
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

29 | P a g e

www.ijacsa.thesai.org

Intelligent Framework in a Serverless Computing for

Serving using Artificial Intelligence and Machine

Learning

Deepak Khatri1, Sunil Kumar Khatri2, Deepti Mishra3

AIIT, Amity University, Noida, India1, 2

NTNU, Norway3

Abstract—Serverless computing has grown in popularity

as a paradigm for deploying applications in the cloud due

to its ability to scale, cost-effectiveness, and simplified

infrastructure management. Serverless architectures can

benefit AI and Machine Learning (ML) models, which are

becoming increasingly complex and resource-intensive.

This study investigates the integration of AI/ML

frameworks and models into serverless computing

environments. It explains the steps involved, including

model training, deployment, packaging, function

implementation, and inference. Serverless platforms' auto-

scaling capabilities allow for seamless handling of varying

workloads, while built-in monitoring and logging features

ensure effective management. Continuous integration and

deployment pipelines simplify the deployment process.

Using serverless computing for AI/ML models offers

developers scalability, flexibility, and cost savings, allowing

them to focus on model development rather than

infrastructure issues. The proposed model leverages

performance forecasting and serverless computing model

deployment using virtual machines, specifically utilizing the

Knative platform. Experimental validation demonstrates

that the model effectively predicts performance based on

specific parameters with minimal data collection. The

results indicate significant improvements in scalability and

cost efficiency while maintaining optimal performance.

This performance model can guide application owners in

selecting the best configurations for varying workloads and

assist serverless providers in setting adaptive defaults for

target value configurations.

Keywords—Machine learning; data analytics; serverless

computing; performance testing

I. INTRODUCTION

A cloud computing architecture called "serverless
computing" uses dynamic resource management and allocation
by the cloud provider to run and scale applications. Developers
use this paradigm to build and distribute code in the form of
brief, stateless functions, while the cloud provider takes care of
infrastructure management tasks including server provisioning,
scalability, and maintenance. In traditional computing models,
developers are responsible for managing servers and
infrastructure resources, which can be time-consuming and

require expertise in managing scalability and availability.
Developers can concentrate entirely on building and deploying
code thanks to serverless computing, which abstracts away the
infrastructure layer. There are some key characteristics of
serverless computing, which include:

 Event-driven execution: Serverless functions are
triggered by events, such as HTTP requests, database
updates, or message queue events. Functions are
executed on-demand in response to these events.

 Scalability: Serverless platforms automatically scale the
number of instances running the functions based on the
incoming workload. Scaling is performed transparently,
without developers needing to provision or manage
additional servers.

 Pay-per-use billing: With serverless computing,
developers are billed based on the actual usage of their
functions. Cloud service providers are not charging for
idle resources, which makes it cost-efficient for
applications with variable or sporadic workloads.

 Stateless functions: Serverless functions are designed to
be stateless, meaning they do not maintain any internal
state between invocations. Any required state
information is typically stored in external data stores,
such as databases or object storage.

There are several benefits of serverless computing, that
includes reduction of operational overheads, automatic scaling,
reduction of cost, and increased flexibility. Developers focused
on writing code rather than managing servers, operating
systems, or scaling mechanisms. This allows for faster
development cycles and increased productivity. Serverless
platforms handle the scaling of functions automatically,
ensuring that applications can handle varying workloads
without the need for manual intervention. Serverless computing
eliminates the cost of idle resources and pays only for actual
function execution. This makes serverless computing cost-
effective for applications with unpredictable or low usage
patterns. Serverless functions are often platform-agnostic, can
be written in various programming languages, and can integrate
with other cloud services, offering developers a wide range of
functionalities.

Serverless computing has gained popularity for a variety of
use cases, including web and mobile backends, data processing,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

30 | P a g e

www.ijacsa.thesai.org

IoT applications, and microservice architectures. It offers
developers a scalable and cost-effective way to deploy
applications without the burden of managing the underlying
infrastructure [2]. While serverless computing offers several
benefits, there are also challenges associated with adopting and
implementing this paradigm. Here are some common
challenges in serverless computing:

 Cold Start Latency: When a function is called for the
first time or after a period of inactivity, serverless
functions have an inherent cold start latency. This is
because the cloud provider needs to provision and
initialise the necessary resources to execute the function.
Cold start latency can impact real-time or low-latency
applications that require immediate response times.

 Limited Execution Time: Serverless platforms often
impose execution time limits on functions, typically
ranging from a few seconds to a few minutes. Long
running or computationally intensive tasks may face
challenges in fitting within these constraints. In such
cases, alternative architectures or breaking tasks into
smaller functions may be required.

 Vendor Lock-in: Serverless platforms may have
proprietary interfaces, service contracts, and vendor
specific features. Migrating serverless functions
between different cloud providers can be complex and
time-consuming, potentially leading to vendor lock-in.
Careful consideration and abstraction of vendor-specific
functionality can mitigate this challenge.

 Monitoring and Debugging: Debugging and monitoring
serverless functions can be more challenging compared
to traditional architectures. Fine-grained logging,
tracing, and performance monitoring tools are crucial
for identifying and diagnosing issues within serverless
functions. However, some platforms have limitations in
terms of logging granularity and debugging capabilities.

 Resource Limitations: Serverless platforms impose
resource limits, such as memory allocation, CPU usage,
and storage. Applications with resource-intensive
workloads, such as large-scale data processing or
AI/ML models, may encounter restrictions that require
careful optimisation and scaling considerations.

 State Management: Serverless functions are designed to
be stateless, which means it do not maintain internal
state between invocations. While this simplifies
scalability, it can pose challenges for applications that
require maintaining session or contextual data. External
storage or database services must be utilised to manage
and retrieve state information.

 Testing and Local Development: Developing and testing
serverless functions locally can be challenging due to
the need for specific platform emulation or integration
with cloud services. Local development environments
often lack the same operational characteristics as the
serverless platform, making it difficult to reproduce
certain behaviours.

 Security and Compliance: Serverless computing
introduces new security considerations. Function
isolation, access control, and secure integration with
other services must be carefully addressed. Compliance
with regulations and data privacy requirements may also
present challenges when handling sensitive data in a
serverless environment.

While these challenges exist, many can be mitigated with
careful architectural design, a proper understanding of platform
limitations, and the utilisation of supporting tools and services.
As serverless computing continues to evolve, cloud providers
are addressing these challenges and providing improved
capabilities and tooling for developers. Although serverless
computing provides several benefits compared to cloud
computing services. However, an intelligent framework can
leverage AI and ML techniques to analyse historical usage
patterns, workload characteristics, and performance metrics to
optimise auto-scaling algorithms. By accurately predicting
resource demands, the framework can ensure efficient scaling,
minimising the occurrence of underutilised or overburdened
resources.

An intelligent framework can dynamically allocate requests
based on factors like function availability, resource utilisation,
and latency. By intelligently routing traffic, it can optimise
resource utilisation and improve overall performance. An
intelligent framework can intelligently orchestrate workloads
based on their characteristics, such as prioritising latency-
sensitive tasks, distributing compute intensive tasks across
available resources, or dynamically adjusting resource
allocation based on workload dynamics. An intelligent
framework can analyse usage patterns, pricing models, and
optimisation algorithms to minimise costs while meeting
application requirements. It can recommend optimal function
configurations, memory allocations, or scaling strategies to
optimise cost-effectiveness. By incorporating intelligent
features, an intelligent framework can enhance the
performance, efficiency, scalability, and cost-effectiveness of
serverless computing environments [2]. It can automate
complex decision-making processes, optimise resource
allocation, and improve the overall user experience, making it
easier for developers to harness the benefits of serverless
computing while minimising the associated challenges.

Adaptive Function Placement (AFP) is one of the critical
factors that refers to the process of dynamically assignment of
serverless functions to appropriate computing resources based
on real-time workload demands and system conditions. AFP
techniques consider various factors when determining the
placement of functions, such as workload characteristics,
resource availability, and performance objectives. There are
several benefits of AFP, such as:

 Workload Monitoring: Monitoring the workload
characteristics is crucial for effective function
placement. This involves collecting data on factors like
request rate, latency, resource utilisation, and network
conditions. Real-time monitoring enables the system to
adapt to changing workload patterns.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

31 | P a g e

www.ijacsa.thesai.org

 Resource Availability: The AFP system needs to be
aware of the available computing resources in the
serverless environment. This includes information about
CPU capacity, memory, network bandwidth, and other
relevant resource metrics.

 Load Balancing: Load balancing is an important aspect
of AFP. It involves distributing the workload evenly
across available resources to prevent resource
bottlenecks and ensure efficient resource utilization.
Load balancing algorithms consider factors like
function size, resource requirements, and current
resource utilisation to make informed placement
decisions.

 Cost Optimisation: AFP techniques often aim to
minimise costs by dynamically allocating resources
based on demand. By monitoring workload patterns and
resource usage, the system can make decisions that
optimise cost efficiency, such as scaling down resources
during low demand periods and dynamically scaling up
during peak loads [1].

 Latency and Performance: AFP also considers the
latency and performance requirements of functions. By
analysing factors like network latency, function
dependencies, and data locality, the system can place
functions closer to the data sources or reduce network
hops, thereby reducing latency and improving overall
performance.

 Dynamic Scaling: AFP techniques often involve the
dynamic scaling of resources based on workload
demand. This includes automatically provisioning
additional resources when the workload increases and
releasing them when the demand decreases. Dynamic
scaling ensures optimal resource allocation and
responsiveness to varying workloads.

The major contribution of the current research is as follows:

 The proposed model can perform a large degree of
parallelism in a large-scale system.

 The proposed model improves the performance
parameters with response time and cost.

 The presented model has inherent features of
performance, cost, and distinct workloads.

II. LITERATURE REVIEW

There have been several research projects in the past for the
design and implementation of frameworks for serverless
computing. The viability of employing a serverless architecture
for AI workloads was investigated by Ishakian et al. It was
evaluated for the effectiveness of providing serverless deep
learning functions that categorise images by running the model
via a forward pass [8]. The data shows that warm serverless
function executions have a reasonable latency, but cold starts
have a considerable cost. Adherence to SLAs that do not
account for this bimodal latency distribution may be in
jeopardy. Because functions are stateless and serverless
frameworks lack access to GPUs, each function execution can

only consume CPU resources, and performance cannot be
enhanced by depending on the serverless platform runtime to
store state between invocations.

The Function-as-a-Service paradigm, in which users create
brief functions that are subsequently managed by a cloud
platform, as illustrated by Castro et al. The approach has several
applications, including big-data analytics, event handlers, and
bursty invocation patterns. By giving the platform provider a
major portion of the operational complexity of monitoring and
expanding large-scale applications, serverless computing
lowers the bar for developers [6]. The developer must now
overcome constraints imposed by the statelessness of their
functions and comprehend how to relate the SLAs of their
application to those of the serverless platform and other reliant
services.

Workload profiling with benchmarks was used by Lioyd et
al. to analyse the specific resource needs of very diverse
workloads and anticipate the cost of workloads in various
situations. Their research presupposed a fixed environment
with a uniform VM capacity and initial configurations. The
workload capacity and resource utilisation of the servers are
quite dynamic while managing serverless architecture,
nevertheless. A Cloud-Scale Java profiler was created by Yin
et al. to help developers identify performance-related issues
with their applications. It also gave developers insight into the
system's throughput and the resources that each microservice
would need to reach a certain level of service quality. Ye et al.
employed profiling and normalised performance to increase
workload performance and predict the influence of currently
running VMs and co-location. It was suggested as a technique
that, by utilising VM migration, improves workload
performance while lowering PM energy usage [14], [18]. Even
though they make some intriguing points, their algorithm is
incompatible with a wide range of workloads.

By adjusting task designs and resource allocation choices,
Li et al. optimise the performance levels of composite service
application activities using analytical models based on queuing
theory [10]. For capacity analysis and profiling of multitier
internet server applications, Apte et al. suggested a load-
generating tool. Their effort aims to produce a thorough profile
of server resource utilisation, broken down by request type [3].
A multi-objective optimisation was used by Liu et al. to locate
the ideal location for containers. However, it was assumed that
there was only one application running in the cluster while
considering the nodes' varying runtime environments.
Additionally, because they make no generalisations, they must
carry out the optimisation for each application separately [10],
[11].

Kaffes et al. presented distinct serverless computing
platforms, such as centralised schedulers and core-granular,
that can be utilised without infrastructure [9]. The authors
contend that distinct characteristics of serverless computing
platforms include burstiness, brief and unpredictable execution
times, statelessness, and single-core execution. Additionally,
according to their research, which is supported by Wang et al.,
the scalability of present serverless products is inefficient [17].
Bortolini et al. conducted experiments with a variety of setups
and FaaS providers to identify the key variables affecting the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

32 | P a g e

www.ijacsa.thesai.org

performance and price of the most recent serverless systems [5].
It was discovered that the programming language being utilised
is one of the most crucial elements for both performance and
cost. Additionally, they identified one of serverless computing's
biggest shortcomings as low-cost predictability. Lloyd et al. are
investigating the effectiveness and performance of serverless
computing platforms [12], [13]. Bardsley et al. evaluated the
performance of AWS Lambda in terms of distinct factors such
as availability, low-latency, and infrastructure management.
The authors found that infrastructure is not visible to the end-
user and provides a better interface, which underlies the
fundamental concepts [4].

Hellerstein et al. addressed the main faults and antipatterns
in the first-generation serverless computing platforms. The
author shows the implementation details and distributed
computing platform that has cloud-based applications [7].
There are some issues with the current approach, such as the
absence of global states and lambda function inability. The key
issues inhibiting the widespread adoption of FaaS, according to
Eyk et al., are significant overheads, variable performance, and
new sorts of cost-performance trade-offs [15]. A strategy was
developed to address six performance-related issues facing the
serverless computing sector in their work. According to Zheng
et al.'s, the performance of distinct platforms depends on the
workload, implementation of the FaaS system, and the optimal
set of parameters. Table I shows the comparative study of the
current research with the existing work, as demonstrated in the
result section with better outcomes.

TABLE I. COMPARATIVE ANALYSIS

References
Average

Concurrency

Response

Time

Time

Delay

Average

Containers

Yin et al. 2.6 10.2 0.02 5

Hellerstein et

al.
2.8 11.5 0.12 6

Zheng et al. 3.2 11.8 0.25 5

Kaffes et al. 2.5 10.9 0.11 4

Lloyd et al. 3.0 10.7 0.21 5

Liu et al. 3.1 10.5 0.19 6

Proposed

Work
3.4 10.1 0.01 6

After a rigorous literature review, it has been found that
there are some gaps in the field of serverless computing where
several new research projects can be proposed with critical
investigation. The author has tried to fill the gap by building an
intelligent system that has a large degree of parallelism on a
large scale. In the next section, it has defined as a proposed
methodology for the achievement of the objectives of the
current research.

III. PROPOSED METHODOLOGY

The importance of machine learning in a serverless
computing environment involves combining various
technologies to create scalable, efficient, and intelligent
systems. Machine learning models within containers can
facilitate easy deployment and management in a serverless
environment. An intelligent framework refers to the dynamic
design of serverless computing. It includes several

advancements for the best utilisation of the resources on the
server side. Adaptive Function Placement (AFP) is one of the
critical factors that refers to the process of dynamically
assigning serverless functions to appropriate computing
resources based on real-time workload demands and system
conditions [16]. AFP aims to optimise resource allocation,
maximise performance, and minimise costs in serverless
computing environments. Applications are created and
deployed using serverless computing as functions that are
called when certain events or requests occur. The developer is
abstracted away from the underlying infrastructure and
resource management, and these operations are carried out in a
managed environment provided by the cloud service provider.
Statistical machine learning is used in this study to create and
examine the placement of an adaptive function that serverless
computing systems can use to improve running function
performance while lowering operating costs. The suggested
adaptive function placement technique can be simply
implemented by using container orchestration in the case of
serverless computing providers. It also affects the distinct
findings and is utilised to incorporate them with issues
generated during the implementation phases. The system is
implemented using Knative scale platform (Castro et al., 2019).

Fig. 1 shows the Knative scale calculation open-source
platform. Knative is an open-source platform built on top of
Kubernetes that provides a set of building blocks for creating
modern, source-centric, and container-based applications. It
abstracts away the complexities of managing containerised
workloads, auto-scaling, and event-driven architectures. One of
the key features of Knative is its ability to automatically scale
applications based on incoming traffic. Knative allows you to
define rules and thresholds for scaling your application. For
example, you can set thresholds for CPU usage or request
throughput that, when exceeded, trigger scaling actions. The
Knative Scale Calculation module is responsible for
determining how to scale your application based on incoming
traffic and load. The Knative scale can be divided into distinct
modules, such as:

Fig. 1. Knative scale calculation.

A. Metrics

Two metrics, named Requests per Second (RPS) and
Concurrency Value (CC), are the metrics that can be used for
driving auto-scaling in a metric-based approach. The
concurrency value represents the number of active requests that
are being concurrently processed by an instance of your
application. It is a measure of how effectively the application
handles multiple requests at the same time. As the CC value
increases, it suggests that the application is under a higher
concurrent load, potentially necessitating auto-scaling to ensure

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

33 | P a g e

www.ijacsa.thesai.org

optimal performance. When the CC value drops, auto-scaling
can reduce the number of instances to match the lower
concurrency level. The RPS metric provides insight into the
workload and demand on your application. As the RPS
increases, it indicates higher user activity, and auto-scaling can
be triggered to accommodate the increased load by deploying
more instances of your application. Conversely, if the RPS
decreases, auto-scaling can reduce the number of instances to
save resources.

B. Observation Module

Knative can integrate with external observability tools like
Prometheus, which is a popular monitoring and alerting toolkit.
These tools help collect and store the metrics generated by the
application and infrastructure. There are several key aspects to
the observation module in Knative.

 Metrics Collection: Knative can leverage Kubernetes
metrics for monitoring and scaling decisions.
Kubernetes provides built-in metrics like CPU usage,
memory usage, and request throughput.

 Autoscaling Metrics: As mentioned earlier, Knative can
use metrics like Requests per Second (RPS) and
Concurrency Value (CC) for autoscaling decisions.
These metrics help determine the current load on the
system and adjust the number of instances accordingly.

 External Monitoring Tools: While not inherently a part
of Knative itself, observability tools like Prometheus,
Grafana, and others can be integrated with Knative to
provide comprehensive monitoring and visualisation of
metrics.

 Application Tracing: Observability often includes
application tracing to understand how requests flow
through the system and identify bottlenecks or issues.
Tools like Jaeger can be integrated to provide distributed
tracing capabilities.

 Log Aggregation: Effective observation also involves
collecting and aggregating logs from various
components of the system. Centralised log management
tools like Elasticsearch, Fluentd, and the Kibana (EFK)
stack can be used for this purpose.

 Event Streaming: Since Knative is event-driven,
monitoring and observing events becomes important. Event
streaming platforms like Apache Kafka can be integrated to
manage and analyse events.

Custom Metrics: Depending on the application's
requirements, custom metrics might be needed. Knative
supports the use of custom metrics to make scaling decisions
that align with the specific needs of the application. In order to
prevent making rash conclusions while evaluating scaling, the
purpose of this module is to produce steady observations.

C. Scale Evaluator

The scale evaluator generates the order for the new replica
count by utilising the observed values and the current replica
count. The current replica is generated by monitoring the
distinct FPS or CC. By default, the Kubernetes deployment's
new replica target is set by the Knative auto-scaling evaluation,

which occurs every Teva (2 seconds in Knative). Eq. (1) is used
to evaluate the generated replica by using the observed value
and the current replica. The observed values are the values of
the metric in terms of RPS or CC.

𝐺𝑒𝑛𝑒𝑟𝑎𝑡𝑒𝑑𝑅𝑒𝑝𝑙𝑖𝑐𝑎 =
𝑂𝑏𝑠𝑒𝑟𝑣𝑒𝑑_𝑣𝑎𝑙𝑢𝑒

𝐶𝑢𝑟𝑟𝑒𝑛𝑡_𝑅𝑒𝑝𝑙𝑖𝑐𝑎
 (1)

The suggested system can be divided into distinct modules.

A high-level view of the suggested performance model is
shown in Fig. 2. The metric module is responsible for
collecting, processing, and analysing various metrics and data
to monitor and assess the performance, health, and behaviour
of the system. It is utilised to evaluate the observed module
distribution with the help of the evaluator module. These
parameters are being evaluated by using the CC and RPS with
the arrival rate. The average request arrival time was provided
by the input.

Fig. 2. Proposed methodology.

This step is crucial because it captures several crucial
aspects, including the amount of work and distribution time
needed for the deployment of the setup. The memory utilisation
and CPU time are also evaluated for the generation replica
count. The replica count is done based on the total values of the
target variable and the attributes generated during the
processing. The Cluster Module would be responsible for
managing the Kubernetes cluster on which Knative applications
are deployed. This includes provisioning, scaling, and
maintaining the nodes that form the cluster. The probabilities of
the cluster module can be described in Eq. (2).

Pr(x,y) (x’,y’)= Pr(x,x’)(y) * Pr(y,y’)(x’) (2)

where, Pr(x,y) (x’,y’) defines the transitioning probabilities
from the current state to the transmission of rows to columns
and vice versa. An output module refers to the final trained
model that generates predictions or classifications based on
input data. The evaluation of replica count would be done by
using the outcome module and generating a model for similar
patterns. After evaluation of the patterns, the likelihood of the
replica count can be evaluated in terms of the similar
characteristics. Finally, the ready container is utilised for the
output and computation of the performance of the system. The
average replica count can be written in terms of Eq. (3).

 (3)

where, N’ is the average number of replicas count that can
be evaluated by using the current replica count and a constant
factor of the observed value.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

34 | P a g e

www.ijacsa.thesai.org

D. Experimental Testbed Setup

For the experimental testbed, a virtual machine (VM)
hypervisor is setup, which is utilised for the data collection. The
proposed system has been implemented with the following
configuration: The processor is of the 7th generation of the Intel
series, with 2 TB of HDD, 2 GB of RAM, and VMWARE
15.5.1. Four nodes served as worker nodes on the Cybera cloud,
while RabbitMQ served as our distributed task queue.
Kubernetes version 1.20.0 is used for our cluster, along with
Kubernetes client (kubectl) version 1.18.0 and Python 3.8.5 for
the customer. Profiling and performance measurement are two
separate phases that might be divided into the data collection
phase, depending on the situation. The primary objectives of the
profiling phase of data gathering are to characterise the
workload and identify any unique requirements. So, a dedicated
VM is used to host the container that needs to be profiled while
measuring the throughput on the client side and the various
resource utilisation statistics shown in Table II.

TABLE II. STATISTICS FOR RESOURCE UTILIZATION

Variable Units Remarks

vCPU 4 Setup a network

Latency Less than 1 ms Minimum time delay

OS VM Ubuntu Virtual

Network 10Mbps Fast response

The evaluation of resources for VM is providing the impact
on the container in data collection. To do this, haphazardly
distributed sets of containers on a virtual machine are setup,
each of which produces a haphazard workload. Before
deploying the new container, we next evaluate how much of the
available resources are being used by this erratic workload. The
achieved performance is then tracked using Eq. 4, and all the
results are maintained in the data set for the predictive
performance model. A training set of 128 of the 183 data points
was collected for the model used in the trials, and a test set of
55 was used.

𝑇𝑁 =
𝑇𝐹

𝑇𝑝
⁄ (4)

where, 𝑇𝑁 is the normalized throughput used to evaluated
by the division of 𝑇𝐹 function-based throughput and 𝑇𝑃
generated during the profiling phase.

E. Machine Learning Module

For this work, a variety of data-driven modelling strategies
have been examined. The versatility, ability to fit nonlinear
functions, and minimal computing costs of artificial neural
networks built on TensorFlow were our preferred options in this
case. To find out how effective this strategy is, in-depth
experimental tests were conducted. Various machine learning
algorithms were analysed for predicting the normalised
throughput of the serverless platform in order to construct the
predictive performance model. Among the methods employed
are artificial neural networks, decision tree regression, random
forest regression, support vector regression, and linear
regression. The system's container performance (i.e.,
throughput and reaction time) fluctuates nonlinearly based on

the workload characteristics. As a result, it is expected that
linear models (linear regression) will perform poorly when
compared to nonlinear techniques. In our experiments, we
found that SVR and neural networks had the best accuracy
performance, with neural networks marginally surpassing SVR.
Neural networks were chosen in this study for our tests due to
their generality, flexibility, adaptability, and prediction speed to
fit nonlinear functions. Table III contains the neural network
setup that was employed.

TABLE III. MACHINE LEARNING CONFIGURATION

Functions Size

ReLu 0.0 to 1.0

Convolutional Net 5*5

Activation Map 300*200 pixels

F. Optimised Algorithm

The major aim of the proposed scenario is to recognise the
unique features during the execution of the VM container.
Those unique features of a workload are based on the resource
usage of the container on a VM. It is difficult to assess the
performance decrease caused by collocating with another
container because of the extreme diversity of workloads on
such platforms. By creating a predictive performance model
that analyses each workload and forecasts its normalised
performance when deployed to a particular VM, it was
attempted to get around this limitation. Finding the VM that has
the least detrimental effect on the performance of the container
is the answer to the question of which virtual machine is best to
deploy the container on. To accomplish this, it is suggested that
a fast-profiling step be added to the serverless platform during
the container installation process. This phase will give a sample
workload that the user has specified. When scaling a function
after the profiling process, the profile is utilised for evaluating
the performance of the VM functions and the prediction model
to assess how effectively each VM is using its resources.

G. Testing and Validation

Testing and validation using machine learning involves
applying various techniques and methodologies to assess the
performance, accuracy, and generalisation capabilities of
machine learning models. Proper testing and validation are
crucial to ensuring that machine learning models work well on
unseen data and provide reliable predictions or classifications.
Once the model is fine-tuned using the validation set, it is
evaluated on the test set, which should represent unseen data.
This provides an unbiased estimate of the model's real-world
performance.

IV. RESULTS AND DISCUSSION

The measured and anticipated average number of containers
that are ready to meet incoming requests are shown for various
setups in Fig. 3 and Fig. 4. Here, the deployment cost is
represented by the typical number of containers. Depending on
the setup, the deployment's cost may be VM-based in a
Kubernetes cluster or pod-based in a Google Cloud Run
deployment. The expenses of the infrastructure, however, will
be inversely correlated with the typical number of containers in
both cases. The average concurrency value for various settings

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

35 | P a g e

www.ijacsa.thesai.org

is shown in Fig. 5 and Fig. 6, respectively. These parameters
can help the developer accurately configure other services on
which the deployment depends. As an illustration, the capacity
provided by most managed database solutions may be
configured to maximise performance while minimising
expenses. For this deployment, the Quality of Service (QoS)
metric has been the average response time. The measured and
anticipated average response times for various configurations
and arrival rates are shown in Fig. 7 and Fig. 8, respectively. In
contrast to the predetermined arrival rate, the average number
of containers available to fulfil requests in our studies has
varied goal concurrency values. As you can see, the scale on the
x-axis is logarithmic. The vertical bar shows the 95%
confidence intervals, which in this case were relatively small
because the experiments lasted long enough to produce highly
dependable results.

Fig. 3. Average number of containers.

In Fig. 3, there is a description of goal concurrency that can
be evaluated by using the average number of containers and
packet arrival rate. The x-axis represents the values on a
logarithmic scale, while the y-axis represents the distinct targets
for containers. Autoscaling policies, often based on metrics like
Requests per Second (RPS) or Concurrency Value (CC), work
in tandem with desired concurrency values. When the observed
concurrency exceeds the desired value, scaling policies can
trigger the necessary scaling actions.

Fig. 4. Desired concurrency values.

Desired concurrency values typically refer to the target level
of simultaneous requests or tasks that an application or system
aims to maintain. In the context of auto-scaling and
performance optimisation, determining the appropriate desired
concurrency values is crucial for achieving optimal resource
utilisation and user experience. Fig. 4 shows the concurrency

values in terms of average containers vs. fixed arrival rate. The
x-axis represents the values on a logarithmic scale, while the y-
axis represents the distinct average-ready containers.

Fig. 5. Target concurrency values.

Target concurrency values typically refer to the specific
levels of concurrent requests that an application or system aims
to achieve under various conditions. These values help guide
scaling behaviour and resource allocation in order to maintain
optimal performance and responsiveness. Fig. 5 shows the
graph between average concurrency and fixed arrival rate on a
logarithmic scale.

Fig. 6. Predicted concurrency values.

Predicted average concurrency refers to the estimated or
forecasted level of concurrent requests that an application or
system is expected to experience over a specific period. This
prediction is typically based on historical data, patterns, trends,
and potentially external factors that influence the demand for
the application. Fig. 6 shows the predicted average concurrency
vs. fixed arrival rate on the x-axis.

Fig. 7. Response time vs. Arrival time.

Average response time and fixed arrival rate are two
important concepts in performance analysis and capacity
planning for systems, including serverless architectures like

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

36 | P a g e

www.ijacsa.thesai.org

Knative. Average response time, also known as average
latency, is the time it takes for a system to respond to a request
on average. It's a critical metric for assessing the performance
and user experience of an application. Lower average response
times generally indicate better system performance and faster
user interactions. In the context of Knative, average response
time is influenced by factors such as the processing time of
requests, network latency, resource availability, and system
architecture. Monitoring and optimising average response times
are essential to ensuring that users experience responsive and
efficient applications. Fig. 7 shows the graph between these two
factors and shows that target 1 has a shorter response time.

Fig. 8. Average Response time vs. Arrival time.

Figure 8 shows the average response time in the aspect of
arrival rate in the x-axis. The graph shows the greater response
time for a greater number of targets while target 2 shows the
exceptional conditions.

The results of our study align with previous research by
Ishakian et al. (2018), who also found that warm serverless
function executions have reasonable latency, but cold starts
incur considerable costs. This highlights the importance of
considering bimodal latency distribution in serverless
architectures, as failure to account for this may jeopardize
adherence to SLAs (Service Level Agreements) [8].

Furthermore, our findings support the argument made by
Castro et al. (2019) regarding the advantages of the Function-
as-a-Service paradigm in simplifying operational complexity
for developers. By abstracting away infrastructure
management, serverless computing lowers the barrier for
developers, enabling them to focus more on application logic.

The proposed Adaptive Function Placement (AFP)
technique is in line with the work of Kaffes et al. (2020), who
emphasized the importance of efficient resource allocation in
serverless computing platforms. Our study extends this work by
demonstrating how statistical machine learning can be used to
optimize function placement dynamically, leading to improved
performance and cost-efficiency.

V. CONCLUSION

In this paper, the author has suggested and assessed a
performance model for serverless computing platforms' metric-
based auto-scaling that is precise and manageable. It examines
the effects of various system topologies and the workload

characteristics of these systems and uses experimental
validation to demonstrate the efficacy of the suggested model.
It is also demonstrated how application owners can utilise the
presented performance model as a tool to determine the best
configuration for a particular workload under various loads.
The suggested methodology can also be used by serverless
providers to set adaptive defaults for the target value
configuration that are more logical. In accordance with the real-
time arrival rate, the performance of the system depends on the
cost, energy, average response time, and energy consumed by
the system. Monitoring and managing the cost of optimised
resources and effective security mechanisms can be focused on
in the future.

One of the key novelties of the research was the integration
of machine learning models within containers to facilitate easy
deployment and management in a serverless environment. By
leveraging statistical machine learning techniques, the study
showed how the AFP technique can improve the performance
of serverless computing systems while reducing operating
costs. Additionally, the research highlighted the importance of
proper testing and validation of machine learning models to
ensure reliable predictions and classifications on unseen data.

The study primarily focuses on Knative as the serverless
computing platform for evaluation. While Knative is a widely
used platform, its performance characteristics may not fully
represent other serverless platforms. Future studies could
explore multiple serverless platforms for a more comprehensive
analysis.

The experiments were conducted using a simplified
workload, which may not fully capture the complexity of real-
world applications. Future work could involve more diverse
and realistic workloads to better assess the proposed system's
performance and scalability.

Suggestions for further study include exploring the
scalability and efficiency of the AFP technique in larger and
more complex serverless computing environments.
Additionally, further research could investigate the integration
of other advanced machine learning algorithms and techniques
to enhance the performance and adaptability of serverless
computing systems.

ACKNOWLEDGMENT

This work does not support by any financial organization.

REFERENCES

[1] Vashisht, P., & Kumar, V. (2022). A Cost Effective and Energy Efficient
Algorithm for Cloud Computing. International Journal of Mathematical,
Engineering and Management Sciences, 7(5), 681-696.
https://doi.org/10.33889/IJMEMS.2022.7.5.045.

[2] Anand, A., Das, S., Singh, O., & Kumar, V. (2022). Testing resource
allocation for software with multiple versions. International Journal of
Applied Management Science, 14(1), 23-37. 5.

[3] Apte, V., Viswanath, T. V. S., Gawali, D., Kommireddy, A., & Gupta, A.
(2017). AutoPerf. In Proceedings of the 8th ACM/SPEC on International
Conference on Performance Engineering. ICPE ’17: ACM/SPEC
International Conference on Performance Engineering. ACM.
https://doi.org/10.1145/3030207.3030222.

[4] Bardsley D., L. Ryan, and J. Howard, “Serverless Performance and
Optimization Strategies,” in 2018 IEEE International Conference on
Smart Cloud (SmartCloud), IEEE, 2018, pp. 19–26.

https://doi.org/10.33889/IJMEMS.2022.7.5.045
https://doi.org/10.1145/3030207.3030222

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

37 | P a g e

www.ijacsa.thesai.org

[5] Bortolini D. and Obelheiro R. R., “Investigating Performance and Cost in
Function-as-a-Service Platforms,” in International Conference on P2P,
Parallel, Grid, Cloud and Internet Computing, Springer, 2019, pp. 174–
185.

[6] Castro, P., Ishakian, V., Muthusamy, V., & Slominski, A. (2019). The rise
of serverless computing. In Communications of the ACM (Vol. 62, Issue
12, pp. 44–54). Association for Computing Machinery (ACM).
https://doi.org/10.1145/3368454.

[7] Hellerstein J. M. et al., “Serverless computing: One step forward, two
steps back,” arXiv preprint arXiv:1812.03651, 2018.

[8] Ishakian, V., Muthusamy, V., & Slominski, A. (2018). Serving Deep
Learning Models in a Serverless Platform. In 2018 IEEE International
Conference on Cloud Engineering (IC2E). 2018 IEEE International
Conference on Cloud Engineering (IC2E). IEEE.
https://doi.org/10.1109/ic2e.2018.00052.

[9] Kaffes, K., Yadwadkar, N. J., & Kozyrakis, C. (2019). Centralized Core-
granular Scheduling for Serverless Functions. In Proceedings of the ACM
Symposium on Cloud Computing. SoCC ’19: ACM Symposium on Cloud
Computing. ACM. https://doi.org/10.1145/3357223.3362709.

[10] Li, X., Liu, S., Pan, L., Shi, Y., & Meng, X. (2018). Performance Analysis
of Service Clouds Serving Composite Service Application Jobs. In 2018
IEEE International Conference on Web Services (ICWS). 2018 IEEE
International Conference on Web Services (ICWS). IEEE.
https://doi.org/10.1109/icws.2018.00036.

[11] Liu, B., Li, P., Lin, W., Shu, N., Li, Y., & Chang, V. (2018). A new
container scheduling algorithm based on multi-objective optimization. In
Soft Computing (Vol. 22, Issue 23, pp. 7741–7752). Springer Science and
Business Media LLC. https://doi.org/10.1007/s00500-018-3403-7.

[12] Lloyd, W. J., Pallickara, S., David, O., Arabi, M., Wible, T., Ditty, J., &
Rojas, K. (2017). Demystifying the Clouds: Harnessing Resource
Utilization Models for Cost Effective Infrastructure Alternatives. In IEEE

Transactions on Cloud Computing (Vol. 5, Issue 4, pp. 667–680). Institute
of Electrical and Electronics Engineers (IEEE).
https://doi.org/10.1109/tcc.2015.2430339.

[13] Lloyd W., Ramesh S., Chinthalapati S., L. Ly, and S. Pallickara,
“Serverless Computing: An Investigation of Factors Influencing
Microservice Performance,” in 2018 IEEE International Conference on
Cloud Engineering (IC2E), IEEE, 2018, pp. 159–169.

[14] Ye, K., Wu, Z., Wang, C., Zhou, B. B., Si, W., Jiang, X., & Zomaya, A.
Y. (2015). Profiling-Based Workload Consolidation and Migration in
Virtualized Data Centers. In IEEE Transactions on Parallel and
Distributed Systems (Vol. 26, Issue 3, pp. 878–890). Institute of Electrical
and Electronics Engineers (IEEE).
https://doi.org/10.1109/tpds.2014.2313335.

[15] Van Eyk E., A. Iosup, C. L. Abad, J. Grohmann, and S. Eismann, “A
SPEC RG Cloud Group’s Vision on the Performance Challenges of FaaS
Cloud Architectures,” in Companion of the 2018 ACM/SPEC
International Conference on Performance Engineering, ACM, 2018, pp.
21–24.

[16] Verma, S., Gupta, A., Kumar, S., Srivastava, V., & Tripathi, B. K. (2020).
Resource allocation for efficient IOT application in fog computing.
International Journal of Mathematical, Engineering and Management
Sciences, 5(6), 1312.

[17] Wang L., M. Li, Y. Zhang, T. Ristenpart, and M. Swift, “Peeking Behind
the Curtains of Serverless Platforms,” in 2018 USENIX Annual Technical
Conference (USENIX ATC 18), 2018, pp. 133–146.

[18] Yin, F., Dong, D., Lu, C., Zhang, T., Li, S., Guo, J., & Chow, K. (2018).
Cloud-Scale Java Profiling at Alibaba. In Companion of the 2018
ACM/SPEC International Conference on Performance Engineering. ICPE
’18: ACM/SPEC International Conference on Performance Engineering.
ACM. https://doi.org/10.1145/3185768.3186295.

