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Abstract—Path planning is a prominent and essential part of 

mobile robot navigation in robotics. It allows robots to determine 

the optimal path from a given beginning point to a desired end 

goal. Additionally, it enables robots to navigate around obstacles, 

recognize secure pathways, and select the optimal route to follow, 

considering multiple aspects. The Whale Optimization Algorithm 

(WOA) is a frequently adopted approach to planning mobile robot 

paths. However, conventional WOA suffers from drawbacks such 

as a sluggish convergence rate, inefficiency, and local optimization 

traps. This study presents a novel methodology integrating WOA 

with Lévy flight and Differential Evolution (DE) to plan robot 

paths. As WOA evolves, the Levy flight promotes worldwide 

search capabilities. On the other hand, DE enhances WOA's 

ability to perform local searches and exploitation while also 

maintaining a variety of solutions to avoid getting stuck in local 

optima. The simulation results demonstrate that the proposed 

approach offers greater planning efficiency and enhanced route 

quality. 
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I. INTRODUCTION 

Recent technological advancements, such as Artificial 
Intelligence (AI) [1], Machine Learning (ML) [2], and advanced 
sensor technologies [3], have significantly expanded the 
capabilities and applications of mobile robots. Initially, mobile 
robots were restricted to manufacturing industries. Still, 
reconsidering this concept led to their applicability in diverse 
fields, such as entertainment, health, mining, education, 
military, and agriculture [4]. Navigating the mobile robots is the 
most important phase, which can be defined as finding the 
robot's position, the best path for traveling. Localization is the 
first critical phase in navigation, wherein the robot should 
understand its position on the map of the real world. The path 
planning phase is the second key phase in which the robot 
calculates the route on the map of the surrounding environment 
[5]. Using this path, the robot reaches the goal and follows a 
strategic path. As a result, a well-designed map is essential to a 
successful navigation system, as it will enable the robot to reach 
its goal with the least amount of energy and time [6]. 

During the navigation task, robots use various cognitive 
devices to interpret their surroundings, orient themselves, 
regulate their actions, recognize obstacles, and avoid collisions 
using navigation strategies [7]. By acknowledging and 
sidestepping obstacles, navigation systems help an agent 
produce an accurate path from the start to the goal [8]. The 

selection of appropriate navigation technology for path planning 
is critical for robotic systems in simple and complex 
environments. Mobile robot navigation has been extensively 
studied in the past decade [9]. The navigation of mobile robots 
falls into three categories: personal, local, and global [10]. 
Global navigation is locating objects relative to a reference axis 
and progressing towards a specific goal [11]. Local navigation 
entails recognizing the changing conditions of the environment 
while identifying the spatial connections among various objects 
[12]. Personal navigation necessitates coordinating and 
adjusting several environmental factors that affect each other 
based on their respective positions [13]. Fig. 1 illustrates the 
fundamental operations of the robot. 

The problem of path planning is classified as NP-hard due to 
its complex structure [14]. Heuristic and evolutionary 
algorithms are commonly employed to discover the best solution 
to this issue, particularly in extensive and complicated settings. 
One primary constraint in previous research is that many studies 
represent the context with discrete grids to determine the most 
effective grid configuration for determining the optimum path 
[15]. The primary limitation of this approach is the 
predetermined grid positions, which restrict path design 
flexibility. Furthermore, the A* algorithm can be used to 
identify optimum paths within arbitrary grids. Both the Dijkstra 
and A* algorithms are highly efficient because of their 
deterministic properties, which distinguishes them from 
evolutionary algorithms since they are not affected by the initial 
conditions. They exhibit significant time efficiency, especially 
compared to various evolutionary algorithms in two-
dimensional path planning [16]. 

AI, ML, and Neural Networks (NNs) play pivotal roles in 
revolutionizing robot path planning. AI algorithms enable robots 
to navigate complex environments autonomously by leveraging 
advanced decision-making processes [17, 18]. ML techniques, 
particularly reinforcement learning, empower robots to learn 
from their experiences and optimize path planning strategies 
over time [19-21]. NNs, inspired by the human brain's structure, 
excel at pattern recognition and can efficiently process vast 
amounts of sensor data to make real-time navigation decisions 
[22-24]. Together, these technologies enhance the adaptability, 
efficiency, and reliability of robot path planning systems. The 
integration of these cutting-edge technologies not only addresses 
the challenges of traditional path planning methods but also 
paves the way for the next generation of intelligent robotic 
systems capable of seamlessly navigating diverse and 
challenging terrains [25, 26]. 
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Fig. 1. Fundamental operations of mobile robot navigation. 

The use and improvement of different meta-heuristic and 
hybrid algorithms for robot path planning is an emerging topic. 
The Whale Optimization Algorithm (WOA) is a well-known 
algorithm derived from whale hunting patterns [27]. The WOA 
uses two search methods to improve exploration and 
exploitability: shrinking the surrounding area and spiral 
updating the location to refine its search. WOA shows great 
promise by surpassing the performance of other established 
optimization techniques. Additionally, WOA features self-
adjusting capabilities for some parameters as it goes through its 
iterations. 

Like other metaheuristic algorithms, WOA has weaknesses, 
including premature convergence and vulnerability to becoming 
stuck in local optima. Overcoming these constraints constitutes 
a typical challenge to the advancements of metaheuristic 
searching. In the previous literature, many attempts have been 
under consideration to deal with these constraints, including 
using mathematical distributions using new evolutionary 
processes or combining different swarm intelligence techniques. 
This paper proposes an optimized iteration method of WOA for 
robot path planning. The enhanced method, named WOA-
DELF, combines the techniques of differential evolution and 
Lévy flight. In WOA-DELF, Lévy flight is employed in the 
method exploring process to improve the optimization capability 
of global optimization. The system employs two distinct 
foraging approaches to optimize local conditions and 
incorporates Differential Evolution (DE) to enhance exploration 
of both local and global search areas during the exploitation 
phase. 

The Lévy flight refers to a random walk distinguished by 
probability distributions with a high tail. It has been extensively 
utilized in several areas, including analyzing flying patterns in 
insects, feeding patterns in animals, and predicting human travel 
dispersion. The Lévy flight has been included in swarm 
intelligence approaches to search and optimize solutions. The 
addition of the Lévy flight improved both the exploration and 
exploitation of solutions [28]. Storn and Price developed 
Differential Evolution (DE) in 1995 to solve real-number 
optimization issues [29]. Over time, it has transformed into a 
versatile global optimization method deeply rooted in 

population dynamics. DE has gained recognition for its 
efficiency, success, robustness, and global search capabilities. 
Nevertheless, it shows limited local search capability and 
slightly sluggish convergence [30]. To tackle these difficulties, 
recent research has concentrated on promoting variety among 
populations, expanding exploration and exploitation capacities 
through parameter management, and preventing early 
convergence. 

The remaining part of the paper is organized as follows. 
Section II reviews the related work on the problem of path 
planning for mobile robots. Section III defines the problem 
statement. Section IV introduces the proposed approach, 
outlining the way WOA is used in combination with DE and LF 
for improving path planning. Section V presents the results of 
simulations conducted to confirm the efficiency of the presented 
method. Section VI draws the paper to a close and suggests areas 
for further research. 

II. RELATED WORK 

This section aims to offer a comprehensive review of the 
state of the art in mobile robot route planning by comparing 
noteworthy studies compiled from relevant literature. The 
purpose is to describe the diverse techniques applied to mobile 
robot navigation and route optimization to address its associated 
challenges. Table I presents the essential characteristics of each 
study, such as the employed methodology, fundamental 
procedures, main goals, assessment measures, and significant 
discoveries. 

Ajeil, et al. [31] tackled the problem of path planning for 
self-moving mobile robots in stable and varying settings. Their 
objective was to find a trajectory that is devoid of collisions and 
fulfills the criteria of being the shortest distance and smooth. The 
proposed method effectively simulates a real-world scenario by 
taking into account the physical attributes of mobile robots. The 
problem is presented as the motion of a point in an empty space. 
There are three components to the algorithm. The first part 
creates an efficient route by utilizing a hybridized PSO-MFB 
method, which incorporates Modified Frequency Bat (MFB) 
and PSO algorithms to reduce path length and ensure smooth 
navigation. The second part identifies all incorrect values 
produced by the hybrid algorithm and employs a unique local 
search method to transform points into valid results. The third 
component is equipped with obstacle sensors and collision 
avoidance, triggering as the robot detects obstructions within its 
sensor range, keeping it from colliding. The numerical results 
indicate that the proposed method generates an optimal and 
feasible path in complex and dynamic scenarios, surpassing the 
limitations of traditional grid-based approaches. 

Das and Jena [33] presented a novel method for calculating 
the best collision-free paths for individual robots in simple and 
intricate surroundings. They resolved the problem by using an 
improved version of the PSO algorithm combined with 
evolutionary operators (EOPs). The improvement of the PSO 
algorithm included incorporating the concept of governance in 
human society and two evolutionary multi-crossover operators 
from the genetic algorithm and the bee colony operator to boost 
the intensification capability of the PSO algorithm. The 
technique was created to calculate the deadlock-free sequence 
coordinates of each robot using their current coordinates. The 
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goal was to decrease the distance traveled by each robot by 
finding a middle ground between intensity and diversity. The 
study results verified that PSO-EOPs exhibited superior 

performance compared to PSO and DE in terms of efficiency in 
arrival time, secure route formation, and energy consumption 
during travel. 

TABLE I.  OVERVIEW OF ROBOT PATH PLANNING APPROACHES 

Reference Approach Primary techniques Main objectives 

[31] Path planning for mobile robots Hybridized PSO-MFB method and obstacle sensors Collision-free, lowest distance, and smooth paths 

[32] 
Obstacle avoidance for multi-robot 

systems 

Covariance matrix adaptation evolution and proximal 

policy optimization 
Avoid obstacles 

[33] 
Collision-free paths for individual 
robots 

Improved PSO algorithm and evolutionary operators 
Arrival time, secure route construction, and energy 
usage 

[34] Mobile robot route planning Multi-goal Genetic Algorithm (MOGA) 
Safety, distance, smoothness, traveling time, and 
collision-free path 

[35] 
Mayfly optimization algorithm for 

robot route planning 

Improved mayfly optimization algorithm based on q-

learning 

Global search capabilities and avoidance of local 

optima 

[36] Path planning for multiple robots 
Enhanced artificial bee colony algorithm and ABCL 

method 
Optimal collision-free courses for multiple robots 

 

Suresh, et al. [34] proposed the Mobile Robot route Search 
powered by a Multi-goal Genetic Algorithm (MRPS-MOGA), a 
new method that uses a genetic algorithm with various goal 
functions to solve mobile robot route planning issues. The 
primary purpose of MRPS-MOGA is to determine the most 
efficient route by taking into account five specific criteria: 
safety, distance, smoothness, trip time, and avoidance of 
collisions. The multi-objective genetic algorithm (MOGA) is 
used to choose the best route among several possible options. 
The population is created with randomly generated routes, and 
fitness values are assessed using different objective functions. 
The fitness criteria decide whether routes are kept for 
involvement in the following generation. The MRPS-MOGA 
approach utilizes genetic algorithm components such as 
tournament selection, ring crossover, and adaptive bit string 
mutation to find the best path. A mutation operator is randomly 
applied to the sequence to introduce variation in the population. 
An evaluation of the individual fitness criteria is conducted to 
ascertain the optimal course of action for the population. The 
MRPS-MOGA algorithm was evaluated in multiple scenarios, 
proving its superiority in choosing the most efficient route while 
minimizing time complexity. The experimental research has 
shown that MRPS-MOGA is a highly effective method for 
designing paths for mobile robots. It offers enhanced safety, 
reduced energy usage, and faster transit times in comparison to 
existing techniques. 

Zou, et al. [35] have discussed issues in the fundamental 
Mayfly Optimization Algorithm (MOA) for robot route 
planning, such as sluggish convergence, low precision, 
instability, and applicability limited to static situations. A fusion 
technique was suggested that merges an enhanced Mayfly 
Optimization technique with the Dynamic Window Approach. 
An Improved Mayfly Optimization Algorithm based on Q-
learning (IMOA-QL) is presented for global robot path 
planning. The new algorithm's primary function is Q-learning, 
which adjusts parameters dynamically to boost global search 
capabilities and prevent becoming stuck in local optima. Global 
path nodes are recovered as sub-target points, and the Dynamic 
Window Approach is used to plan local paths to increase real-
time avoidance capabilities. IMOA-QL's efficacy is confirmed 
by 20 random simulation trials in a 100 × 100 static map 
scenario, where it is compared with basic MOA and MOA-

LAIW. IMOA-QL decreases the average path length by 4.4% 
and 2.1% compared to MOA and MOA-LAIW in simple 
settings and by 6.5% and 3.2% in complex environments, as 
shown by the results. In 20 studies, the average variance of 
IMOA-QL decreased by 74.1% and 57.6% in simple contexts 
and by 51.2% and 38.6% in complex environments compared to 
MOA and MOA-LAIW. 

Wen, et al. [32] developed a flexible optimization method 
based on covariance matrix adaptation evolution, derived from 
the traditional proximal policy optimization, to develop an 
effective obstacle avoidance strategy for autonomous navigation 
of multi-robot systems in complicated situations with static and 
dynamic obstacles. The test outcomes indicated that the 
proposed method was effective for avoiding obstacles and 
achieving the goal location. Meta-learning was combined with 
multi-robot architectures to enhance their flexibility. The 
proposed method was utilized in the training of robots to acquire 
a multi-task policy. 

Cui, et al. [36] explored path planning for multiple robots in 
an ongoing familiar environment, introducing an innovative 
method for local path planning. They created a new way to 
implement metaheuristic algorithms to design optimal collision-
free courses for multiple robots and enhance the Artificial Bee 
Colony (ABC) algorithm. Three enhancements have been 
included in the ABC algorithm in this scenario. The search 
equations of the deployed bee and scout bee phases were 
improved by including the global best individual to improve 
control over the search direction. The learning mechanism of the 
TLBO algorithm was introduced into the spectator bee phase to 
enhance exploitability. The ABCL method, based on learning, 
was utilized to calculate the next locations of all robots by 
considering their present coordinates, path length, safety, and 
planning efficiency. ABCL outperformed seven effective 
metaheuristic algorithms in tackling diverse optimization 
problems, as demonstrated in experimental investigations on 
benchmark functions. Simulation experiments for multi-robot 
route planning demonstrated that ABCL surpasses its 
competitors in producing optimal collision-free pathways and 
runtime. ABCL enhanced two features by an average of 2.1% 
and 12.6% compared to the original ABC across all tasks. Thus, 
the suggested implementation technique demonstrates that 
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ABCL is an efficient option for path planning for numerous 
robots. 

III. PROBLEM STATEMENT 

The current landscape of robotics demands efficient path 
planning in large environments, taking into account 
computational limitations. Memory constraints may render 
finding an optimal path impractical, particularly when dealing 
with expansive navigation spaces. This challenge intensifies 
when multiple criteria, such as path length, distance to obstacles, 
and search complexity, must be considered for global path 
efficiency in cluttered environments. Different regions of large, 
cluttered maps may elicit varying responses from fixed path-
planning algorithms, making it difficult to achieve universal 
efficiency across all conditions. 

Path planning is the process of determining a limited number 
of possible motions within an unobstructed area of a design, 
usually from predetermined starting to end points. While 
multiple paths may exist, path-planning algorithms aim to find 
the optimal path based on predefined objective functions, such 
as minimizing path length, maximizing smoothness, or ensuring 
safety. 

This study introduces a novel path-planning method aimed 
at identifying the most efficient routes in various intricate 
settings between specified source and target points. The method 
assesses path quality by considering factors such as route length, 
smoothness, and safety. The study examines 2D settings with 
stationary barriers of various shapes, assuming no relationship 
between obstacles and free space. Robots are considered single 
entities, taking into account their dimensions by including a 
confidence radius near objects. Multi-robot path planning 
scenarios assume that each robot moves at a constant speed. 

The technique creates a map of the environment, making it 
easier to find possible segmented linear pathways between the 
starting and target locations in a gridded area. It ensures the 
identification of at least one viable route if it is present. 
Subsequently, the algorithm identifies the appropriate positions 
of Path Bases (PBs) selected grids used to determine the paths. 
These PBs can then be connected using cubic spline or 
piecewise linear methods to construct optimal paths. Fig. 2 
shows an outline of the suggested technique for optimal path 
planning in an ongoing area. 

Path planning in ongoing areas with variable impediments 
might be computationally difficult due to many issues. 
Researchers simplify the challenge by transforming it into 
identifying a finite sequence of hops in a gridded context 
between origin and target points. However, these approaches are 
restricted by the degree of separation. 

The algorithm developed in this study uses multiple 
methodologies to model the situation. The surrounding area is 
divided into grid-like squares. Fig. 3 demonstrates a 1010 field 
separated into squares of one unit length. 100 points, represented 
as green circles, are evenly spread over the region. The robot's 
trajectory is determined by choosing a suitable group of nodes 
inside the gridded setting. The method assigns potential values 
to all points, and possible pathways connecting the source and 
target points are found using pre-calculated potentials. 

 
Fig. 2. Suggested technique for optimal path planning in continuous 

environments. 

Fig. 3 depicts the chosen PBs connected by a blue dashed 
line, representing the potential route from the beginning point to 
the destination. The coordinates of the potential starting points 
associated with each conceivable initial route are encoded as 
solutions. Fig. 4 illustrates the solution layout related to the 
beginning route seen in Fig. 3. 
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Fig. 3. Path planning process with potential bases. 

 
Fig. 4. Solution layout for identified route. 

The suggested approach assigns the node representing the 
target location the highest potential. The potential lowers 
steadily as one travels to nearby nodes. The neighboring points 
for each point reside at a distance d√2 from the point, where d 
refers to the number of discretizations. This technique creates a 
diagram displaying the possibilities of the area. This potential 
map may identify all possible routes between the starting point 
and the goal. Fig. 5 shows the potential map for the setting 
shown in Fig. 3. The potential map of the proposed approach is 
constructed using three lists of nodes: CLOSED, TEMP, and 
OPEN. 

 CLOSED list: It is composed of potential nodes and their 
adjacent nodes. 

 TEMP list: This list includes points given a potential, 
with the condition that their neighboring points are not 
assigned potentials. 

 OPEN list: Points that have not been assigned a potential 
are included in this list. 

The algorithm initializes by inserting all nodes into the 
OPEN list. The process then involves the following steps: 

 Step 1: The target point is eliminated from the OPEN list, 
assigned the highest potential (e0), and inserted into the 
TEMP list. 

 Step 2: Obstacle points are eliminated from the OPEN 
list, assigned a potential of -e0, and added to the 
CLOSED list. 

 Step 3: Assuming the point of departure, nodes adjacent 
to it are assigned a potential of e1 (e1 = e0 - a, where 'a' 
is the decrement step), inserted into the TEMP list, and 
excluded from the OPEN list. The target node is deleted 
from the TEMP list and added to the CLOSED list. 

 Step 4: In each subsequent round (ith iteration), points in 
the TEMP list have their neighboring points given 
potential values of ei (ei = ei-1 - a), are moved to the 
CLOSED list, and points accepting potential values 
move from the OPEN list to the TEMP list. 

The repetition of these steps results in a possible 
representation of the area. Feasible initial paths are then 
determined by selecting adjacent nodes with the highest 
potential starting from the start location. This process gradually 
increases the route's potential until it reaches the final point, 
which has the largest potential. The algorithm guarantees the 
finding of possible initial paths, and in particular instances, paths 
may be divided into sub-paths when two nearby points of a 
single point are equal in potential. Fig. 5 illustrates the potential 
map of the environment, and Fig. 6 illustrates three possible 
routes resulting from the suggested algorithm. 

 
Fig. 5. Potential map construction. 

 
Fig. 6. Possible routes generated by the algorithm. 

IV. PROPOSED TECHNIQUE 

The study combines WOA with Lévy flight and DE to 
optimize PB position within a continuously changing context. 
The algorithm's evolution is an iterative process, and the 
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optimization continues until the algorithm reaches its final state. 
In this context, the final state is regarded as arriving at a fixed 
number of iterations. After the specified number of iterations is 
finished, the optimization process terminates and the final 
solution is found. The predetermined number of iterations acts 
as a termination condition for the algorithm's execution. 

The WOA draws inspiration from the foraging behavior of 
whales, particularly the hunting strategies observed in 
humpback whales. This algorithm emulates three distinct 
foraging behaviors, mirroring the actions of humpback whales: 
encircling prey, bubble net assaulting, and randomly hunting 
prey. These behaviors are represented by mathematical models 
in order to accurately reflect the fundamental aspects of whale 
hunting strategies. Humpback whales have the capacity to detect 
prey that is close by and position themselves strategically in the 
group to take advantage of the recognized prey location, which 
is regarded the most advantageous position. While closing in on 
the prey, continuous adjustments are made to their positions. In 
the WOA context, the algorithm perceives the resulting viable 
solutions as 'whales' and designates the present most optimal 
solution or local optimum for encircling prey. The algorithm 
employs a function to represent prey encirclement, as expressed 
in Eq. (1). 

 (1) 

In Eq. (1), X signifies the chosen search whale, ∙ denotes 

element-wise multiplication, �⃗�𝑏𝑒𝑠𝑡(𝑡) refers to the best position 

of a whale in the current iteration t, and |𝐶. �⃗�𝑏𝑒𝑠𝑡(𝑡) − �⃗�(𝑡)| 

indicates the distance between 𝐶. �⃗�𝑏𝑒𝑠𝑡(𝑡)  and �⃗�(𝑡) . The 

coefficient vectors 𝐴  and 𝐶  have varying characteristics, and 
their updates are governed by Eq. (2) and Eq. (3), respectively. 

 (2) 

 (3) 

The vector �⃗� gradually decreases from 2 to 0 following the 
formula max 2 − 2𝑡/𝑡𝑚𝑎𝑥 , where 𝑡𝑚𝑎𝑥  is the maximum 
iteration count. 𝑟  represents a stochastic vector with values 

between 0 and 1, restricting the values of 𝐴 to fall within the 

range of [−�⃗�, �⃗�]. It is crucial to note that the random vectors 𝐴 

and 𝐶 are essential in directing the whale to adjust its location in 
order to reach the ideal solution. Humpback whales utilize 
bubble nets to herd and trap animals near the water's surface as 
part of their normal habit. The mathematical model of the spiral 
bubble net assault method is expressed by Eq. (4). 

 (4) 

The parameter b defines the logarithmic spiral form, with l 
being a randomly chosen value between 0 and 1. In the natural 
behavior of humpback whales, exploration of new target prey 
involves randomly selecting a whale position and swimming 
towards it. The formula employed in the WOA is designed to 
simulate this process for global search. 

 (5) 

Operator selection is controlled by a random switch control 

parameter, p, ranging from [0, 1]. The vector 𝐴 plays a crucial 
role in determining the hunting method of the whale. If we 
assume a 50% probability for the whale to choose the bubble-
net attacking method during the position update for solution 
exploitation, the likelihood of selecting the operator when 
hunting or encircling prey is additionally influenced by the 

adaptive variation of the vector 𝐴. Eq. (6) expresses a formula 
for selecting operators. 

During the exploration stage of the WOA, individuals update 
their positions by sharing information with another individual in 
a limited solution space. The exploration phase of WOA 
incorporates Lévy flight to improve global search capabilities 
and speed up convergence. Lévy flight involves sporadic huge 
steps or extended leaps, which widen the exploration area. The 
position of humpback whales is updated using the step of Lévy 
flight, as described by Eq. (7). 

�⃗�(𝑡 + 1)

=

{
 
 
 

 
 
 �⃗�𝑏𝑒𝑠𝑡(𝑡) = 𝐴. |

𝐶. �⃗�𝑏𝑒𝑠𝑡(𝑡) −

�⃗�(𝑡), 𝑖𝑓 𝑝 < 0.5 𝑎𝑛𝑑|𝐴| < 1
|

�⃗�(𝑡 + 1) = �⃗�𝑏𝑒𝑠𝑡(𝑡) −

𝐴. |𝐶. �⃗�𝑟𝑎𝑛𝑑(𝑡) − �⃗�(𝑡)|, 𝑖𝑓 𝑝 < 0.5 𝑎𝑛𝑑 |𝐴| ≥ 1 

�⃗�𝑏𝑒𝑠𝑡(𝑡) = �⃗�(𝑡). 𝑒
𝑏𝑙 cos(2𝜋𝑙)

+�⃗�𝑏𝑒𝑠𝑡(𝑡), 𝑖𝑓 𝑝 ≥ 0.5

 
(6) 

�⃗�(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) + 𝑎. 𝑠𝑖𝑔𝑛[𝑟𝑎𝑛𝑑 − 1/2]

⊕ 𝐿𝑒𝑣𝑦(𝑠) 
(7) 

The 𝑠𝑖𝑔𝑛[𝑟𝑎𝑛𝑑 − 1/2] term takes values of -1, 0, or 1, the 
⊕ symbol represents entry-wise multiplication, and a denotes 
the step size determined by Eq. (8). 

𝑎 = 𝑎0[𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡) − �⃗�(𝑡)] (8) 

Here, 𝑎0  is set to 0.01, and 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗  measures the position 
vector of a whale chosen at random. Lévy flight follows a Lévy 
distribution for the step length, given by: 

𝐿𝑒𝑣𝑦(𝑠) ∼ |𝑠|−1−𝛽 ,     0 < 𝛽 ≤ 2 (9) 

In this expression, 𝛽 is set to 1.5, and 𝜇 and 𝜈 have a normal 
distribution. The complete calculation of s involves Mantega's 
algorithm. 

𝑠 =
𝜇

|𝜈|
1
𝛽⁄
,   𝜇 ∼ 𝑁(0, 𝜎𝜇

2),   𝜈 ∼ 𝑁(0, 𝜎𝜈
2) (10) 

𝜎𝜇 = {
Γ(1 + 𝛽). sin (𝜋𝛽/2)

𝛽. Γ [
1 + 𝛽
2

] . 2(𝛽−1)/2
}

1
𝛽⁄

      , 𝜎𝜈 = 1 (11) 
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Finally, Eq. (6) can be rewritten as: 

�⃗�(𝑡 + 1) = 𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡)

+ 𝑠𝑖𝑔𝑛 [𝑟𝑎𝑛𝑑

−
1

2
] . 𝑎0

𝜇

|𝜈|
1
𝛽⁄
. [𝑋𝑟𝑎𝑛𝑑⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ ⃗⃗ (𝑡)

− �⃗�(𝑡)] 

(12) 

In the final phase of the WOA, individual positions are 
updated through a greedy selection operation limited to the best 
solution. This limitation makes it vulnerable to getting trapped 
in local optima. To solve this problem, DE is incorporated into 
WOA. A set of external archives is created consisting of 
individual populations and historically optimal populations. In 
each iteration, new solutions are modified with DE search 
strategies in accordance with the external archive set. This 
integration improves the exchange of information between 
individual solutions and improves WOA's local search and 
exploitation capabilities. 

DE involves an external archive set, NP D-dimensional 

individuals represented as 𝑥𝑖,𝐺 = {𝑥𝑖,𝐺
1 , … , 𝑥𝑖,𝐺

𝐷 } , where 𝑖 =
1, . . . , 𝑁𝑃, and G is the number of generations. Each dimension 

of the individual is constrained by 𝑥𝑚𝑖𝑛 = {𝑥𝑚𝑖𝑛
1 , … , 𝑥𝑚𝑖𝑛

𝐷 } and 
𝑥𝑚𝑎𝑥 = {𝑥𝑚𝑎𝑥

1 , … , 𝑥𝑚𝑎𝑥
𝐷 } . The initial population is usually 

randomly generated in the feasible region. 

The mutation operator generates mutant vectors 𝜈𝑖,𝐺, where 

DE/rand/1 is a commonly used operator. The generated 𝜈𝑖,𝐺 can 

be expressed as 

𝜈𝑖,𝐺 = 𝑥𝑟1,𝐺 + 𝐹 ∗ (𝑥𝑟2,𝐺 − 𝑋𝑟3,𝐺), 𝑟1 ≠ 𝑟2 ≠ 𝑟3

≠ 𝑖 
(13) 

Here, 𝑥𝑟1,𝐺  , 𝑥𝑟2,𝐺 , and 𝑥𝑟3,𝐺  are chosen from the current 

population, and F is the mutation control parameter that scales 
the difference vector. Different mutation strategies can be 
employed, with DE/rand/1 being one of the variants. 

DE/rand/1: 𝜈𝑖,𝐺 = 𝑋𝑟1,𝐺 + 𝐹(𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺) 

DE/best/1: 𝜈𝑖,𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹(𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺) 

DE/current/1: 𝜈𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹(𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺) 

DE/current-to-best/1: 𝜈𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹(𝑋𝑏𝑒𝑠𝑡,𝐺 −

𝑋𝑖,𝐺) + 𝐹(𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) 

DE/rand/2: 𝜈𝑖,𝐺 = 𝑋𝑟1,𝐺 + 𝐹(𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺) +

𝐹(𝑋𝑟4,𝐺 − 𝑋𝑟5,𝐺) 

DE/best/2: 𝜈𝑖,𝐺 = 𝑋𝑏𝑒𝑠𝑡,𝐺 + 𝐹(𝑋𝑟1,𝐺 − 𝑋𝑟2,𝐺) +

𝐹(𝑋𝑟3,𝐺 − 𝑋𝑟4,𝐺) 

 DE/current-to-rand/1: 𝜈𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹(𝑋𝑟1,𝐺 −

𝑋𝑖,𝐺) + 𝐹(𝑋𝑟2,𝐺 − 𝑋𝑟3,𝐺) 

(14) 

DE/current-to-pbest/1: 𝜈𝑖,𝐺 = 𝑋𝑖,𝐺 + 𝐹(𝑋𝑏𝑒𝑠𝑡,𝐺
𝑝

−

𝑋𝑖,𝐺) + 𝐹(𝑋𝑟1,𝐺 − �̃�𝑟2,𝐺) 

𝑋𝑏𝑒𝑠𝑡,𝐺
𝑝

 refers to the individual with the optimal fitness 

function value at the Gth generation. The binomial crossover 
operator, commonly employed, can be chosen to generate the 
trail vector 𝑢𝑖,𝐺  between 𝑥𝑖,𝐺  and 𝑣𝑖,𝐺 , as expressed by the 

formula below (see Eq. (15)). randj is a randomly generated 
number uniformly distributed within the range [0, 1]. CRi ∈ (0, 
1) serves as the crossover control parameter, and nj is a randomly 
generated integer within the range [1, D].  

𝑢𝑖,𝐺
𝑗
= {

𝜈𝑖,𝐺
𝑗
,   𝑖𝑓 𝑟𝑎𝑛𝑑𝑗 ≤ 𝐶𝑅𝑖  𝑜𝑟 𝑗 = 𝑛𝑗      

𝑖 = 1, 2, … , 𝑁𝑃;    𝑗 = 1, 2, … , 𝐷

𝑥𝑖,𝐺
𝑗
  𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (15) 

Subsequently, a superior individual between the trail vector 
ui,G and target vector xi,G will be chosen. The superior individual 
will persist into the next generation based on a comparison of 
the fitness values, employing greedy selection as outlined in Eq. 
(16). The fitness function values of the target vector xi,G and trail 
vector ui,G are denoted by f(xi, G) and f(ui, G), respectively. 

𝑋𝑖,𝐺+1 = {
𝑢𝑖,𝐺+1,   𝑖𝑓 𝑓(𝑢𝑖,𝐺)≤𝑓(𝑋𝑖,𝐺)
𝑋𝑖,𝐺 ,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (16) 

The "DE/rand/1" method tends to enhance exploration but 
with sluggish convergence speeds. The "DE/best/1" method 
typically exhibits rapid convergence but lacks exploitation 
capabilities and is prone to getting trapped near local optimum. 
"DE/current-to-rand/1" offers more diverse populations and 
global search capabilities, but comes with certain drawbacks like 
perturbation and blindness. Conversely, "DE/current-to-
pbest/1" excels in search stability and exploitation ability. 

In the DE algorithm, we opt for the "DE/current-to-pbest/1", 
an archive-based hybrid memory evolutionary operator. 
Commencing the search for the existing individual and 
employing multiple local optimizations to guide it results in 
better individual diversity, avoiding premature convergence to 
local optima. WOA deep exploitation becomes more stable as a 
result. This study fine-tunes variables F and CR, incorporating 
"DE/current-to-pbest/1" to aid WOA in navigating local areas, 
capturing prey, and improving overall stability. The WOA-
DELF integrates DE and Lévy flight into the fundamental 
WOA. 

V. EXPERIMENTAL RESULTS 

The test function is an important indicator in measuring the 
performance of the algorithm to find the best solution. The 
smaller the value is under the same conditions, the better the 
searching and developing ability. There are eight test functions 
used in the experiment to verify the efficiency of the algorithm. 
The functions can be categorized into two distinct groups: 
unimodal and multi-modal, as illustrated in Table II. 

The unimodal functions (f1-f5) are used to investigate 
algorithm exploitation capabilities, since they have only a single 
global minimum without any local minimum. On the other hand, 
multi-modal functions (f6-f8) are employed to analyze the 
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ability of the algorithm to search for different local minima and 
to avoid all local minima. 

TABLE II.  NUMERICAL FUNCTIONS 

Functions Ranges Fmin 

𝑓1(𝑥) =∑ [100(𝑥𝑖+1 − 𝑥𝑖
2)2

𝑛−1

𝑖=1

+ (𝑥𝑙 − 1)
2] 

[-30,30] 0 

𝑓2(𝑥) = max {|𝑥𝑖|, 1 ≤ 𝑖 ≤ 𝑛} [-100,100] 0 

𝑓3(𝑥) =∑ (∑ 𝑥𝑗
𝑖

𝑗=1
)2

𝑛

𝑖=1
 [-100,100] 0 

𝑓4(𝑥) =∑ |𝑥𝑖| +∏ |𝑥𝑖|
𝑛

𝑖=1

𝑛

𝑖=1
 [-10,10] 0 

𝑓5(𝑥) =∑ 𝑥𝑖
2

𝑛

𝑖=1
 [-100,100] 0 

𝑓6(𝑥)

= −20 exp(−0.2√
1

𝑛
∑ 𝑥𝑖

2
𝑛

𝑖=1
)

− 𝑒𝑥𝑝 (
1

𝑛
∑ cos(2𝜋𝑥𝑖)

𝑛

𝑖=1
) + 20 + 𝑐 

[-32,32] 0 

𝑓7(𝑥) =∑ [𝑥𝑖
2 − 10 cos(2𝜋𝑥𝑖) + 10]

𝑛

𝑖=1
 [-5.12,5.12] 0 

𝑓8(𝑥) =∑ 𝑥𝑖sin (√|𝑥𝑖|)
𝑛

𝑖=1
 [-500,500] 0 

In the comparison, WOA-DELF is evaluated alongside four 
other algorithm types: WOA, ACO, genetic, and HHO 
algorithms. WOA maximizes the efficacy of a robot's trajectory 
by mimicking the social behavior of humpback whales. As it 

keeps on improving the candidate solutions, WOA 
systematically explores the solution space. Ultimately, it 
improves the ease of robot mobility through specific types of 
terrains and increases path length. Inspired by the foraging 
behavior of ants, the ACO algorithm is well-suited for robot path 
planning. Artificial ants represent potential paths, depositing 
pheromones on explored routes. With accumulated time, the 
paths with more pheromones guide the robot to the efficient 
navigation of environment. In the field of robotics, Genetic 
Algorithms are used for robot path planning. Initially a set of 
potential paths is generated and refined step by step through 
crossover and mutation, thereby modelling the survival of the 
fittest. As the algorithm iterates, the robot adapts its trajectory to 
the immediate surroundings. HHO, inspired by harmony in 
music, is employed to improve the path of the robot by adjusting 
the variables within the solution space. The harmony seeking 
algorithm aims to maintain a harmony between exploration and 
exploitation enabling a robot to find out the paths efficiently 
without any obstacles. 

This experiment ran 500 iterations with 30 search agents for 
8 test functions, each with 30 dimensions. As depicted in Table 
III, for the unimodal test functions (F1-F5), the WOA-DELF 
algorithm performs better than other algorithms, namely WOA 
and DELF, which proves that the search space is well utilized. 
In multi-modal functions (F6-F8), the functions which are 
difficult to obtain because of multiple and local optima presence, 
the WOA-DELF algorithm consistently outperforms other 
algorithms. As shown in Table III and Fig. 7, the proposed 
algorithm has significant advantages over all other alternatives. 
The results are the same when performing standard deviation 
tests. 

  
(a)        (b) 

Fig. 7. Curve chart based on test functions: (a) f1 and (b) f2.. 

TABLE III.  PERFORMANCE COMPARISON OF ALGORITHMS ON TEST FUNCTIONS 

Function Fitness ACO Genetic HHO WOA WOA-DELF 

f1 

Max 8.31×10+01 2.05×10+01 7.95×10+01 8.19×10+01 24.81 

Min 1.17×10+01 1.28×10+03 1.16×10+01 1.18×10+01 5.12×10-16 

Average 3.22×10+01 2.15×10+02 3.18×10+01 3.21×10+01 0.51 

Std 1.94×10+01 2.92×10+02 1.92×10+01 1.95×10+01 2.58 

f2 Max 4.96×10+00 1.82×10+01 4.91×10+00 4.94×10+00 8.21×10-245 
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 Min 8.79×10-01 3.53×10+00 8.71×10-01 8.75×10-01 0 

 Average 2.07×10+00 9.62×10+00 2.01×10+00 2.04×10+00 8.24×10-247 

 Std 8.77×10-01 3.24×10+00 8.71×10-01 8.76×10-01 0 

f3 Max 3.69×10+02 2.89×10+03 3.66×10+02 3.68×10+02 0 

 Min 2.53×10+01 1.98×10+02 2.51×10+01 2.54×10+01 0 

 Average 1.27×10+02 1.31×10+03 1.26×10+02 1.27×10+02 0 

 Std 8.18×10+01 7.25×10+02 8.15×10+01 8.17×10+01 0 

f4 Max 8.68×10-03 3.19×10+00 4.97×10+01 8.54×10-05 6.67×10-28 

 Min 9.71×10-05 1.08×10-01 2.65×10+01 2.92×10-29 0 

 Average 1.51×10-03 1.41×10+00 3.41×10+01 3.77×10-06 6.67×10-27 

 Std 1.98×10-03 9.47×10-01 5.82×10+00 4.76×10-06 0 

f5 Max 4.11×10-05 6.74×10-07 1.18×10+04 9.86×10-51 0 

 Min 7.42×10-08 1.62×10-07 3.27×10+03 8.66×10-07 0 

 Average 2.31×10-06 1.34×10-07 6.33×10+03 8.72×10-11 0 

 Std 7.28×10-06 1.58×10-07 1.81×10+03 2.73×10-09 0 

f6 Max 2.24×10+00 3.54×10+00 1.18×10+01 2.51×10-05 8.82×10+16 

 Min 3.71×10-05 1.33×10+00 8.32×10+00 8.92×10-15 8.82×10+16 

 Average 1.12×10+00 2.11×10+00 1.13×10+01 7.41×10-08 8.82×10+16 

 Std 6.58×10-01 5.12×10-01 7.75×10-01 1.12×10-06 0 

f7 Max 7.67×10+01 7.98×10+01 1.91×10+02 3.42×10-06 0 

 Min 2.39×10+01 2.33×10+01 1.27×10+02 0.00×10+00 0 

 Average 3.95×10+01 4.78×10+01 1.61×10+02 3.42×10-09 0 

 Std 1.34×10+01 1.49×10+01 1.57×10+01 1.02×10-07 0 

f8 Max -3.44×10+03 -4.81×10+03 -1.82×10+03 -4.88×10+03 -7.13×10+03 

 Min -6.35×10+03 -7.19×10+03 -3.21×10+03 -1.26×10+04 -8.69×10+03 

 Average -5.31×10+03 -5.91×10+03 -2.19×10+03 -7.41×10+03 -8.43×10+03 

 Std 6.38×10+02 6.21×10+02 3.21×10+02 9.21×10+02 386.18 
 

VI. CONCLUSION 

In this paper, we proposed an enhanced WOA by 
incorporating differential evolution and Lévy flight for robot 
path planning. Traditional WOA has a slow convergence, a low 
efficiency, and is easily trapped into local optima. Our improved 
WOA simultaneously has the ability to overcome these 
problems in classical WOA, which can effectively enhance the 
performance of WOA in robot path planning. Lévy Flight is used 
in the hybridization of WOA to maximize exploration 
throughout the evolutionary process, while DE is responsible for 
the exploitation that allows the algorithm to explore complex 
environments without being trapped in a local optimum. The 
simulation outcomes, performed over several unimodal and 
multi-modal benchmark test functions, revealed the 
effectiveness of the WOA-DELF algorithm compared to 
competing benchmarks, like the WOA, ACO, genetic, and HHO 
algorithms. WOA-DELF was also able to exploit the search 
space effectively on unimodal functions, as it delivered better 
planning efficiency and better route quality. In addition, WOA-
DELF outperformed the other algorithms equally well on 
multimodal functions. This aspect further suggests that the 
exploration of WOA-DELF is desirable. The proposed 
algorithm's success across all tested scenarios and its favorable 
comparison against existing algorithms confirm its potential as 
an effective tool for robot path planning. The enhanced 
performance of the proposed algorithm in the experiments 
requires it to further optimize, test scalability, and deploy on real 

world scenarios for confirming its effectiveness in practical 
robotic navigation. 
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