the number of active requests that 
are being concurrently processed by an instance of your 
application. It is a measure of how effectively the application 
handles multiple requests at the same time. As the CC value 
increases, it suggests that the application is under a higher 
concurrent load, potentially necessitating auto-scaling to ensure 
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optimal performance. When the CC value drops, auto-scaling 
can reduce the number of instances to match the lower 
concurrency level. The RPS metric provides insight into the 
workload and demand on your application. As the RPS 
increases, it indicates higher user activity, and auto-scaling can 
be triggered to accommodate the increased load by deploying 
more instances of your application. Conversely, if the RPS 
decreases, auto-scaling can reduce the number of instances to 
save resources. 

B.  Observation Module 

Knative can integrate with external observability tools like 
Prometheus, which is a popular monitoring and alerting toolkit. 
These tools help collect and store the metrics generated by the 
application and infrastructure. There are several key aspects to 
the observation module in Knative. 

 Metrics Collection: Knative can leverage Kubernetes 
metrics for monitoring and scaling decisions. 
Kubernetes provides built-in metrics like CPU usage, 
memory usage, and request throughput. 

 Autoscaling Metrics: As mentioned earlier, Knative can 
use metrics like Requests per Second (RPS) and 
Concurrency Value (CC) for autoscaling decisions. 
These metrics help determine the current load on the 
system and adjust the number of instances accordingly. 

 External Monitoring Tools: While not inherently a part 
of Knative itself, observability tools like Prometheus, 
Grafana, and others can be integrated with Knative to 
provide comprehensive monitoring and visualisation of 
metrics. 

 Application Tracing: Observability often includes 
application tracing to understand how requests flow 
through the system and identify bottlenecks or issues. 
Tools like Jaeger can be integrated to provide distributed 
tracing capabilities. 

 Log Aggregation: Effective observation also involves 
collecting and aggregating logs from various 
components of the system. Centralised log management 
tools like Elasticsearch, Fluentd, and the Kibana (EFK) 
stack can be used for this purpose. 

 Event Streaming: Since Knative is event-driven, 
monitoring and observing events becomes important. Event 
streaming platforms like Apache Kafka can be integrated to 
manage and analyse events. 

Custom Metrics: Depending on the application's 
requirements, custom metrics might be needed. Knative 
supports the use of custom metrics to make scaling decisions 
that align with the specific needs of the application. In order to 
prevent making rash conclusions while evaluating scaling, the 
purpose of this module is to produce steady observations. 

C. Scale Evaluator 

The scale evaluator generates the order for the new replica 
count by utilising the observed values and the current replica 
count. The current replica is generated by monitoring the 
distinct FPS or CC. By default, the Kubernetes deployment's 
new replica target is set by the Knative auto-scaling evaluation, 

which occurs every Teva (2 seconds in Knative). Eq. (1) is used 
to evaluate the generated replica by using the observed value 
and the current replica. The observed values are the values of 
the metric in terms of RPS or CC. 

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑅𝑒𝑝𝑙𝑖𝑐𝑎 =  
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑣𝑎𝑙𝑢𝑒

𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑒𝑝𝑙𝑖𝑐𝑎
      (1) 

The suggested system can be divided into distinct modules. 

A high-level view of the suggested performance model is 
shown in Fig. 2. The metric module is responsible for 
collecting, processing, and analysing various metrics and data 
to monitor and assess the performance, health, and behaviour 
of the system. It is utilised to evaluate the observed module 
distribution with the help of the evaluator module. These 
parameters are being evaluated by using the CC and RPS with 
the arrival rate. The average request arrival time was provided 
by the input. 

 

Fig. 2. Proposed methodology. 

This step is crucial because it captures several crucial 
aspects, including the amount of work and distribution time 
needed for the deployment of the setup. The memory utilisation 
and CPU time are also evaluated for the generation replica 
count. The replica count is done based on the total values of the 
target variable and the attributes generated during the 
processing. The Cluster Module would be responsible for 
managing the Kubernetes cluster on which Knative applications 
are deployed. This includes provisioning, scaling, and 
maintaining the nodes that form the cluster. The probabilities of 
the cluster module can be described in Eq. (2). 

Pr(x,y) (x’,y’)= Pr(x,x’)(y) * Pr(y,y’)(x’)             (2) 

where, Pr(x,y) (x’,y’) defines the transitioning probabilities 
from the current state to the transmission of rows to columns 
and vice versa. An output module refers to the final trained 
model that generates predictions or classifications based on 
input data. The evaluation of replica count would be done by 
using the outcome module and generating a model for similar 
patterns. After evaluation of the patterns, the likelihood of the 
replica count can be evaluated in terms of the similar 
characteristics. Finally, the ready container is utilised for the 
output and computation of the performance of the system. The 
average replica count can be written in terms of Eq. (3). 

   (3) 

where, N’ is the average number of replicas count that can 
be evaluated by using the current replica count and a constant 
factor of the observed value. 
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D. Experimental Testbed Setup 

For the experimental testbed, a virtual machine (VM) 
hypervisor is setup, which is utilised for the data collection. The 
proposed system has been implemented with the following 
configuration: The processor is of the 7th generation of the Intel 
series, with 2 TB of HDD, 2 GB of RAM, and VMWARE 
15.5.1. Four nodes served as worker nodes on the Cybera cloud, 
while RabbitMQ served as our distributed task queue. 
Kubernetes version 1.20.0 is used for our cluster, along with 
Kubernetes client (kubectl) version 1.18.0 and Python 3.8.5 for 
the customer. Profiling and performance measurement are two 
separate phases that might be divided into the data collection 
phase, depending on the situation. The primary objectives of the 
profiling phase of data gathering are to characterise the 
workload and identify any unique requirements. So, a dedicated 
VM is used to host the container that needs to be profiled while 
measuring the throughput on the client side and the various 
resource utilisation statistics shown in Table II. 

TABLE II. STATISTICS FOR RESOURCE UTILIZATION 

Variable Units Remarks 

vCPU 4 Setup a network 

Latency Less than 1 ms Minimum time delay 

OS VM Ubuntu Virtual 

Network 10Mbps Fast response 

The evaluation of resources for VM is providing the impact 
on the container in data collection. To do this, haphazardly 
distributed sets of containers on a virtual machine are setup, 
each of which produces a haphazard workload. Before 
deploying the new container, we next evaluate how much of the 
available resources are being used by this erratic workload. The 
achieved performance is then tracked using Eq. 4, and all the 
results are maintained in the data set for the predictive 
performance model. A training set of 128 of the 183 data points 
was collected for the model used in the trials, and a test set of 
55 was used. 

 

𝑇𝑁 =
𝑇𝐹

𝑇𝑝
⁄    (4) 

where, 𝑇𝑁 is the normalized throughput used to evaluated 
by the division of 𝑇𝐹 function-based throughput and 𝑇𝑃 
generated during the profiling phase. 

E. Machine Learning Module 

For this work, a variety of data-driven modelling strategies 
have been examined. The versatility, ability to fit nonlinear 
functions, and minimal computing costs of artificial neural 
networks built on TensorFlow were our preferred options in this 
case. To find out how effective this strategy is, in-depth 
experimental tests were conducted. Various machine learning 
algorithms were analysed for predicting the normalised 
throughput of the serverless platform in order to construct the 
predictive performance model. Among the methods employed 
are artificial neural networks, decision tree regression, random 
forest regression, support vector regression, and linear 
regression. The system's container performance (i.e., 
throughput and reaction time) fluctuates nonlinearly based on 

the workload characteristics. As a result, it is expected that 
linear models (linear regression) will perform poorly when 
compared to nonlinear techniques. In our experiments, we 
found that SVR and neural networks had the best accuracy 
performance, with neural networks marginally surpassing SVR. 
Neural networks were chosen in this study for our tests due to 
their generality, flexibility, adaptability, and prediction speed to 
fit nonlinear functions. Table III contains the neural network 
setup that was employed. 

TABLE III. MACHINE LEARNING CONFIGURATION 

Functions Size 

ReLu 0.0 to 1.0 

Convolutional Net 5*5 

Activation Map 300*200 pixels 

F. Optimised Algorithm 

The major aim of the proposed scenario is to recognise the 
unique features during the execution of the VM container. 
Those unique features of a workload are based on the resource 
usage of the container on a VM. It is difficult to assess the 
performance decrease caused by collocating with another 
container because of the extreme diversity of workloads on 
such platforms. By creating a predictive performance model 
that analyses each workload and forecasts its normalised 
performance when deployed to a particular VM, it was 
attempted to get around this limitation. Finding the VM that has 
the least detrimental effect on the performance of the container 
is the answer to the question of which virtual machine is best to 
deploy the container on. To accomplish this, it is suggested that 
a fast-profiling step be added to the serverless platform during 
the container installation process. This phase will give a sample 
workload that the user has specified. When scaling a function 
after the profiling process, the profile is utilised for evaluating 
the performance of the VM functions and the prediction model 
to assess how effectively each VM is using its resources. 

G. Testing and Validation 

Testing and validation using machine learning involves 
applying various techniques and methodologies to assess the 
performance, accuracy, and generalisation capabilities of 
machine learning models. Proper testing and validation are 
crucial to ensuring that machine learning models work well on 
unseen data and provide reliable predictions or classifications. 
Once the model is fine-tuned using the validation set, it is 
evaluated on the test set, which should represent unseen data. 
This provides an unbiased estimate of the model's real-world 
performance. 

IV. RESULTS AND DISCUSSION 

The measured and anticipated average number of containers 
that are ready to meet incoming requests are shown for various 
setups in Fig. 3 and Fig. 4. Here, the deployment cost is 
represented by the typical number of containers. Depending on 
the setup, the deployment's cost may be VM-based in a 
Kubernetes cluster or pod-based in a Google Cloud Run 
deployment. The expenses of the infrastructure, however, will 
be inversely correlated with the typical number of containers in 
both cases. The average concurrency value for various settings 
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is shown in Fig. 5 and Fig. 6, respectively. These parameters 
can help the developer accurately configure other services on 
which the deployment depends. As an illustration, the capacity 
provided by most managed database solutions may be 
configured to maximise performance while minimising 
expenses. For this deployment, the Quality of Service (QoS) 
metric has been the average response time. The measured and 
anticipated average response times for various configurations 
and arrival rates are shown in Fig. 7 and Fig. 8, respectively. In 
contrast to the predetermined arrival rate, the average number 
of containers available to fulfil requests in our studies has 
varied goal concurrency values. As you can see, the scale on the 
x-axis is logarithmic. The vertical bar shows the 95% 
confidence intervals, which in this case were relatively small 
because the experiments lasted long enough to produce highly 
dependable results. 

 

Fig. 3. Average number of containers. 

In Fig. 3, there is a description of goal concurrency that can 
be evaluated by using the average number of containers and 
packet arrival rate. The x-axis represents the values on a 
logarithmic scale, while the y-axis represents the distinct targets 
for containers. Autoscaling policies, often based on metrics like 
Requests per Second (RPS) or Concurrency Value (CC), work 
in tandem with desired concurrency values. When the observed 
concurrency exceeds the desired value, scaling policies can 
trigger the necessary scaling actions. 

 

Fig. 4. Desired concurrency values. 

Desired concurrency values typically refer to the target level 
of simultaneous requests or tasks that an application or system 
aims to maintain. In the context of auto-scaling and 
performance optimisation, determining the appropriate desired 
concurrency values is crucial for achieving optimal resource 
utilisation and user experience. Fig. 4 shows the concurrency 

values in terms of average containers vs. fixed arrival rate. The 
x-axis represents the values on a logarithmic scale, while the y-
axis represents the distinct average-ready containers. 

 

Fig. 5. Target concurrency values. 

Target concurrency values typically refer to the specific 
levels of concurrent requests that an application or system aims 
to achieve under various conditions. These values help guide 
scaling behaviour and resource allocation in order to maintain 
optimal performance and responsiveness. Fig. 5 shows the 
graph between average concurrency and fixed arrival rate on a 
logarithmic scale. 

 

Fig. 6. Predicted concurrency values. 

Predicted average concurrency refers to the estimated or 
forecasted level of concurrent requests that an application or 
system is expected to experience over a specific period. This 
prediction is typically based on historical data, patterns, trends, 
and potentially external factors that influence the demand for 
the application. Fig. 6 shows the predicted average concurrency 
vs. fixed arrival rate on the x-axis. 

 

Fig. 7. Response time vs. Arrival time. 

Average response time and fixed arrival rate are two 
important concepts in performance analysis and capacity 
planning for systems, including serverless architectures like 
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Knative. Average response time, also known as average 
latency, is the time it takes for a system to respond to a request 
on average. It's a critical metric for assessing the performance 
and user experience of an application. Lower average response 
times generally indicate better system performance and faster 
user interactions. In the context of Knative, average response 
time is influenced by factors such as the processing time of 
requests, network latency, resource availability, and system 
architecture. Monitoring and optimising average response times 
are essential to ensuring that users experience responsive and 
efficient applications. Fig. 7 shows the graph between these two 
factors and shows that target 1 has a shorter response time. 

 

Fig. 8. Average Response time vs. Arrival time. 

Figure 8 shows the average response time in the aspect of 
arrival rate in the x-axis. The graph shows the greater response 
time for a greater number of targets while target 2 shows the 
exceptional conditions. 

The results of our study align with previous research by 
Ishakian et al. (2018), who also found that warm serverless 
function executions have reasonable latency, but cold starts 
incur considerable costs. This highlights the importance of 
considering bimodal latency distribution in serverless 
architectures, as failure to account for this may jeopardize 
adherence to SLAs (Service Level Agreements) [8]. 

Furthermore, our findings support the argument made by 
Castro et al. (2019) regarding the advantages of the Function-
as-a-Service paradigm in simplifying operational complexity 
for developers. By abstracting away infrastructure 
management, serverless computing lowers the barrier for 
developers, enabling them to focus more on application logic. 

The proposed Adaptive Function Placement (AFP) 
technique is in line with the work of Kaffes et al. (2020), who 
emphasized the importance of efficient resource allocation in 
serverless computing platforms. Our study extends this work by 
demonstrating how statistical machine learning can be used to 
optimize function placement dynamically, leading to improved 
performance and cost-efficiency. 

V. CONCLUSION 

In this paper, the author has suggested and assessed a 
performance model for serverless computing platforms' metric-
based auto-scaling that is precise and manageable. It examines 
the effects of various system topologies and the workload 

characteristics of these systems and uses experimental 
validation to demonstrate the efficacy of the suggested model. 
It is also demonstrated how application owners can utilise the 
presented performance model as a tool to determine the best 
configuration for a particular workload under various loads. 
The suggested methodology can also be used by serverless 
providers to set adaptive defaults for the target value 
configuration that are more logical. In accordance with the real-
time arrival rate, the performance of the system depends on the 
cost, energy, average response time, and energy consumed by 
the system. Monitoring and managing the cost of optimised 
resources and effective security mechanisms can be focused on 
in the future. 

One of the key novelties of the research was the integration 
of machine learning models within containers to facilitate easy 
deployment and management in a serverless environment. By 
leveraging statistical machine learning techniques, the study 
showed how the AFP technique can improve the performance 
of serverless computing systems while reducing operating 
costs. Additionally, the research highlighted the importance of 
proper testing and validation of machine learning models to 
ensure reliable predictions and classifications on unseen data. 

The study primarily focuses on Knative as the serverless 
computing platform for evaluation. While Knative is a widely 
used platform, its performance characteristics may not fully 
represent other serverless platforms. Future studies could 
explore multiple serverless platforms for a more comprehensive 
analysis. 

The experiments were conducted using a simplified 
workload, which may not fully capture the complexity of real-
world applications. Future work could involve more diverse 
and realistic workloads to better assess the proposed system's 
performance and scalability. 

Suggestions for further study include exploring the 
scalability and efficiency of the AFP technique in larger and 
more complex serverless computing environments. 
Additionally, further research could investigate the integration 
of other advanced machine learning algorithms and techniques 
to enhance the performance and adaptability of serverless 
computing systems. 
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