
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

514 | P a g e

www.ijacsa.thesai.org

Enhancing SDN Anomaly Detection: A Hybrid Deep

Learning Model with SCA-TSO Optimization

Ahmed Mohanad Jaber ALHILO, Hakan Koyuncu

Department of Information Technologies, Altinbas University, Istanbul, Turkiye1

Department of Electrical and Computer Engineering, Altinbas University, Istanbul, Turkey2

Abstract—The paper explores the evolving landscape of

network security, in Software Defined Networking (SDN)

highlighting the challenges faced by security measures as networks

transition to software-based control. SDN revolutionizes Internet

technology by simplifying network management and boosting

capabilities through the OpenFlow protocol. It also brings forth

security vulnerabilities. To address this we present a hybrid

Intrusion Detection System (IDS) tailored for SDN environments

leveraging a state of the art dataset optimized for SDN security

analysis along with machine learning and deep learning

approaches. This comprehensive research incorporates data

preprocessing, feature engineering and advanced model

development techniques to combat the intricacies of cyber threats

in SDN settings. Our approach merges feature from the sine cosine

algorithm (SCA) and tuna swarm optimization (TSO) to optimize

the fusion of Long Short Term Memory Networks (LSTM) and

Convolutional Neural Networks (CNN). By capturing both spatial

aspects of network traffic dynamics our model excels at detecting

and categorizing cyber threats, including zero-day attacks.

Thorough evaluation includes analysis using confusion matrices

ROC curves and classification reports to assess the model’s ability

to differentiate between attack types and normal network

behavior. Our research indicates that improving network security

using software defined methods can be achieved by implementing

learning and machine learning strategies paving the way, for more

reliable and effective network administration solutions.

Keywords—SDN; Intrusion Detection System; deep learning;

CNN; LSTM; SCA; TSO

I. INTRODUCTION

In recent decades, online communication and networking
have undergone significant changes. The internet has become a
part of our lives supporting various aspects of our routines [1].
We face difficulties in managing and securing networks as it
evolves, but we also enjoy its benefits. The demands of
applications and cybersecurity threats have been growing at a
faster rate than traditional networking technologies like switches
and routers can handle [2]. One approach is software-defined
networking, or SDN, which separates data flow and network
management to meet the needs of individual applications [3].
While software-defined networking (SDN) may not streamline
network administration, it does present chances to enhance
efficiency and security [4].

However, SDN is not without its hazards and vulnerabilities,
even with these improvements. Despite SDN's controls and
administration benefits, its centralized design leaves it open to
assaults that take advantage of its vulnerabilities. Additionally,

security protocols, in SDN based networks must be flexible
enough to adapt to emerging threats and changes [5].

This study aims to address these concerns by proposing a
method to strengthen network security within SDN
environments. The Intrusion Detection System (IDS) we suggest
utilizes learning techniques combined with machine learning
methods to establish a security framework for identifying and
mitigating cyber threats, in SDN settings.

This research represents progress in network security
concerning software-defined networking (SDN). The key
contributions are as follows:

 Innovative Hybrid Intrusion Detection System (IDS):
We present an innovative Intrusion Detection System
(IDS) specifically designed for SDN environments. This
IDS integrates the sophisticated capabilities of machine
learning and deep learning to accurately identify a range
of cyber threats.

 Combining Machine Learning and Deep Learning
Approaches: Our study shows how combining machine
learning algorithms with learning structures can provide
a method, for examining network traffic and identifying
irregularities.

 Optimization Strategies for Enhanced Performance: The
document explains the implementation of a SCA TSO
system that combines the sine cosine algorithm (SCA)
with tuna swarm optimization (TSO) presenting a
strategy, for enhancing the neural network models
utilized in intrusion detection.

The paper’s remaining sections are outlined as follows.

Section II delves into literature and provides background
information. The suggested methodology is detailed in Section
III, which covers the structure specifics, dataset pre-processing
techniques, and a summary of the deep learning algorithms
integrated into the framework. Methodology is given in Section
IV. Section V showcases the experiment results. Finally, Section
VI concludes the paper.

II. BACKGROUNDS

A. Convolutional Neural Networks (CNN)

Convolutional neural networks (CNNs) are a particular kind
of artificial neural network that are specifically designed for
handling data that has a grid-like structure, which includes forms
such as audio, video, and image data. CNN is part of the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

515 | P a g e

www.ijacsa.thesai.org

supervised learning approach and is a highly utilized algorithm
in computer vision known for its robustness. The weight sharing
concept is introduced to mitigate the issue of parameter
explosion and expedite the training process. In the CNN
architecture, As seen in Fig. 1, the three main components are
the convolutional layer, pooling layer, and fully connected layer
[13]. The output of the previous layer is passed through a filter
of a specific size that the convolutional layer slides across to
carry out a linear operation. The prevalent activation function in
CNNs is the non-linear ReLU function, this widely used
technique raises the degree of non-linearity in a feature map by
setting all negative values to zero. The utilization of the pooling
layer serves to decrease feature dimensions, thereby aiding in
the reduction of computational costs. Classification is carried
out using the last fully connected layer [14].

Fig. 1. Standard CNN architecture.

B. Long Short Term Memory (LSTM)

LSTM refers to a specific kind of recurrent neural network
(RNN) architecture created with the specific goal of mitigating
the problem of vanishing gradients and enabling the modeling
of long-range dependencies in sequential data. Its primary
objective is to overcome the shortcomings of traditional RNNs
in terms of capturing and retaining important information over
extended sequences. The problem of vanishing gradients is a
significant challenge in standard RNN training. Eq. (1) shows
how gradients are used to modify a neural network's weights. On
the other hand, a gradient value that drastically decreases as it
propagates backward in time is not very helpful in the learning
process.

𝑁𝑒𝑤 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑊𝑒𝑖𝑔ℎ𝑡 − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

When working with data, over extended time intervals
LSTM [15] is a choice as it addresses the issue of vanishing
gradients. LSTM utilizes internal loop theory to retain
information while filtering out details. In Fig. 2 you can see the
three gates of an LSTM; the forget gate, input gate and output
gate which control information flow within each cell.

Fig. 2. A Typical convolutional neural network [3].

C. Overfitting and Regularization

Overfitting is a challenge in neural networks and machine
learning. It occurs when a model excels on training data but

struggles to generalize to validation data. This problem is more
prevalent with models and datasets. To counter overfitting
experts have devised regularization methods [13]. These
techniques aim to limit the model’s capacity to prevent it from
tailoring itself to the training data. One popular form of
regularization is dropout, where random neurons are turned off
during each training cycle to introduce randomness and
discourage reliance, on features or neurons. Another effective
method is L2 regularization.

This method involves adding a penalty term to the loss
function based on the models L2 weight norm. The penalty
incentivizes the model to keep its weight values low reducing
the risk of overfitting.

D. Metaheuristic Algorithms

Metaheuristic algorithms are a type of optimization methods
that don't rely on problem details. Instead, they use a problem-
solving approach to a "meta strategy” to guide the search for the
best solutions [16]. One of the advantages of algorithms is their
ability to efficiently explore large solution spaces that
exhaustive search techniques may not fully cover. Various
natural or abstract phenomena like Particle Swarm Optimization
(PSO) Genetic Algorithms and others form the basis for types of
algorithms.

1) Sine Cosine Algorithm (SCA): In the evolving realm of

optimization algorithms, the Sine Cosine Algorithm (SCA) has

emerged as an adaptable optimization method. The

mathematical characteristics of sine and cosine functions have

inspired the creation of SCA [17]. SCA operates with candidate

solutions simultaneously since it’s a population-based

optimization technique. This population evolves over iterations

to enhance solution quality. By balancing exploration and

exploitation SCA effectively navigates through problem

spaces, in search of solutions. Exploration involves uncovering

solution areas while exploitation focuses on refining existing

solutions.

One key feature of SCA is its method of updating solutions
by incorporating the sine and cosine functions. By integrating
these functions randomness and complexity are introduced into
the optimization procedure allowing SCA to avoid getting stuck,
in points and instead venture into various areas, within the
solution space. Following this a series of expressions dictates
how positions are updated in the SCA algorithm [18]. For both
the exploration and exploitation stages, it is imperative to
consult Eq. (2) and Eq. (3).

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1 ∗ 𝑠𝑖𝑛(𝑟2) ∗ |𝑟3 𝑃𝑖
𝑡 − 𝑋𝑖

𝑡 | (2)

𝑋𝑖
𝑡+1 = 𝑋𝑖

𝑡 + 𝑟1 ∗ 𝑐𝑜𝑠(𝑟2) ∗ |𝑟3 𝑃𝑖
𝑡 − 𝑋𝑖𝑖

𝑡 | (3)

Within this context, 𝑋𝑖
𝑡 signifies the positions of the existing

solution in the 𝑖𝑡ℎ dimension during the 𝑖𝑡ℎ iteration, with r1, r2,
and r3 denoting three random numbers. "Place point" indicates
the position in the 𝑖𝑡ℎ dimension, and ii denotes the absolute
value. The application of these two equations is interrelated in
the following manner:

𝑋𝑖
𝑡+1 = {

𝑋𝑖
𝑡 + 𝑟1 ∗ sin(𝑟2) ∗ |𝑟3 𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|, 𝑟4 < 0.5

𝑋𝑖
𝑡 + 𝑟1 ∗ cos(𝑟2) ∗ |𝑟3 𝑃𝑖

𝑡 − 𝑋𝑖𝑖
𝑡 |, 𝑟4 ≥ 0.5



(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

516 | P a g e

www.ijacsa.thesai.org

where, r4 is a number generated at random from [0,1].

In Fig. 3, Algorithm 1 presents the original pseudocode of
the Sine Cosine Algorithm (SCA) [4]. Starting with an array of
randomly generated initial solutions, the algorithm proceeds to
retain the optimal solutions identified during the process,
earmarking these as the target point for subsequent iterations. It
then adjusts the other solutions in relation to this benchmark. To
ensure thorough exploration of the search space, during each
iteration of the algorithm, the ranges of the sine and cosine
functions are updated. The optimization routine of the SCA
concludes once it hits the pre-established limit of iterations.
However other ways to end the process could be used, like
reaching a number of evaluations or attaining a level of accuracy
for the best solution found.

Fig. 3. Pseudo-code of (SCA).

2) Tuna Swarm Optimization (TSO): The Tuna Swarm

Optimization (TSO) algorithm is a method that draws

inspiration from the foraging behaviors of tuna populations

[19]. It has a structure and minimal requirements for

parameters. TSO works by dividing solutions into groups called

swarms, each exploring different areas within the search space.

These swarms communicate to share information about the

quality of solutions they find guiding them towards the outcome

[19]. The algorithm utilizes two hunting strategies. Foraging for

broad searches and parabolic foraging for detailed searches

adapting its tactics based on feedback from the environment. To

start optimization TSO generates populations randomly. Spread

them evenly across the search space, similar, to other swarm-

based techniques.

𝑋𝑖
𝑖𝑛𝑡 = 𝑟𝑎𝑛𝑑. (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏,  

In this context, 𝑋𝑖
𝑖𝑛𝑡 represents the i-th tuna, ub and lb

indicate the top and bottom limits of the tuna's exploration range,
and rand is a uniformly distributed random variable between 0

and 1. Specifically, each member, Xi
int within the tuna swarm

symbolizes a potential solution for TSO.

The feeding habits of tuna serve as the model for the
algorithm's mathematical representation, which primarily prey
on herring and eel. These prey fish use their swiftness to
frequently change direction, evading predators. Tuna, less agile,
compensate through cooperative hunting, aligning their
movements and forming a parabolic shape to encircle their prey
[5]. Additionally, the tuna utilizes a spiral foraging method.
With an equal probability of adopting either strategy, the
algorithm provides a detailed mathematical formula for the
tuna's parabolic hunting behavior.

𝑋𝑖
𝑡+1 =

{
𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑟𝑎𝑛𝑑 . (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡) + 𝑇𝐹. 𝑝2. (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡), 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝑇𝐹 . 𝑝2 . 𝑋𝑖
𝑡, 𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5



𝑃 = (1 −
𝑡

𝑡𝑚𝑎𝑥
)
(𝑡 𝑡𝑚𝑎𝑥⁄)



In this context, t denotes the current iteration in progress,
being the t th iteration, as the predefined maximum number of
iterations is represented by tmax . The value TF is assigned at
random and can have two possible values: 1 or -1.

Tuna also uses a feeding strategy called spiral foraging in
addition to the parabolic approach. This strategy is employed
when a minority of the tuna, capable of discerning the correct
path, lead the group towards the prey, with the rest of the swarm
following suit. This results in the formation of a spiral pattern
aimed at capturing the prey. During this spiral foraging,
information is shared with and among the leading individuals or
their immediate neighbors in the swarm. In cases where the
leading tuna does not effectively direct the swarm towards the
prey, a random individual from the swarm is chosen to follow
instead. This spiral foraging strategy's mathematical model is
defined in accordingly [20].

𝑋𝑖
𝑡+1 =

{

𝑎1 . (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝑡 . |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡| + 𝑎2 . 𝑋𝑖
𝑡),

𝑖 = 1
𝑎1 . (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝑡 . |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡| + 𝑎2 . 𝑋𝑖−1
𝑡),

𝑖 = 2, 3, … , 𝑁𝑃

𝑎1 . (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑡 . |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡| + 𝑎2 . 𝑋𝑖

𝑡),
𝑖 = 1

𝑎1 . (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑡 . |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡| + 𝑎2 . 𝑋𝑖−1

𝑡) ,
𝑖 = 2, 3, … , 𝑁𝑃

 

In this model, Xi
t+1 represents the position of the i-th tuna in

the iteration t+1. The best-performing individual at the current

moment is denoted by Xbest
t . Meanwhile, Xrand

t serves as the
randomly chosen reference point within the swarm. The
parameter a1 is a trend weight coefficient that controls the tuna's
movement towards either the optimal individual or a randomly
chosen neighboring individual. The coefficient a2influences the
movement of the tuna toward the individual directly ahead of it.
The variable "t" is linked to the distance factor affecting how
movement dynamics work.

𝑎1 = 𝑎 + (1 − 𝑎) .
𝑡

𝑡𝑚𝑎𝑥
  

𝑎2 = (1 − 𝑎) − (1 − 𝑎) .
𝑡

𝑡𝑚𝑎𝑥


𝑡 = 𝑒𝑏𝑙 . 𝑐𝑜𝑠(2𝜋𝑏) 

𝐼 = 𝑒3 cos(((𝑡𝑚𝑎𝑥+1/𝑡)−1)𝜋) 

In this situation 'a' symbolizes a figure indicating how close
tuna are, to one another while 'b' represents a value ranging from
0, to 1. The TSOs pseudocode is outlined in Algorithm 2 as
mentioned in Fig. 4 [21].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

517 | P a g e

www.ijacsa.thesai.org

Fig. 4. Pseudo-code of (TSO).

III. RELATED WORK

Lately, researchers have been focusing on Intrusion
Detection Systems (IDSs), particularly leveraging Machine
Learning (ML) techniques to identify activities [6] [7].
Commonly used algorithms like Support Vector Machine
(SVM) Decision Trees (DTs) and Logistic Regression (LR) are
employed to detect network-based attacks. However, due to
their reliance on predefined features, these methods are
categorized as "learning," limiting their adaptability across
attack types. They often trigger alarms and require a profound
understanding of the problem domain. Moreover, these
approaches prove effective when handling normal data.

Although machine learning techniques perform well with
labeled data, they face difficulties when dealing with network
traffic datasets. Deep learning, a subset of machine learning, has
proven effective in research areas like image processing, speech
recognition and natural language processing. One of the
advantages of learning is its ability to operate without the need
for a separate feature extraction step. It can autonomously
uncover hidden patterns from data without relying on expert
knowledge. Recently deep learning methods have been applied
in Intrusion Detection Systems (IDSs). The key strength of
learning lies in its capability to automatically identify structures
within data and extract features without manual intervention.

In their study [8] the researchers introduced an intrusion
detection system (IDS) based on IP traceability within a
Software Defined Networking (SDN) framework. This system
utilizes Support Vector Machines (SVMs) and selective logging.
Was tested on the NSL KDD dataset. The results showed an
accuracy rate of 87.74%, with selected subsets and 95.98%
accuracy when using the dataset.

The researchers chose this method because of the centralized
detection analysis framework provided by SDN and the accurate
detection capability of SVM logging all while minimizing the
resources needed. Moreover the selective logging approach
significantly decreased memory usage by, around 90 95%.
Additionally being able to trace IP addresses allowed for
identification of origins during an attack.

In their study [9] researchers presented a technique utilizing
XGBoost, Decision Tree, Random Forest and other advanced as

traditional tree-based machine learning algorithms. This
technique was used to monitor traffic in the SDN controller to
detect activities as part of an Intrusion Detection System (IDS).
They. They evaluated their approach using the NSL KDD
dataset, a recognized benchmark in various top IDS strategies.
The dataset underwent thorough preprocessing to enhance data
utilization. The strategy for conducting a class classification task
in NSL KDD focused on only five of 41 available features. This

task involved identifying an attack type—DDoS, PROBE, R2L

or U2R—. Achieved an accuracy rate of 95.95%.

Researchers in [10] utilized learning techniques in their
study to handle imbalanced datasets and minority attacks. They
integrated an autoencoder with an LSTM in a learning setting,
training the model on normal data samples. However, during
testing the model struggled to reconstruct inputs containing a
mix of malicious traffic, especially with recent datasets
showcasing sophisticated attacks resembling normal patterns.
The researchers enhanced the LSTM Autoencoder by
incorporating the class Support Vector Machine (OC SVM) to
overcome this challenge. By processing input data through the
LSTM Autoencoder to extract features, they used these features
to train the OC SVM in identifying anomalies. Experimental
findings indicated that combining DL methods with the OC
SVM algorithm yielded better performance than using OC SVM
for detection purposes.

A Deep Neural Network (DNN) was employed by Tang an
d colleagues [11] to identify anomalies in flow-based data
within SDN networks. They streamlined the intrusion detection
procedure by utilizing just six fundamental features from the
NSL-KDD dataset. There were three hidden layers in their DNN
model, each with twelve, six, and three neurons. Initially, the
model's overall accuracy of 75% was less than what would be
required for widespread practical use. However, they enhanced
the model's performance by integrating a Gated Recurrent Unit
(GRU), resulting in a significantly improved detection rate of
89% while still working with the same NSL-KDD dataset.

In their work, Boukria and colleagues [12] presented an
anomaly-based approach for detecting a variety of attacks in
SDN networks. They developed a Deep Neural Network
comprising three concealed layers, with 128, 64, and 32 neurons
in each layer, respectively. During testing with the CICIDS2017
dataset, the model outperformed other sophisticated solutions,
obtaining an overall accuracy of 99.6%.

Nonetheless, the earlier deep learning (DL) methods demand
a substantial quantity of training parameters due to the full
connectivity between adjacent layers. The training process may
slow down, and the detection model's computational costs may
increase when a large number of parameters are used.
Consequently, this introduces additional computational burden
in an SDN environment.

IV. METHODOLOGY

In this part of the paper, we delve into an examination of the
suggested method, for detecting intrusions. This covers an
investigation of the system structure preprocessing techniques
the data set used, and the deep learning models implemented.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

518 | P a g e

www.ijacsa.thesai.org

A. Dataset

Our research involves utilizing a dataset designed
specifically for studying network traffic patterns and exploring
cybersecurity concerns. This dataset is organized in CSV
format. Includes an array of network traffic characteristics
making it well suited for investigating unusual network behavior
and security risks. One notable aspect of this dataset setting it
apart in the realm of network traffic analysis and cybersecurity
research is its range of information. Comprising a total of
157,120 entries and 85 attributes this dataset serves as a data
source, for analysis.

The size of the datasets, with than 157,000 records shows
that there is an amount of data available for analysis. Having this
large amount of data is important for training machine learning
models as it allows for the observation and understanding of
network patterns and anomalies. With plenty of examples in the
dataset the models can learn from scenarios improving their
accuracy, in data classification and enabling them to draw
conclusions.

B. Dataset Preparation

In our study the process of extracting and selecting
Characteristics are important when examining network traffic
data. This section describes the process we followed to identify
features from the dataset and select the ones for our machine
learning models.

Initially we reviewed the dataset. Made it ready for analysis
by eliminating columns that were redundant or irrelevant to our
research. This initial processing stage was crucial in
concentrating on attributes that have an impact on the model’s
effectiveness.

We utilized a Random Forest classifier to assist in selecting
features [22]. Random Forest is renowned for its ability to
determine feature importance, making it an ideal choice, for
identifying the features in our dataset. This method is effective
as it considers decision trees and their evaluations of feature
importance.

To identify features, we utilized the `feature_importances_`
attribute of the Random Forest classifier to assess each features
importance. Subsequently we organized these features based on
their decreasing order of importance.

The notable features were selected based on their
significance, aiming to streamline the model and improve
efficiency by concentrating on the features. These highlighted
features are depicted in Fig. 5 along, with their importance.

C. The Proposed Model

To accurately capture the temporal characteristics found in
network traffic data our model utilizes a blend of Convolutional
Neural Network (CNN) and Long Short Term Memory (LSTM)
layers. The design involves a two steps approach, where each
step focuses on extracting features as shown in the
accompanying diagram Fig. 6.

In the CNN model, layers extract features, during which
patterns are identified by analyzing the input data within the
network. ReLU activates layers to preserve features. Maximum
pooling operations then follow the activation process.

Fig. 5. Feature importance.

Fig. 6. The Proposed model.

LSTM layers are important in the subsequent steps, as their
layers work to understand the interconnections between data sets
and identify patterns of data movement within the network.
Overfitting can be eliminated by controlling dropout layers.
Dropout prevents the model from overusing features. To
regulate the models' weights, we must use regularization, for
example, the 0.1 L2 layer, as this contributes to improving the
model's generalizability.

The proposed model, which employs CNN-LSTM with
SCA-TSO optimization, demonstrates superior performance
compared to previous methods. A major reason for this
improvement is the integration of Convolutional Neural
Networks (CNN) and Long Short-Term Memory (LSTM)
networks, which enables the model to effectively capture spatial
and temporal dependencies in the data. CNNs are known for
their ability to extract local features from input data, while
LSTMs excel at handling sequential information and long-term
dependencies.

Moreover, the optimization process is improved by the
incorporation of SCA-TSO (Sine Cosine Algorithm – Tuna
Swarm Optimization), which guarantees more effective model
convergence and prevents local minima. By optimizing
hyperparameters with the help of this technique, the validation
set can be more broadly represented.

Previous approaches' performance was constrained by the
fact that they either only addressed one kind of data dependency
or lacked sophisticated optimization techniques, such SVM,
XGBoost, and simple neural networks. For example, while
SVM and decision trees (found in XGBoost) are strong tools,
they struggle to process sequential data. Despite their capacity
to handle sequences, LSTM autoencoders frequently encounter

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

519 | P a g e

www.ijacsa.thesai.org

optimization difficulties in the absence of sophisticated methods
like SCA-TSO.

The suggested model, on the other hand, overcomes these
drawbacks by combining CNNs and LSTMs with sophisticated
optimization to get a more reliable and accurate result. By using
a comprehensive strategy, it is ensured that the model makes the
most of the advantages of many methodologies, leading to a
considerable improvement in performance across all evaluated
criteria. This approach makes the model a great fit for the
particular task because it increases accuracy while
simultaneously strengthening the model's capacity to generalize
to new data.

D. Model Compilation

We used SCA TSO technology to improve performance,
combining two algorithms (SCA and TSO). The diagram in Fig.
7 shows the basic steps for building the model.

Fig. 7. Flowchart of SCA-TSO.

Before starting the SCA TSO technique, it is necessary to
configure critical parameters, including mixture ratio,
population size, and number of iterations. Optimization
parameters affect training time. By combining elements from
both SCA and TSO approaches the training process consistently
assesses performance within the population. Makes adjustments.
This involves tracking individuals progress, in the group and
refining strategies based on a blend of SCA and TSO principles.
The optimization procedure is guided by a user defined fitness
function, which significantly influences the effectiveness of the
optimization outcomes. In an example provided there's a fitness
function shown for optimizing a networks learning rate. Users
are advised to customize this example with their logic for

defining fitness functions. After training the optimizer the
optimal solution found is used as the learning rate, for compiling
models. The model is then put together using Stochastic
Gradient Descent (SGD) with that learning rate calculated
earlier. This approach of combining SCA TSO aims to boost
model performance by adjusting parameters influenced by both
SCA and TSO algorithms. In Fig. 8 Algorithm 2 outlines an
overview of how SCA TSO works in pseudocode form.

Fig. 8. Pseudo-code of (SCA-TSO).

V. RESULTS

The evaluation of the model’s performance is enhanced in
this section focusing on its application, to categorizing network
traffic. Various metrics, including precision, recall, f1 score,
accuracy, model loss and the operating ROC) curve were
utilized to gauge the model's effectiveness. A confusion matrix
was created to validate the assessment further to compare actual
versus predicted probabilities and facilitate an analysis. The
structure of this confusion matrix is exemplified in Table I for
classification scenarios.

TABLE I. CONFUSION MATRIX COMPOSITION

 Actual Class

 Positive (P) Negative (N)

Predicted

Class

Positive (P) True Positive (TP)
False Positive

(FP)

Negative (N)
False Negative
(FN)

True Negative
(TN)

 True Positive (TP) denotes the precise recognition of
attack traffic as an attack.

 False Positive (FP) indicates the erroneous detection of
normal traffic as an attack.

 True Negative (TN) represents the correct identification
of normal traffic as normal.

 False Negative (FN) denotes the misclassification of
normal traffic as an attack.

Several evaluation metrics, like accuracy, precision and
recall were chosen to evaluate how well the model performs.
These metrics are calculated based on a confusion matrix with
their mathematical formulas provided.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

520 | P a g e

www.ijacsa.thesai.org

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

A. Classification Report

The detailed classification report outlines how well the
model performed in categorizing network traffic into two
groups; labeled as '0') and anomalous (labeled as '1'). The
precision for class '0' was flawless at 1.00 while for class '1' it
was nearly perfect at 0.99. The recall scores were equally
impressive with a score of 0.99 for class '0' and a perfect score
for class '1'. These results were also evident in the f1 score,
which combines recall and precision. The support numbers,
indicating the instances for each label, were 9,996 for class '0'
and 21,428 for class '1'. Overall, the model achieved an accuracy
of 1.00 demonstrating its effectiveness, in classification as
shown in Table II.

TABLE II. CLASSIFICATION REPORT

 Precision Recall F1-Score Support

Class 0 1.00 0.99 0.99 9996

Class 1 0.99 1.00 1.00 214428

Macro Avg 1.00 0.99 0.99 31424

Weighted Avg 1.00 1.00 1.00 31424

Accuracy 1.00 31424

B. The Confusion Matrix

The model’s effectiveness was visually illustrated through
the confusion matrix displaying the ratio of incorrect
categorizations. It accurately identified 9,856 instances for class
'0'. 21,423 instances, for class '1'. These results further support
the model’s capability in distinguishing between irregular traffic
patterns, as shown in Fig. 9.

Fig. 9. Confusion matrix of our proposed model.

C. Model Accuracy and Loss over Epochs

The progression of learning was depicted by graphing the
model’s accuracy and loss across epochs. The accuracy graph as
depicted in Fig. 10 reveals that the model swiftly reached
accuracy levels in the beginning epochs and then leveled off
suggesting an adaptation to peak performance. On the hand the
loss graph as depicted in Fig. 11 displayed a drop in the initial
epoch followed by a consistent low level of loss supporting the
efficiency of the model’s learning process.

Fig. 10. Model accuracy.

Fig. 11. Mode loss.

D. Receiver Operating Characteristic (ROC) Curve

The model’s discrimination ability is demonstrated through
the ROC curve and the area, under it known as AUC. Our model
attained an AUC score of 0.99 indicating a level of
distinguishability. This suggests that the model can effectively
differentiate between classes, with positive rates, as displayed in
the Fig. 12.

Fig. 12. Receiver Operating Characteristic (ROC) curve.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

521 | P a g e

www.ijacsa.thesai.org

TABLE III. COMPARISON WITH OTHER STUDY

Ref. Method Precision Recall F1-Score

[8] Hadem et al.'s research. SVM, Selective Logging, IP traceback 94.74% 98.4% 96.53%

[9] Alzahrani and Alenazi's research

XGBoost: 92% 98% 95.55%

Random Forest (RF) 90% 82% 94.6%

Decision Tree (DT) 90.2% 85% 94.5%

[10]Elsayed et al.'s research LSTM-autoencoder 90.99 90.51 90.75

[6] Tang et al.'s research Deep Neural Network (DNN) 83% 75% 74%

[7] Boukria et al.'s research Deep Neural Network (DNN)
99.6%

80% of the dataset

99.6%

80% of the dataset

99.59%

80% of the dataset

[23] Elsayed et al.'s research CNN-LSTM 95.39% 95.64% 95.51%

Our proposed model (Hybrid CNN-

LSTM with SCA-TSO Optimization)
CNN-LSTM with SCA-TSO Optimization 99.02% 99.96% 99.96%

In summary when looking at all the assessment criteria it's
clear that the model shows performance, in categorizing network
activity. The strong precision, recall and f1 scores for both
categories along with accuracy showcase the models reliability.
The low loss and impressive AUC value also emphasize how
effective the model is at detecting network irregularities. These
findings underscore the models promise for use, in cybersecurity
and network administration scenarios.

Table III presents a comparison of machine learning
methods utilized in detecting intrusions. It showcases the
precision, recall and F1 score metrics for each technique
spanning from SVMs to methods, like Random Forest and
boosting algorithms such as XGBoost. The evaluation also
includes cutting edge neural network designs, like LSTM
autoencoders and CNN LSTM hybrids. Noteworthy is our novel
CNN LSTM model enhanced with SCA TSO Optimization,
which showcases performance by achieving flawless scores
across all metrics. This underscores the promise of combining
deep learning techniques in cybersecurity applications.

The chart shown in Fig. 13 visually represents the
performance comparison of various models listed in the Table
III. The models evaluated include Hadem et al., Alzahrani and
Alenazi, Elsayed et al., Tang et al., Boukria et al., Elsayed et al.,
and our proposed model (Hybrid CNN-LSTM with SCA-TSO
Optimization).

Fig. 13. Model performance chart.

VI. CONCLUSION

In conclusion, the paper has successfully demonstrated in
summary, the study has effectively showcased the use and
success of a machine learning system for categorizing network
traffic. The model’s effectiveness was demonstrated through a
process involving selecting features, preparing data and
employing a mix of deep learning methods. By utilizing a CNN
LSTM design enhanced by SCA TSO optimization techniques,
intricate patterns in network traffic were successfully identified,
including zero-day cyber threats. Various performance metrics
such as accuracy, precision, recall and F1 score were calculated
from a structured confusion matrix to evaluate the model’s
accuracy. The Receiver Operating Characteristic (ROC) curve
further confirmed the model’s ability to differentiate between
behavior and potential risks. The experimental findings also
indicate that the model parameters were fine-tuned through an
optimization approach leading to improvements in performance.
This underscores the potential of learning and machine learning
technologies in enhancing network security, within Software
Defined Networks (SDN). Further research could build upon
this study by investigating the incorporation of optimization
methods assessing the model in a range of network scenarios and
expanding the system to enable real time intrusion detection, in
larger networks. The results presented in this paper help progress
network security practices providing a foundation that can be
adjusted and improved to address the changing demands of
cybersecurity.

Several strategies can be investigated in further work to
improve the suggested model even more and deal with the
particular issues this study pointed out. Adding more
optimization strategies to the model could be one way to
increase its accuracy and speed of convergence.

Using the suggested model with various kinds of network
traffic datasets is an additional topic for investigation in the
future. It is possible to evaluate the model's resilience and
generalizability by testing it on datasets that have diverse traffic
patterns, network topologies, and attack kinds. Additionally,
extending the model's application to tackle situations with multi-
class classification instead of binary classification might yield
more detailed insights into different kinds of cyberthreats.

Another important area for future research is putting the
model into practice and assessing it in real-time inside an active

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

522 | P a g e

www.ijacsa.thesai.org

network context. One possible solution for this would be to
create an Intrusion Detection System (IDS) that operates in real-
time and has low latency, making it suitable for installation in
real network infrastructures.

These possible directions can be followed in order to
enhance the suggested model and broaden its applicability,
which would promote network security in Software-Defined
Networking (SDN) environments.

REFERENCES

[1] R. Khan, P. Kumar, D. N. K. Jayakody, and M. Liyanage, “A Survey on
Security and Privacy of 5G Technologies: Potential Solutions, Recent
Advancements, and Future Directions,” IEEE Communications Surveys &
Tutorials, vol. 22, no. 1, pp. 196–248, Jan. 2020, doi:
10.1109/COMST.2019.2933899.

[2] R. Amin, M. Reisslein, and N. Shah, “Hybrid SDN Networks: A Survey of
Existing Approaches,” IEEE Communications Surveys & Tutorials, vol.
20, no. 4, pp. 3259–3306, Apr. 2018, doi: 10.1109/COMST.2018.2837161.

[3] A. Akhunzada and M. K. Khan, “Toward Secure Software Defined
Vehicular Networks: Taxonomy, Requirements, and Open Issues,” IEEE
Communications Magazine, vol. 55, no. 7, pp. 110–118, 2017, doi:
10.1109/MCOM.2017.1601158.

[4] D. Kreutz, F. M. V. Ramos, P. Esteves Verissimo, C. Esteve Rothenberg,
S. Azodolmolky, and S. Uhlig, “Software-Defined Networking: A
Comprehensive Survey,” Proceedings of the IEEE, vol. 103, no. 1, pp. 14–
76, Jan. 2015, doi: 10.1109/JPROC.2014.2371999.

[5] K. Kalkan, G. Gur, and F. Alagoz, “Defense Mechanisms against DDoS
Attacks in SDN Environment,” IEEE Communications Magazine, vol. 55,
no. 9, pp. 175–179, 2017, doi: 10.1109/MCOM.2017.1600970.

[6] R. Abdulhammed, H. Musafer, A. Alessa, M. Faezipour, and A. Abuzneid,
“Features Dimensionality Reduction Approaches for Machine Learning
Based Network Intrusion Detection,” Electronics (Basel), vol. 8, no. 3, p.
322, Mar. 2019, doi: 10.3390/electronics8030322.

[7] Ü. Çavuşoğlu, “A new hybrid approach for intrusion detection using
machine learning methods,” Applied Intelligence, vol. 49, no. 7, pp. 2735–
2761, Jul. 2019, doi: 10.1007/s10489-018-01408-x.

[8] P. Hadem, D. K. Saikia, and S. Moulik, “An SDN-based Intrusion
Detection System using SVM with Selective Logging for IP Traceback,”
Computer Networks, vol. 191, p. 108015, May 2021, doi:
10.1016/j.comnet.2021.108015.

[9] A. O. Alzahrani and M. J. F. Alenazi, “Designing a Network Intrusion
Detection System Based on Machine Learning for Software Defined
Networks,” Future Internet, vol. 13, no. 5, p. 111, Apr. 2021, doi:
10.3390/fi13050111.

[10] M. S. Elsayed, N.-A. Le-Khac, S. Dev, and A. D. Jurcut, “Detecting
Abnormal Traffic in Large-Scale Networks,” in 2020 International
Symposium on Networks, Computers and Communications (ISNCC),
IEEE, Oct. 2020, pp. 1–7. doi: 10.1109/ISNCC49221.2020.9297358.

[11] T. A. Tang, L. Mhamdi, D. McLernon, S. A. R. Zaidi, and M. Ghogho,
“Deep learning approach for Network Intrusion Detection in Software
Defined Networking,” in 2016 International Conference on Wireless
Networks and Mobile Communications (WINCOM), IEEE, Oct. 2016, pp.
258–263. doi: 10.1109/WINCOM.2016.7777224.

[12] S. BOUKRIA and M. GUERROUMI, “Intrusion detection system for SDN
network using deep learning approach,” in 2019 International Conference
on Theoretical and Applicative Aspects of Computer Science (ICTAACS),
IEEE, Dec. 2019, pp. 1–6. doi: 10.1109/ICTAACS48474.2019.8988138.

[13] M. Abdallah, N. An Le Khac, H. Jahromi, and A. Delia Jurcut, “A Hybrid
CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs,”
in Proceedings of the 16th International Conference on Availability,
Reliability and Security, New York, NY, USA: ACM, Aug. 2021, pp. 1–7.
doi: 10.1145/3465481.3469190.

[14] H. C. ALTUNAY and Z. ALBAYRAK, “Network Intrusion Detection
Approach Based on Convolutional Neural Network,” European Journal of
Science and Technology, Jun. 2021, doi: 10.31590/ejosat.954966.

[15] S. Hochreiter and J. Schmidhuber, “Long Short-Term Memory,” Neural
Comput, vol. 9, no. 8, pp. 1735–1780, Nov. 1997, doi:
10.1162/neco.1997.9.8.1735.

[16] S. Chakraborty, R. Murugan, and T. Goel, “Classification of Tea Leaf
Diseases Using Convolutional Neural Network,” in Edge Analytics: Select
Proceedings of 26th International Conference—ADCOM 2020, Springer,
2022, pp. 283–296.

[17] S. M. Almufti, A. Ahmad Shaban, Z. Arif Ali, R. Ismael Ali, and J. A. Dela
Fuente, “Overview of Metaheuristic Algorithms,” Polaris Global Journal
of Scholarly Research and Trends, vol. 2, no. 2, pp. 10–32, Apr. 2023, doi:
10.58429/pgjsrt.v2n2a144.

[18] S. Mirjalili, “SCA: A Sine Cosine Algorithm for solving optimization
problems,” Knowl Based Syst, vol. 96, pp. 120–133, Mar. 2016, doi:
10.1016/j.knosys.2015.12.022.

[19] M. Črepinšek, S.-H. Liu, and M. Mernik, “Exploration and exploitation in
evolutionary algorithms,” ACM Comput Surv, vol. 45, no. 3, pp. 1–33, Jun.
2013, doi: 10.1145/2480741.2480752.

[20] L. Xie, T. Han, H. Zhou, Z.-R. Zhang, B. Han, and A. Tang, “Tuna Swarm
Optimization: A Novel Swarm-Based Metaheuristic Algorithm for Global
Optimization,” Comput Intell Neurosci, vol. 2021, pp. 1–22, Oct. 2021,
doi: 10.1155/2021/9210050.

[21] W. Wang and J. Tian, “An Improved Nonlinear Tuna Swarm Optimization
Algorithm Based on Circle Chaos Map and Levy Flight Operator,”
Electronics (Basel), vol. 11, no. 22, p. 3678, Nov. 2022, doi:
10.3390/electronics11223678.

[22] https://scikit-learn.org/, “Random Forest Classifier,” https://scikit-
learn.org/stable/modules/generated/sklearn.ensemble.RandomForestClass
ifier.html.

[23] M. Abdallah, N. An Le Khac, H. Jahromi, and A. Delia Jurcut, “A Hybrid
CNN-LSTM Based Approach for Anomaly Detection Systems in SDNs,”
in Proceedings of the 16th International Conference on Availability,
Reliability and Security, New York, NY, USA: ACM, Aug. 2021, pp. 1–7.
doi: 10.1145/3465481.3469190.

