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Abstract—The paper explores the evolving landscape of 

network security, in Software Defined Networking (SDN) 

highlighting the challenges faced by security measures as networks 

transition to software-based control. SDN revolutionizes Internet 

technology by simplifying network management and boosting 

capabilities through the OpenFlow protocol. It also brings forth 

security vulnerabilities. To address this we present a hybrid 

Intrusion Detection System (IDS) tailored for SDN environments 

leveraging a state of the art dataset optimized for SDN security 

analysis along with machine learning and deep learning 

approaches. This comprehensive research incorporates data 

preprocessing, feature engineering and advanced model 

development techniques to combat the intricacies of cyber threats 

in SDN settings. Our approach merges feature from the sine cosine 

algorithm (SCA) and tuna swarm optimization (TSO) to optimize 

the fusion of Long Short Term Memory Networks (LSTM) and 

Convolutional Neural Networks (CNN). By capturing both spatial 

aspects of network traffic dynamics our model excels at detecting 

and categorizing cyber threats, including zero-day attacks. 

Thorough evaluation includes analysis using confusion matrices 

ROC curves and classification reports to assess the model’s ability 

to differentiate between attack types and normal network 

behavior. Our research indicates that improving network security 

using software defined methods can be achieved by implementing 

learning and machine learning strategies paving the way, for more 

reliable and effective network administration solutions. 

Keywords—SDN; Intrusion Detection System; deep learning; 

CNN; LSTM; SCA; TSO 

I. INTRODUCTION 

In recent decades, online communication and networking 
have undergone significant changes. The internet has become a 
part of our lives supporting various aspects of our routines [1]. 
We face difficulties in managing and securing networks as it 
evolves, but we also enjoy its benefits. The demands of 
applications and cybersecurity threats have been growing at a 
faster rate than traditional networking technologies like switches 
and routers can handle [2]. One approach is software-defined 
networking, or SDN, which separates data flow and network 
management to meet the needs of individual applications [3]. 
While software-defined networking (SDN) may not streamline 
network administration, it does present chances to enhance 
efficiency and security [4]. 

However, SDN is not without its hazards and vulnerabilities, 
even with these improvements. Despite SDN's controls and 
administration benefits, its centralized design leaves it open to 
assaults that take advantage of its vulnerabilities. Additionally, 

security protocols, in SDN based networks must be flexible 
enough to adapt to emerging threats and changes [5]. 

This study aims to address these concerns by proposing a 
method to strengthen network security within SDN 
environments. The Intrusion Detection System (IDS) we suggest 
utilizes learning techniques combined with machine learning 
methods to establish a security framework for identifying and 
mitigating cyber threats, in SDN settings. 

This research represents progress in network security 
concerning software-defined networking (SDN). The key 
contributions are as follows: 

 Innovative Hybrid Intrusion Detection System (IDS): 
We present an innovative Intrusion Detection System 
(IDS) specifically designed for SDN environments. This 
IDS integrates the sophisticated capabilities of machine 
learning and deep learning to accurately identify a range 
of cyber threats. 

 Combining Machine Learning and Deep Learning 
Approaches: Our study shows how combining machine 
learning algorithms with learning structures can provide 
a method, for examining network traffic and identifying 
irregularities. 

 Optimization Strategies for Enhanced Performance: The 
document explains the implementation of a SCA TSO 
system that combines the sine cosine algorithm (SCA) 
with tuna swarm optimization (TSO) presenting a 
strategy, for enhancing the neural network models 
utilized in intrusion detection. 

The paper’s remaining sections are outlined as follows. 

Section II delves into literature and provides background 
information. The suggested methodology is detailed in Section 
III, which covers the structure specifics, dataset pre-processing 
techniques, and a summary of the deep learning algorithms 
integrated into the framework. Methodology is given in Section 
IV. Section V showcases the experiment results. Finally, Section 
VI concludes the paper. 

II. BACKGROUNDS 

A. Convolutional Neural Networks (CNN) 

Convolutional neural networks (CNNs) are a particular kind 
of artificial neural network that are specifically designed for 
handling data that has a grid-like structure, which includes forms 
such as audio, video, and image data. CNN is part of the 
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supervised learning approach and is a highly utilized algorithm 
in computer vision known for its robustness. The weight sharing 
concept is introduced to mitigate the issue of parameter 
explosion and expedite the training process. In the CNN 
architecture, As seen in Fig. 1, the three main components are 
the convolutional layer, pooling layer, and fully connected layer 
[13]. The output of the previous layer is passed through a filter 
of a specific size that the convolutional layer slides across to 
carry out a linear operation. The prevalent activation function in 
CNNs is the non-linear ReLU function, this widely used 
technique raises the degree of non-linearity in a feature map by 
setting all negative values to zero. The utilization of the pooling 
layer serves to decrease feature dimensions, thereby aiding in 
the reduction of computational costs. Classification is carried 
out using the last fully connected layer [14]. 

 

Fig. 1. Standard CNN architecture. 

B. Long Short Term Memory (LSTM) 

LSTM refers to a specific kind of recurrent neural network 
(RNN) architecture created with the specific goal of mitigating 
the problem of vanishing gradients and enabling the modeling 
of long-range dependencies in sequential data. Its primary 
objective is to overcome the shortcomings of traditional RNNs 
in terms of capturing and retaining important information over 
extended sequences. The problem of vanishing gradients is a 
significant challenge in standard RNN training. Eq. (1) shows 
how gradients are used to modify a neural network's weights. On 
the other hand, a gradient value that drastically decreases as it 
propagates backward in time is not very helpful in the learning 
process. 

𝑁𝑒𝑤 𝑊𝑒𝑖𝑔ℎ𝑡 = 𝑊𝑒𝑖𝑔ℎ𝑡 − 𝐿𝑒𝑎𝑟𝑛𝑖𝑛𝑔 𝑟𝑎𝑡𝑒 ∗ 𝐺𝑟𝑎𝑑𝑖𝑒𝑛𝑡

When working with data, over extended time intervals 
LSTM [15] is a choice as it addresses the issue of vanishing 
gradients. LSTM utilizes internal loop theory to retain 
information while filtering out details. In Fig. 2 you can see the 
three gates of an LSTM; the forget gate, input gate and output 
gate which control information flow within each cell. 

 
Fig. 2. A Typical convolutional neural network [3]. 

C. Overfitting and Regularization 

Overfitting is a challenge in neural networks and machine 
learning. It occurs when a model excels on training data but 

struggles to generalize to validation data. This problem is more 
prevalent with models and datasets. To counter overfitting 
experts have devised regularization methods [13]. These 
techniques aim to limit the model’s capacity to prevent it from 
tailoring itself to the training data. One popular form of 
regularization is dropout, where random neurons are turned off 
during each training cycle to introduce randomness and 
discourage reliance, on features or neurons. Another effective 
method is L2 regularization. 

This method involves adding a penalty term to the loss 
function based on the models L2 weight norm. The penalty 
incentivizes the model to keep its weight values low reducing 
the risk of overfitting. 

D. Metaheuristic Algorithms 

Metaheuristic algorithms are a type of optimization methods 
that don't rely on problem details. Instead, they use a problem-
solving approach to a "meta strategy” to guide the search for the 
best solutions [16]. One of the advantages of algorithms is their 
ability to efficiently explore large solution spaces that 
exhaustive search techniques may not fully cover. Various 
natural or abstract phenomena like Particle Swarm Optimization 
(PSO) Genetic Algorithms and others form the basis for types of 
algorithms. 

1) Sine Cosine Algorithm (SCA): In the evolving realm of 

optimization algorithms, the Sine Cosine Algorithm (SCA) has 

emerged as an adaptable optimization method. The 

mathematical characteristics of sine and cosine functions have 

inspired the creation of SCA [17]. SCA operates with candidate 

solutions simultaneously since it’s a population-based 

optimization technique. This population evolves over iterations 

to enhance solution quality. By balancing exploration and 

exploitation SCA effectively navigates through problem 

spaces, in search of solutions. Exploration involves uncovering 

solution areas while exploitation focuses on refining existing 

solutions. 

One key feature of SCA is its method of updating solutions 
by incorporating the sine and cosine functions. By integrating 
these functions randomness and complexity are introduced into 
the optimization procedure allowing SCA to avoid getting stuck, 
in points and instead venture into various areas, within the 
solution space. Following this a series of expressions dictates 
how positions are updated in the SCA algorithm [18]. For both 
the exploration and exploitation stages, it is imperative to 
consult Eq. (2) and Eq. (3). 

𝑋𝑖
𝑡+1  =  𝑋𝑖

𝑡  + 𝑟1 ∗  𝑠𝑖𝑛(𝑟2) ∗  |𝑟3  𝑃𝑖
𝑡 − 𝑋𝑖

𝑡  |     (2) 

𝑋𝑖
𝑡+1  =  𝑋𝑖

𝑡  + 𝑟1 ∗  𝑐𝑜𝑠(𝑟2) ∗  |𝑟3  𝑃𝑖
𝑡 − 𝑋𝑖𝑖

𝑡  |     (3) 

Within this context, 𝑋𝑖
𝑡  signifies the positions of the existing 

solution in the 𝑖𝑡ℎ dimension during the 𝑖𝑡ℎ iteration, with r1, r2, 
and r3 denoting three random numbers. "Place point" indicates 
the position in the 𝑖𝑡ℎ  dimension, and ii denotes the absolute 
value. The application of these two equations is interrelated in 
the following manner: 

𝑋𝑖
𝑡+1  = {

𝑋𝑖
𝑡 + 𝑟1 ∗ sin(𝑟2) ∗  |𝑟3 𝑃𝑖

𝑡 − 𝑋𝑖
𝑡|,   𝑟4 < 0.5

𝑋𝑖
𝑡 + 𝑟1 ∗ cos(𝑟2) ∗  |𝑟3 𝑃𝑖

𝑡 − 𝑋𝑖𝑖
𝑡 |,   𝑟4 ≥ 0.5


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where, r4 is a number generated at random from [0,1]. 

In Fig. 3, Algorithm 1 presents the original pseudocode of 
the Sine Cosine Algorithm (SCA) [4]. Starting with an array of 
randomly generated initial solutions, the algorithm proceeds to 
retain the optimal solutions identified during the process, 
earmarking these as the target point for subsequent iterations. It 
then adjusts the other solutions in relation to this benchmark. To 
ensure thorough exploration of the search space, during each 
iteration of the algorithm, the ranges of the sine and cosine 
functions are updated. The optimization routine of the SCA 
concludes once it hits the pre-established limit of iterations. 
However other ways to end the process could be used, like 
reaching a number of evaluations or attaining a level of accuracy 
for the best solution found. 

 
Fig. 3. Pseudo-code of (SCA). 

2) Tuna Swarm Optimization (TSO): The Tuna Swarm 

Optimization (TSO) algorithm is a method that draws 

inspiration from the foraging behaviors of tuna populations 

[19]. It has a structure and minimal requirements for 

parameters. TSO works by dividing solutions into groups called 

swarms, each exploring different areas within the search space. 

These swarms communicate to share information about the 

quality of solutions they find guiding them towards the outcome 

[19]. The algorithm utilizes two hunting strategies. Foraging for 

broad searches and parabolic foraging for detailed searches 

adapting its tactics based on feedback from the environment. To 

start optimization TSO generates populations randomly. Spread 

them evenly across the search space, similar, to other swarm-

based techniques. 

𝑋𝑖
𝑖𝑛𝑡  =  𝑟𝑎𝑛𝑑. (𝑢𝑏 − 𝑙𝑏) + 𝑙𝑏,  

In this context, 𝑋𝑖
𝑖𝑛𝑡   represents the i-th tuna, ub and lb 

indicate the top and bottom limits of the tuna's exploration range, 
and rand is a uniformly distributed random variable between 0 

and 1. Specifically, each member, Xi
int  within the tuna swarm 

symbolizes a potential solution for TSO. 

The feeding habits of tuna serve as the model for the 
algorithm's mathematical representation, which primarily prey 
on herring and eel. These prey fish use their swiftness to 
frequently change direction, evading predators. Tuna, less agile, 
compensate through cooperative hunting, aligning their 
movements and forming a parabolic shape to encircle their prey 
[5]. Additionally, the tuna utilizes a spiral foraging method. 
With an equal probability of adopting either strategy, the 
algorithm provides a detailed mathematical formula for the 
tuna's parabolic hunting behavior. 

𝑋𝑖
𝑡+1  =

{
𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑟𝑎𝑛𝑑 . (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡) + 𝑇𝐹. 𝑝2. (𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡), 𝑖𝑓 𝑟𝑎𝑛𝑑 < 0.5

𝑇𝐹 . 𝑝2 .  𝑋𝑖
𝑡,                                                                            𝑖𝑓 𝑟𝑎𝑛𝑑 ≥ 0.5



𝑃 =  (1 − 
𝑡

𝑡𝑚𝑎𝑥
)
(𝑡 𝑡𝑚𝑎𝑥⁄ )



In this context, t denotes the current iteration in progress, 
being the t th iteration, as the predefined maximum number of 
iterations is represented by tmax . The value TF is assigned at 
random and can have two possible values: 1 or -1. 

Tuna also uses a feeding strategy called spiral foraging in 
addition to the parabolic approach. This strategy is employed 
when a minority of the tuna, capable of discerning the correct 
path, lead the group towards the prey, with the rest of the swarm 
following suit. This results in the formation of a spiral pattern 
aimed at capturing the prey. During this spiral foraging, 
information is shared with and among the leading individuals or 
their immediate neighbors in the swarm. In cases where the 
leading tuna does not effectively direct the swarm towards the 
prey, a random individual from the swarm is chosen to follow 
instead. This spiral foraging strategy's mathematical model is 
defined in accordingly [20]. 

𝑋𝑖
𝑡+1  =

{
 
 
 
 

 
 
 
 
𝑎1 . (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝑡 . |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡| + 𝑎2 . 𝑋𝑖
𝑡  ),

𝑖 = 1 
𝑎1 . (𝑋𝑟𝑎𝑛𝑑

𝑡 + 𝑡 . |𝑋𝑟𝑎𝑛𝑑
𝑡 − 𝑋𝑖

𝑡| + 𝑎2 . 𝑋𝑖−1
𝑡  ),

𝑖 = 2, 3, … , 𝑁𝑃  

𝑎1 . (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑡 . |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡| + 𝑎2 . 𝑋𝑖

𝑡  ),
𝑖 = 1 

𝑎1 . (𝑋𝑏𝑒𝑠𝑡
𝑡 + 𝑡 . |𝑋𝑏𝑒𝑠𝑡

𝑡 − 𝑋𝑖
𝑡| + 𝑎2 . 𝑋𝑖−1

𝑡  ) ,
𝑖 = 2, 3, … , 𝑁𝑃 

 

In this model, Xi
t+1  represents the position of the i-th tuna in 

the iteration t+1. The best-performing individual at the current 

moment is denoted by Xbest
t . Meanwhile, Xrand

t   serves as the 
randomly chosen reference point within the swarm. The 
parameter a1 is a trend weight coefficient that controls the tuna's 
movement towards either the optimal individual or a randomly 
chosen neighboring individual. The coefficient a2influences the 
movement of the tuna toward the individual directly ahead of it. 
The variable "t" is linked to the distance factor affecting how 
movement dynamics work. 

𝑎1 = 𝑎 + (1 − 𝑎) .
𝑡

𝑡𝑚𝑎𝑥
  

𝑎2 = (1 − 𝑎) − (1 − 𝑎) .
𝑡

𝑡𝑚𝑎𝑥


𝑡 = 𝑒𝑏𝑙 .  𝑐𝑜𝑠(2𝜋𝑏) 

𝐼 =  𝑒3 cos(((𝑡𝑚𝑎𝑥+1/𝑡)−1 )𝜋 ) 

In this situation 'a' symbolizes a figure indicating how close 
tuna are, to one another while 'b' represents a value ranging from 
0, to 1. The TSOs pseudocode is outlined in Algorithm 2 as 
mentioned in Fig. 4 [21]. 
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Fig. 4. Pseudo-code of (TSO). 

III. RELATED WORK 

Lately, researchers have been focusing on Intrusion 
Detection Systems (IDSs), particularly leveraging Machine 
Learning (ML) techniques to identify activities [6] [7]. 
Commonly used algorithms like Support Vector Machine 
(SVM) Decision Trees (DTs) and Logistic Regression (LR) are 
employed to detect network-based attacks. However, due to 
their reliance on predefined features, these methods are 
categorized as "learning," limiting their adaptability across 
attack types. They often trigger alarms and require a profound 
understanding of the problem domain. Moreover, these 
approaches prove effective when handling normal data. 

Although machine learning techniques perform well with 
labeled data, they face difficulties when dealing with network 
traffic datasets. Deep learning, a subset of machine learning, has 
proven effective in research areas like image processing, speech 
recognition and natural language processing. One of the 
advantages of learning is its ability to operate without the need 
for a separate feature extraction step. It can autonomously 
uncover hidden patterns from data without relying on expert 
knowledge. Recently deep learning methods have been applied 
in Intrusion Detection Systems (IDSs). The key strength of 
learning lies in its capability to automatically identify structures 
within data and extract features without manual intervention. 

In their study [8] the researchers introduced an intrusion 
detection system (IDS) based on IP traceability within a 
Software Defined Networking (SDN) framework. This system 
utilizes Support Vector Machines (SVMs) and selective logging. 
Was tested on the NSL KDD dataset. The results showed an 
accuracy rate of 87.74%, with selected subsets and 95.98% 
accuracy when using the dataset. 

The researchers chose this method because of the centralized 
detection analysis framework provided by SDN and the accurate 
detection capability of SVM logging all while minimizing the 
resources needed. Moreover the selective logging approach 
significantly decreased memory usage by, around 90 95%. 
Additionally being able to trace IP addresses allowed for 
identification of origins during an attack. 

In their study [9] researchers presented a technique utilizing 
XGBoost, Decision Tree, Random Forest and other advanced as 

traditional tree-based machine learning algorithms. This 
technique was used to monitor traffic in the SDN controller to 
detect activities as part of an Intrusion Detection System (IDS). 
They. They evaluated their approach using the NSL KDD 
dataset, a recognized benchmark in various top IDS strategies. 
The dataset underwent thorough preprocessing to enhance data 
utilization. The strategy for conducting a class classification task 
in NSL KDD focused on only five of 41 available features. This 

task involved identifying an attack type—DDoS, PROBE, R2L 

or U2R—. Achieved an accuracy rate of 95.95%. 

Researchers in [10] utilized learning techniques in their 
study to handle imbalanced datasets and minority attacks. They 
integrated an autoencoder with an LSTM in a learning setting, 
training the model on normal data samples. However, during 
testing the model struggled to reconstruct inputs containing a 
mix of malicious traffic, especially with recent datasets 
showcasing sophisticated attacks resembling normal patterns. 
The researchers enhanced the LSTM Autoencoder by 
incorporating the class Support Vector Machine (OC SVM) to 
overcome this challenge. By processing input data through the 
LSTM Autoencoder to extract features, they used these features 
to train the OC SVM in identifying anomalies. Experimental 
findings indicated that combining DL methods with the OC 
SVM algorithm yielded better performance than using OC SVM 
for detection purposes. 

A Deep Neural Network (DNN) was employed by Tang an
d colleagues [11] to identify anomalies in flow-based data 
within SDN networks. They streamlined the intrusion detection 
procedure by utilizing just six fundamental features from the 
NSL-KDD dataset. There were three hidden layers in their DNN 
model, each with twelve, six, and three neurons. Initially, the 
model's overall accuracy of 75% was less than what would be 
required for widespread practical use. However, they enhanced 
the model's performance by integrating a Gated Recurrent Unit 
(GRU), resulting in a significantly improved detection rate of 
89% while still working with the same NSL-KDD dataset. 

In their work, Boukria and colleagues [12] presented an 
anomaly-based approach for detecting a variety of attacks in 
SDN networks. They developed a Deep Neural Network 
comprising three concealed layers, with 128, 64, and 32 neurons 
in each layer, respectively. During testing with the CICIDS2017 
dataset, the model outperformed other sophisticated solutions, 
obtaining an overall accuracy of 99.6%. 

Nonetheless, the earlier deep learning (DL) methods demand 
a substantial quantity of training parameters due to the full 
connectivity between adjacent layers. The training process may 
slow down, and the detection model's computational costs may 
increase when a large number of parameters are used. 
Consequently, this introduces additional computational burden 
in an SDN environment. 

IV. METHODOLOGY 

In this part of the paper, we delve into an examination of the 
suggested method, for detecting intrusions. This covers an 
investigation of the system structure preprocessing techniques 
the data set used, and the deep learning models implemented. 
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A. Dataset 

Our research involves utilizing a dataset designed 
specifically for studying network traffic patterns and exploring 
cybersecurity concerns. This dataset is organized in CSV 
format. Includes an array of network traffic characteristics 
making it well suited for investigating unusual network behavior 
and security risks. One notable aspect of this dataset setting it 
apart in the realm of network traffic analysis and cybersecurity 
research is its range of information. Comprising a total of 
157,120 entries and 85 attributes this dataset serves as a data 
source, for analysis. 

The size of the datasets, with than 157,000 records shows 
that there is an amount of data available for analysis. Having this 
large amount of data is important for training machine learning 
models as it allows for the observation and understanding of 
network patterns and anomalies. With plenty of examples in the 
dataset the models can learn from scenarios improving their 
accuracy, in data classification and enabling them to draw 
conclusions. 

B. Dataset Preparation 

In our study the process of extracting and selecting 
Characteristics are important when examining network traffic 
data. This section describes the process we followed to identify 
features from the dataset and select the ones for our machine 
learning models. 

Initially we reviewed the dataset. Made it ready for analysis 
by eliminating columns that were redundant or irrelevant to our 
research. This initial processing stage was crucial in 
concentrating on attributes that have an impact on the model’s 
effectiveness. 

We utilized a Random Forest classifier to assist in selecting 
features [22]. Random Forest is renowned for its ability to 
determine feature importance, making it an ideal choice, for 
identifying the features in our dataset. This method is effective 
as it considers decision trees and their evaluations of feature 
importance. 

To identify features, we utilized the `feature_importances_` 
attribute of the Random Forest classifier to assess each features 
importance. Subsequently we organized these features based on 
their decreasing order of importance. 

The notable features were selected based on their 
significance, aiming to streamline the model and improve 
efficiency by concentrating on the features. These highlighted 
features are depicted in Fig. 5 along, with their importance. 

C. The Proposed Model 

To accurately capture the temporal characteristics found in 
network traffic data our model utilizes a blend of Convolutional 
Neural Network (CNN) and Long Short Term Memory (LSTM) 
layers. The design involves a two steps approach, where each 
step focuses on extracting features as shown in the 
accompanying diagram Fig. 6. 

In the CNN model, layers extract features, during which 
patterns are identified by analyzing the input data within the 
network. ReLU activates layers to preserve features. Maximum 
pooling operations then follow the activation process. 

 

Fig. 5. Feature importance. 

 
Fig. 6. The Proposed model. 

LSTM layers are important in the subsequent steps, as their 
layers work to understand the interconnections between data sets 
and identify patterns of data movement within the network. 
Overfitting can be eliminated by controlling dropout layers. 
Dropout prevents the model from overusing features. To 
regulate the models' weights, we must use regularization, for 
example, the 0.1 L2 layer, as this contributes to improving the 
model's generalizability. 

The proposed model, which employs CNN-LSTM with 
SCA-TSO optimization, demonstrates superior performance 
compared to previous methods. A major reason for this 
improvement is the integration of Convolutional Neural 
Networks (CNN) and Long Short-Term Memory (LSTM) 
networks, which enables the model to effectively capture spatial 
and temporal dependencies in the data. CNNs are known for 
their ability to extract local features from input data, while 
LSTMs excel at handling sequential information and long-term 
dependencies. 

Moreover, the optimization process is improved by the 
incorporation of SCA-TSO (Sine Cosine Algorithm – Tuna 
Swarm Optimization), which guarantees more effective model 
convergence and prevents local minima. By optimizing 
hyperparameters with the help of this technique, the validation 
set can be more broadly represented. 

Previous approaches' performance was constrained by the 
fact that they either only addressed one kind of data dependency 
or lacked sophisticated optimization techniques, such SVM, 
XGBoost, and simple neural networks. For example, while 
SVM and decision trees (found in XGBoost) are strong tools, 
they struggle to process sequential data. Despite their capacity 
to handle sequences, LSTM autoencoders frequently encounter 
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optimization difficulties in the absence of sophisticated methods 
like SCA-TSO. 

The suggested model, on the other hand, overcomes these 
drawbacks by combining CNNs and LSTMs with sophisticated 
optimization to get a more reliable and accurate result. By using 
a comprehensive strategy, it is ensured that the model makes the 
most of the advantages of many methodologies, leading to a 
considerable improvement in performance across all evaluated 
criteria. This approach makes the model a great fit for the 
particular task because it increases accuracy while 
simultaneously strengthening the model's capacity to generalize 
to new data. 

D. Model Compilation 

We used SCA TSO technology to improve performance, 
combining two algorithms (SCA and TSO). The diagram in Fig. 
7 shows the basic steps for building the model. 

 
Fig. 7. Flowchart of SCA-TSO. 

Before starting the SCA TSO technique, it is necessary to 
configure critical parameters, including mixture ratio, 
population size, and number of iterations. Optimization 
parameters affect training time. By combining elements from 
both SCA and TSO approaches the training process consistently 
assesses performance within the population. Makes adjustments. 
This involves tracking individuals progress, in the group and 
refining strategies based on a blend of SCA and TSO principles. 
The optimization procedure is guided by a user defined fitness 
function, which significantly influences the effectiveness of the 
optimization outcomes. In an example provided there's a fitness 
function shown for optimizing a networks learning rate. Users 
are advised to customize this example with their logic for 

defining fitness functions. After training the optimizer the 
optimal solution found is used as the learning rate, for compiling 
models. The model is then put together using Stochastic 
Gradient Descent (SGD) with that learning rate calculated 
earlier. This approach of combining SCA TSO aims to boost 
model performance by adjusting parameters influenced by both 
SCA and TSO algorithms. In Fig. 8 Algorithm 2 outlines an 
overview of how SCA TSO works in pseudocode form. 

 

Fig. 8. Pseudo-code of (SCA-TSO). 

V. RESULTS 

The evaluation of the model’s performance is enhanced in 
this section focusing on its application, to categorizing network 
traffic. Various metrics, including precision, recall, f1 score, 
accuracy, model loss and the operating ROC) curve were 
utilized to gauge the model's effectiveness. A confusion matrix 
was created to validate the assessment further to compare actual 
versus predicted probabilities and facilitate an analysis. The 
structure of this confusion matrix is exemplified in Table I for 
classification scenarios. 

TABLE I.  CONFUSION MATRIX COMPOSITION 

  Actual Class 

  Positive (P) Negative (N) 

Predicted 

Class 

Positive (P) True Positive (TP) 
False Positive 

(FP) 

Negative (N) 
False Negative 
(FN) 

True Negative 
(TN) 

 True Positive (TP) denotes the precise recognition of 
attack traffic as an attack. 

 False Positive (FP) indicates the erroneous detection of 
normal traffic as an attack. 

 True Negative (TN) represents the correct identification 
of normal traffic as normal. 

 False Negative (FN) denotes the misclassification of 
normal traffic as an attack. 

Several evaluation metrics, like accuracy, precision and 
recall were chosen to evaluate how well the model performs. 
These metrics are calculated based on a confusion matrix with 
their mathematical formulas provided. 
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𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝐹𝑁+𝑇𝑁+𝐹𝑃
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
  

𝐹1 =
2×𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
  

A. Classification Report 

The detailed classification report outlines how well the 
model performed in categorizing network traffic into two 
groups; labeled as '0') and anomalous (labeled as '1'). The 
precision for class '0' was flawless at 1.00 while for class '1' it 
was nearly perfect at 0.99. The recall scores were equally 
impressive with a score of 0.99 for class '0' and a perfect score 
for class '1'. These results were also evident in the f1 score, 
which combines recall and precision. The support numbers, 
indicating the instances for each label, were 9,996 for class '0' 
and 21,428 for class '1'. Overall, the model achieved an accuracy 
of 1.00 demonstrating its effectiveness, in classification as 
shown in Table II. 

TABLE II.  CLASSIFICATION REPORT 

 Precision Recall F1-Score Support 

Class 0 1.00 0.99 0.99 9996 

Class 1 0.99 1.00 1.00 214428 

Macro Avg 1.00 0.99 0.99 31424 

Weighted Avg 1.00 1.00 1.00 31424 

Accuracy   1.00 31424 

B. The Confusion Matrix 

The model’s effectiveness was visually illustrated through 
the confusion matrix displaying the ratio of incorrect 
categorizations. It accurately identified 9,856 instances for class 
'0'. 21,423 instances, for class '1'. These results further support 
the model’s capability in distinguishing between irregular traffic 
patterns, as shown in Fig. 9. 

 
Fig. 9. Confusion matrix of our proposed model. 

C. Model Accuracy and Loss over Epochs 

The progression of learning was depicted by graphing the 
model’s accuracy and loss across epochs. The accuracy graph as 
depicted in Fig. 10 reveals that the model swiftly reached 
accuracy levels in the beginning epochs and then leveled off 
suggesting an adaptation to peak performance. On the hand the 
loss graph as depicted in Fig. 11 displayed a drop in the initial 
epoch followed by a consistent low level of loss supporting the 
efficiency of the model’s learning process. 

 
Fig. 10. Model accuracy. 

 
Fig. 11. Mode loss. 

D. Receiver Operating Characteristic (ROC) Curve 

The model’s discrimination ability is demonstrated through 
the ROC curve and the area, under it known as AUC. Our model 
attained an AUC score of 0.99 indicating a level of 
distinguishability. This suggests that the model can effectively 
differentiate between classes, with positive rates, as displayed in 
the Fig. 12. 

 
Fig. 12. Receiver Operating Characteristic (ROC) curve. 
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TABLE III.  COMPARISON WITH OTHER STUDY 

Ref. Method Precision Recall F1-Score 

[8] Hadem et al.'s research. SVM, Selective Logging, IP traceback 94.74% 98.4% 96.53% 

[9] Alzahrani and Alenazi's research 

XGBoost: 92% 98% 95.55% 

Random Forest (RF) 90% 82% 94.6% 

Decision Tree (DT) 90.2% 85% 94.5% 

[10]Elsayed et al.'s research LSTM-autoencoder 90.99 90.51 90.75 

[6] Tang et al.'s research Deep Neural Network (DNN) 83% 75% 74% 

[7] Boukria et al.'s research Deep Neural Network (DNN) 
99.6% 

80% of the dataset 

99.6% 

80% of the dataset 

99.59% 

80% of the dataset 

[23] Elsayed et al.'s research CNN-LSTM 95.39% 95.64% 95.51% 

Our proposed model (Hybrid CNN-

LSTM with SCA-TSO Optimization) 
CNN-LSTM with SCA-TSO Optimization 99.02% 99.96% 99.96% 

 

In summary when looking at all the assessment criteria it's 
clear that the model shows performance, in categorizing network 
activity. The strong precision, recall and f1 scores for both 
categories along with accuracy showcase the models reliability. 
The low loss and impressive AUC value also emphasize how 
effective the model is at detecting network irregularities. These 
findings underscore the models promise for use, in cybersecurity 
and network administration scenarios. 

Table III presents a comparison of machine learning 
methods utilized in detecting intrusions. It showcases the 
precision, recall and F1 score metrics for each technique 
spanning from SVMs to methods, like Random Forest and 
boosting algorithms such as XGBoost. The evaluation also 
includes cutting edge neural network designs, like LSTM 
autoencoders and CNN LSTM hybrids. Noteworthy is our novel 
CNN LSTM model enhanced with SCA TSO Optimization, 
which showcases performance by achieving flawless scores 
across all metrics. This underscores the promise of combining 
deep learning techniques in cybersecurity applications. 

The chart shown in Fig. 13 visually represents the 
performance comparison of various models listed in the Table 
III. The models evaluated include Hadem et al., Alzahrani and 
Alenazi, Elsayed et al., Tang et al., Boukria et al., Elsayed et al., 
and our proposed model (Hybrid CNN-LSTM with SCA-TSO 
Optimization). 

 

Fig. 13. Model performance chart. 

VI. CONCLUSION 

In conclusion, the paper has successfully demonstrated in 
summary, the study has effectively showcased the use and 
success of a machine learning system for categorizing network 
traffic. The model’s effectiveness was demonstrated through a 
process involving selecting features, preparing data and 
employing a mix of deep learning methods. By utilizing a CNN 
LSTM design enhanced by SCA TSO optimization techniques, 
intricate patterns in network traffic were successfully identified, 
including zero-day cyber threats. Various performance metrics 
such as accuracy, precision, recall and F1 score were calculated 
from a structured confusion matrix to evaluate the model’s 
accuracy. The Receiver Operating Characteristic (ROC) curve 
further confirmed the model’s ability to differentiate between 
behavior and potential risks. The experimental findings also 
indicate that the model parameters were fine-tuned through an 
optimization approach leading to improvements in performance. 
This underscores the potential of learning and machine learning 
technologies in enhancing network security, within Software 
Defined Networks (SDN). Further research could build upon 
this study by investigating the incorporation of optimization 
methods assessing the model in a range of network scenarios and 
expanding the system to enable real time intrusion detection, in 
larger networks. The results presented in this paper help progress 
network security practices providing a foundation that can be 
adjusted and improved to address the changing demands of 
cybersecurity. 

Several strategies can be investigated in further work to 
improve the suggested model even more and deal with the 
particular issues this study pointed out. Adding more 
optimization strategies to the model could be one way to 
increase its accuracy and speed of convergence. 

Using the suggested model with various kinds of network 
traffic datasets is an additional topic for investigation in the 
future. It is possible to evaluate the model's resilience and 
generalizability by testing it on datasets that have diverse traffic 
patterns, network topologies, and attack kinds. Additionally, 
extending the model's application to tackle situations with multi-
class classification instead of binary classification might yield 
more detailed insights into different kinds of cyberthreats. 

Another important area for future research is putting the 
model into practice and assessing it in real-time inside an active 
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network context. One possible solution for this would be to 
create an Intrusion Detection System (IDS) that operates in real-
time and has low latency, making it suitable for installation in 
real network infrastructures. 

These possible directions can be followed in order to 
enhance the suggested model and broaden its applicability, 
which would promote network security in Software-Defined 
Networking (SDN) environments. 
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