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Abstract—In the quest to delve deeper into the burgeoning 

realm of the service-oriented Internet of Things (IoT), the pressing 

challenge of smoothly integrating functionalities within smart 

objects emerges prominently. IoT devices, notorious for their 

resource constraints, often lean heavily on cloud infrastructures to 

function effectively. However, the emergence of fog computing 

offers a promising alternative, allowing the processing of IoT 

applications closer to the sensors and thereby slashing delays. This 

research develops a novel method for IoT service composition that 

leverages both fog and cloud computing, utilizing an enhanced 

version of the Artificial Bee Colony (ABC) algorithm to refine its 

convergence rate. The approach introduces a Dynamic Reduction 

(DR) mechanism designed to perturb dimensions innovatively. 

Traditionally, the ABC algorithm generates new solutions that 

closely mimic their parent solutions, which unfortunately slows 

down convergence. By initiating the process with significant 

dimension disparities among solutions and gradually reducing 

these disparities over successive iterations, this method strikes an 

optimal balance between exploration and exploitation through 

dynamic adjustment of dimension perturbation counts. 

Comparative analyses against contemporary methodologies reveal 

significant improvements: a 17% decrease in average energy 

consumption, a 10% boost in availability, an 8% enhancement in 

reliability, and a remarkable 23% reduction in average cost. 

Combining the strengths of fog and cloud computing with the 

refined ABC algorithm through the Dynamic Reduction 

mechanism significantly advances the efficiency and effectiveness 

of IoT service compositions. 
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I. INTRODUCTION 

The Internet of Things (IoT) represents an innovative 
technological framework enabling the interconnection of smart 
objects to facilitate collaboration, coordination, and 
communication, thereby facilitating the deployment of 
intelligent applications [1]. The IoT offers endless possibilities 
for data-driven decision-making and automation of processes. 
IoT has the potential to revolutionize both our professional and 
personal lives. With a vast network of devices and objects 
interconnected, the IoT facilitates seamless communication, 
data sharing, and intelligent decision-making, leading to 
significant advancements in numerous fields [2]. In the 
industrial environment, the IoT can enhance operational 
efficiency, automate processes, and improve productivity. IoT-

enabled systems can optimize resource utilization, streamline 
workflows, and enable predictive maintenance, reducing 
downtime and enhancing productivity. IoT applications in 
industries such as manufacturing, logistics, and healthcare can 
also reduce costs, increase safety, and improve quality [3]. 

A myriad of conveniences and benefits can be derived from 
the IoT in our daily lives. A smart home equipped with IoT 
devices can control and automate various functions, including 
lighting, temperature, and security. Personalized healthcare 
management, early detection of health issues, and improved 
well-being are possible with connected wearable devices and 
health monitoring systems [4]. IoT-enabled smart cities can 
optimize energy usage, enhance transportation systems, and 
enable efficient urban planning, resulting in sustainable and 
livable cities. Presently, the count of interconnected smart 
objects exceeds eight billion, and this figure is expected to 
undergo substantial growth annually. Smart objects exhibit 
heterogeneity in their functionalities, communication prowess, 
and available resources. Typically, these objects grapple with 
constraints in resources, particularly when they are battery-
powered devices such as wireless sensors and mobile phones, 
with limited computation and storage capacities [5]. 

The growing popularity of IoT has resulted in the rapid 
expansion of diverse IoT services across various domains. This 
includes areas such as home automation, healthcare, 
manufacturing, and agriculture. Concurrently, cloud computing 
adoption has spurred a shift towards Microservices Architecture 
(MSA) for composing services in cloud-native computing, 
particularly in the context of cloud application development [6]. 
Service composition involves a series of steps that include the 
provision of resources, resource allocation, deploying functions, 
and combining functions to create a complete service offering. 
Microservices, in this context, refer to compact functions that 
can be independently launched and expanded. They often 
employ distinct middleware stacks for their implementation. It 
is worth noting that there is a trend of migrating legacy services, 
originally built on monolithic architectures, to modular MSA to 
take advantage of technological advancements and expedite the 
development process. Containerization offers advantages over 
traditional Virtual Machines (VMs) in the cloud, particularly in 
terms of size and flexibility. Containers are lightweight, isolated 
environments that encapsulate individual microservices, 
allowing for efficient resource utilization and scalability [7]. 
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IoT applications, characterized by their diverse requirements 
and operational constraints, necessitate the seamless integration 
of various smart objects while ensuring optimal energy 
utilization and Quality of Service (QoS) provisioning. However, 
the inherent resource limitations of individual IoT devices pose 
significant challenges in achieving efficient service composition 
[8]. Traditionally, IoT devices have relied on cloud 
infrastructures to surmount resource constraints, capitalizing on 
the extensive computational resources and storage capabilities 
offered by the cloud. Nonetheless, the reliance on distant cloud 
data centers introduces latency issues, particularly for 
applications requiring real-time or low-latency responses. In 
response to these challenges, fog computing has emerged as a 
promising paradigm, positioning computational resources closer 
to IoT devices at the network edge. This approach mitigates the 
latency drawbacks associated with conventional cloud-centric 
architectures, facilitating more efficient data processing and 
service execution. 

The (IoT) is revolutionizing the way smart objects 
interconnect to facilitate intelligent applications across various 
domains, from industrial automation to personal healthcare and 
smart cities. As the number of interconnected devices surpasses 
8 billion and continues to grow, the diversity in their 
functionalities and resource constraints, especially for battery-
powered devices, poses significant challenges. Traditional 
reliance on cloud infrastructures to overcome these limitations 
introduces latency issues, particularly problematic for real-time 
applications. In this context, the study aims to address the 
integration of cloud and fog computing to enhance IoT service 
composition. By leveraging an improved Artificial Bee Colony 
(ABC) algorithm with a Dynamic Reduction (DR) strategy, the 
research seeks to optimize energy efficiency, ensure Quality of 
Service (QoS), and utilize resources effectively. The primary 
objective is to develop a cloud-fog-based service composition 
method that balances exploration and exploitation, reduces 
latency, and meets the diverse requirements of IoT applications. 

The research provides the following key contributions: 

 Innovative cloud-fog-based service composition: This 
paper introduces a novel approach to service 
composition in IoT applications, integrating cloud and 
fog computing to address the unique challenges posed by 
diverse IoT requirements and operational constraints. 

 Enhanced ABC algorithm with DR strategy: The 
research incorporates the DR strategy within the ABC 
algorithm, offering a dynamic dimension perturbation 
mechanism that significantly improves the rate of 
convergence, thus enhancing the algorithm's efficacy in 
service composition. 

 Balanced exploration and exploitation framework: The 
establishment of a balanced exploration and exploitation 
framework in service composition is achieved through 
the modulation of dimension perturbation counts. This 
ensures enhanced solution diversity, crucial for 
addressing the diverse needs of IoT applications. 

 Mitigation of latency issues: By harnessing fog 
computing at the network edge, this research effectively 
mitigates latency issues associated with traditional cloud 

data centers. The proximity of computational resources 
facilitates efficient data processing and service 
execution, leading to substantial reductions in delays. 

The reminder of this paper consists of as follows, Section II 
reviews the previous studies. Section III discuss about the 
methodology. Section IV presents the results and discussion. 
Finally, the paper concludes in Section V. 

II. LITERATURE REVIEW 

Previous research has explored various approaches to 
address service composition in IoT. Cloud computing has been 
extensively used to augment the capabilities of IoT devices, 
enabling scalable and on-demand access to resources. However, 
the inherent latency in cloud data centers may not always meet 
the stringent latency requirements of certain IoT applications. 
Fog computing, which operates at the network edge, has 
garnered significant attention due to its capability to process data 
in close proximity to the data source. This approach effectively 
reduces latency and minimizes bandwidth usage. 

The paper in [9] have put forward a novel approach for the 
composition of IoT services, with a focus on both energy 
efficiency and QoS. The proposed approach adopts hierarchical 
optimization strategies as its underlying framework. In the first 
stage, the compromise ratio technique is used to filter out 
services that match the user's unique QoS criterion. After that, a 
relative dominance idea is used to find the best service for the 
composite service. The aim of this approach is to extend the 
lifespan of IoT devices and minimize energy consumption. The 
evaluation of relative dominance takes into account various 
factors, including the energy profile of the service, QoS 
characteristics, and user preferences. Results of the simulation 
provide evidence that the proposed algorithm surpasses 
alternatives, as indicated by improved performance metrics. 
These include enhanced optimality, decreased energy 
consumption, and reduced selection time. 

The authors in study [10] have introduced a comprehensive 
framework that facilitates the development of interoperable, 
cost-effective, and customizable IoT prototypes. This 
framework is based on an architectural design that encapsulates 
any IoT component, whether hardware or operational logic, as 
an individual web service characterized by an array of 
transferable states. These IoT components may be easily linked 
into custom applications by providing a proper sequence of state 
transfers across web services. The paper establishes an 
architecture driven by a finite-state machine (FSM) model and 
presents a practical implementation of this architecture called 
the Hyper Sensor Markup Language (HSML). Furthermore, the 
paper delves into two real-world use cases and provides 
evaluations pertaining to their application within the proposed 
framework. 

The study in [11] proposed a novel approach aiming to 
identify and share common functional components within IoT 
service compositions. The objective is to integrate and optimize 
concurrent requests, ensuring that the temporal dependencies of 
shared components are not violated and thereby improving 
resource utilization. This approach enables the composition of 
IoT services in the context of concurrent requests to be 
transformed into a constrained multi-objective optimization 
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problem, which can be effectively addressed using heuristic 
algorithms. The proposed technique has been extensively 
evaluated through experiments, comparing it with state-of-the-
art algorithms. The results demonstrate the efficiency and 
performance of this approach, particularly when the number of 
IoT nodes is relatively large and their functionalities exhibit a 
high degree of overlap. 

The paper in [12] presented a novel approach to address the 
service composition problem while improving QoS. Their 
approach combines a hidden Markov model (HMM) with an ant 
colony optimization (ACO) algorithm. The HMM predicts 
quality of service, with the emission and transition matrices 
being enhanced using the Viterbi algorithm. QoS estimation is 
performed using the ACO algorithm to identify a suitable path. 
The results of their study demonstrate the effectiveness of this 
approach in terms of various QoS metrics, including availability, 
response time, cost, reliability, and energy consumption. The 
suggested approach is further validated by comparing it with 
existing methods, which confirms its superiority. 

In study [13], it introduced a hybrid approach, combining 
Artificial Neural Network (ANN) and Particle Swarm 
Optimization (PSO) algorithms, to enhance QoS factors in 
cloud-edge computing. In order to validate the accuracy and 
improve the success rate of candidate-composed services and 
QoS factors using the proposed hybrid algorithm, they have 
presented a formal verification method based on labeled 
transition systems. This verification method aims to verify 
critical Linear Temporal Logic (LTL) formulas. The 
experimental results demonstrate the exceptional performance 
of the proposed model, as evidenced by minimal verification 
time, efficient memory consumption, and the ability to 
guarantee critical specification rules specified by Linear 
Temporal Logic (LTL) formulas. Additionally, they have 
observed that the proposed model outperforms other service 
composition algorithms in terms of response time, availability, 
price, and fitness function value. 

The authors in study [14] suggested a novel approach for 
QoS-aware service composition in the context of Fog-IoT 
computing, leveraging a multi-population genetic algorithm. In 
order to address the challenges associated with the architecture 
of IoT-cloud systems, they have adopted a five-layered 
architecture, with a particular emphasis on the transport layer 
within a Fog computing environment. The transport layer has 
been further divided into four sub-layers, namely security, 
storage, pre-processing, and monitoring, which offer promising 
advantages. In addition, the authors have implemented a multi-
population genetic algorithm (MPGA) based on a QoS model, 
encompassing seven dimensions: cost, response time, reliability, 
reputation, location, security, and availability. The experimental 
results demonstrate the effectiveness of the MPGA in terms of 
fitness value and execution time, particularly when applied to a 
case study involving ambulance emergency services. These 
findings highlight the efficiency and suitability of the proposed 
approach for handling real-world scenarios. 

The paper in [15] have proposed an optimization algorithm 
called PD3QND, which is based on deep reinforcement 
learning. PD3QND incorporates various techniques, including 
Deep Q-Network (DQN), noise networks, prioritized experience 

replay, double dueling architecture, and demonstration learning. 
Experimental results demonstrate that PD3QND outperforms 
heuristic algorithms and methods such as DQN in dynamic QoS 
environments within the manufacturing IoT domain. PD3QND 
effectively balances the trade-off between exploitation and 
exploration, adapting to changes in QoS requirements. It 
successfully addresses the cold start problem and exhibits robust 
and efficient search capabilities within the solution space. 
Moreover, PD3QND demonstrates faster convergence speed 
and greater adaptability, providing a promising approach for 
optimizing manufacturing IoT systems. 

The study [16] introduced a framework for the composition 
of IoT services in fog-based IoT networks, using a multi-
objective optimization methodology. The proposed solution 
utilizes the Non-dominated Sorting Genetic Algorithm II 
(NSGA-II) algorithm. In this framework, the cloud controller is 
responsible for distributing application requests to fog servers in 
real-time. When an application request is received, fog servers 
break it down into IoT service requests and then further split 
them into specific time intervals. The suggested approach 
optimizes each time frame independently, taking into account 
parameters such as QoS, energy consumption, and fairness. The 
experimental assessment findings provide evidence of the 
efficacy of the suggested strategy. It effectively maximizes 
energy efficiency and equity while maintaining quality of 
service standards, without any decline in performance. This 
framework offers a promising solution for efficient IoT service 
composition in fog-based IoT networks. 

This paper introduced in [19] a novel method for service 
composition in IoT environments that prioritizes the QoS 
through a multi-objective fuzzy-based hybrid algorithm. The 
approach combines the strengths of fuzzy logic to handle 
uncertainties and multi-objective optimization to balance 
conflicting goals such as minimizing latency, maximizing 
throughput, and ensuring reliability. The proposed method 
enhances the flexibility and adaptability of IoT service 
compositions by dynamically adjusting to varying network 
conditions and service requirements. Critical evaluation 
highlights its significant contribution to improving service 
reliability and user satisfaction in IoT networks. However, the 
complexity of the hybrid algorithm and its computational 
overhead may pose challenges for implementation in resource-
constrained IoT devices. 

The IMBA paper [20] presented an innovative bat-inspired 
algorithm specifically designed to optimize resource allocation 
in IoT networks, particularly within the IoT-mist computing 
paradigm. This nature-inspired algorithm leverages the 
echolocation behavior of bats to efficiently search for optimal 
resource allocation solutions, thereby addressing the inherent 
constraints and dynamic nature of IoT environments. The 
critical strengths of the IMBA lie in its ability to adaptively 
balance exploration and exploitation, ensuring efficient 
utilization of computational resources and reducing latency. 
Notably, the algorithm demonstrates significant improvements 
in resource allocation efficiency and network performance. 
However, a key issue is the algorithm's potential sensitivity to 
parameter settings, which may require extensive tuning for 
different IoT scenarios. To strengthen its scientific foundation, 
future studies could investigate the robustness of IMBA across 
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diverse IoT applications and environments, and explore 
automated parameter tuning mechanisms to enhance its ease of 
deployment. 

This paper in [21] addressed the critical challenge of 
efficient resource allocation for IoT requests within a hybrid 
fog–cloud environment. It proposes a resource allocation 
strategy that dynamically distributes IoT workloads between fog 
and cloud resources based on real-time analysis of resource 
availability, latency requirements, and energy consumption. The 
strategy aims to optimize performance by leveraging the 
proximity of fog computing to IoT devices while utilizing the 
extensive computational power of the cloud for more intensive 
tasks. Key contributions of this work include a substantial 
reduction in response times and energy consumption, which are 
crucial for latency-sensitive and resource-constrained IoT 
applications. The research effectively demonstrates the benefits 
of hybrid fog–cloud architectures in enhancing QoS for IoT 
services. Nevertheless, the proposed strategy's dependency on 
accurate real-time data and its complexity in managing hybrid 
environments might present practical challenges. Further 
research could focus on refining the allocation algorithms to 
handle larger-scale IoT deployments and ensuring robustness in 
dynamic and heterogeneous IoT ecosystems. 

III. METHODOLOGY 

The suggested service composition approach integrates 
cloud and fog computing within an IoT ecosystem to capitalize 
on their strengths. Positioned at the network periphery, the fog 
layer facilitates instantaneous processing and analysis utilizing 
compact, energy-efficient devices. These devices have the 
capability to execute intelligent processes by invoking the 
outcomes of their calculations. Conversely, the cloud system is 
comprised of robust servers housed in centralized facilities and 
is responsible for managing resource-intensive operations such 
as big data analytics and machine learning. The amalgamation 
of cloud and fog computing provides numerous advantages. On 
the other hand, the robust processing and storage features of the 
cloud layer enable the efficient management of large data 
volumes and execution of complex computations, thereby 
benefiting tasks that necessitate substantial resources. The real-
time processing abilities of the fog layer effectively minimize 
latency and enhance response times, rendering it well-suited to 
time-sensitive applications. This model significantly optimizes 
data analysis and processing, resulting in notable improvements 
in scalability, effectiveness, and performance for organizations. 
Furthermore, it has the potential to yield better security measures 
and cost reductions. As illustrated in Fig. 1, the model follows a 
three-layered architecture, which encompasses the IoT, fog, and 
cloud layers. The IoT tier consists of sensors and intelligent units 
that together form the IoT environment. The fog layer functions 
as an intermediary between cloud services and IoT devices, 
where fog nodes efficiently receive and process requests. 
Depending on the immediate needs of applications, queries may 
be directly managed inside the fog layer or forwarded to the 
cloud layer for further analysis. 

Within the domain of IoT service composition, IoT nodes 
are categorizable into two distinct classes: Abstract Services 
(ASs) and Concrete Services (CSs). Abstract services provide 
higher-level descriptions that encapsulate the functionalities 

provided by a group of concrete services. These abstract services 
offer a more generalized representation of the services available 
within the IoT system. On the other hand, concrete services refer 
to specific, invocable services offered by individual IoT 
components. 

 

Fig. 1. System architecture. 

Concrete services exhibit a dual nature, comprising 
functional attributes and non-functional aspects. Functional 
characteristics encapsulate the explicit functionalities that a 
service provides. These characteristics outline the core 
functionality and purpose of the service. On the other hand, non-
functional features encompass various QoS factors associated 
with the service. These aspects include parameters such as 
energy, cost, reliability, and response time. Non-functional 
features provide important criteria for evaluating and selecting 
services based on their performance and operational 
characteristics. The composition of IoT services entails the 
creation of composite services through the interconnection of 
atomic services using diverse structural patterns. Within a 
composite service, various structural patterns can be employed 
to specify the interactions among atomic services. Six 
discernible forms of composition structure patterns include: 

 Sequential: Atomic services are executed in a sequential 
order. 

 AND split (Fork): The execution is split into multiple 
branches, and all branches are executed concurrently. 

 XOR split (Conditional): The execution splits into 
multiple branches, but only one branch is selected and 
executed based on a condition. 

 Loop: An atomic service or a set of atomic services is 
repeated until a specific condition is met. 

 AND join (Merge): Multiple branches are joined 
together, and the execution continues after all branches 
have been completed. 

 XOR join (Trigger): The execution waits for a condition 
to be satisfied before continuing. 

In the mentioned context, the focus is on the sequential 
model of composition. Nevertheless, it is crucial to emphasize 
that alternative composition schemes possess the potential to be 
streamlined or converted into sequential schemes through 
established methodologies, as indicated in the reference. Fig. 2 
provides a visual representation of how IoT services are 
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composed, illustrating the interconnection between atomic 
services. In the IoT, evaluating QoS parameters is crucial to 
differentiate between services and make informed decisions. 
The paper adopts a perspective on service composition that 
regards service sequences as workflows. QoS concerning IoT 
services refers to non-functional attributes, including reliability, 
availability, response time, and throughput. QoS values can be 
provided by service providers or determined by the users based 
on their specific requirements. Users often exhibit diverse 
preferences and requisites concerning factors such as packet 
loss, resource costs, reliability, and response time among other 
factors. The study concentrates on evaluating services based on 
four QoS properties as follows: 

 Energy: This indicator assesses the energy efficiency and 
sustainability of a service by measuring the amount of 
energy it consumes throughout its operating period. 

 Cost: This factor represents the monetary expenditure 
required for users to acquire the desired service, 
encompassing the financial dimension of utilizing the 
service. 

 Reliability: Reliability is a measure of a service's 
capacity to operate with precision and consistency, 
without any faults or malfunctions, in order to achieve 
the desired results. 

 Availability: This measure reflects how long a service 
remains available over a certain period, indicating the 
dependability and availability of the service for users. 

 
Fig. 2. The process of IoT service composition. 

The method integrating cloud and fog computing for IoT 
service composition was chosen to capitalize on the 
complementary strengths of these paradigms, addressing the 
inherent limitations of IoT systems. This hybrid approach 
leverages the fog layer's ability to perform real-time processing 
and analysis at the network edge, significantly reducing latency 
and enhancing response times for time-sensitive applications. 
The cloud layer, with its robust processing and storage 
capabilities, efficiently handles resource-intensive tasks such as 

big data analytics and machine learning, which are beyond the 
capacity of individual IoT devices. This integration aims to 
optimize data processing and analysis, thereby improving 
scalability, effectiveness, and performance for a wide range of 
applications. Additionally, it enhances energy efficiency, 
reduces operational costs, and provides better security measures 
by distributing the computational load between the fog and 
cloud layers. The method was selected to meet the diverse and 
dynamic requirements of IoT environments, ensuring a balanced 
and efficient service composition that can adapt to varying user 
needs and network conditions. 

Table I delineates distinct QoS aggregation functions 
employed for evaluating the suggested dynamic service 
composition model. These aggregation functions play a pivotal 
role in efficiently ascertaining the most favorable service 
composition aligned with users' desires and needs. This 
determination considers attributes encompassing availability, 
reliability, energy, and cost. The study utilizes the Simple 
Additive Weighting (SAW) technique to convert the combined 
QoS values, which have varying ranges and units, into a single 
global value. 

TABLE I.  QOS AGGREGATION FUNCTIONS FOR SERVICE COMPOSITION 

Attribute Function 

Energy 𝑞𝑒(𝑆) =∑ 𝑞𝑒(𝑠𝑖)
𝑛

𝑖=1
 

Cost 𝑞𝑐(𝑆) =∑ 𝑞𝑐(𝑠𝑖)
𝑛

𝑖=1
 

Reliability 𝑞𝑟(𝑆) =∑ 𝑞𝑟(𝑠𝑖)
𝑛

𝑖=1
 

Availability 𝑞𝑎(𝑆) =∑ 𝑞𝑎(𝑠𝑖)
𝑛

𝑖=1
 

The study focuses on an objective function aimed at 
minimizing. It employs positive and negative normalization 
formulas, as indicated in Eq. (1) and Eq. (2), correspondingly 
Cs. Qi represents the ith attribute value for a particular concrete 
service, while 𝑄𝑖𝑚𝑎𝑥 and 𝑄𝑖𝑚𝑖𝑛 reflect the greatest and lowest 
values of the ith attribute across all the concrete services in the 
service candidate set. In order to assess the suitability of a certain 
solution, the study builds a fitness function based on Eq. (3). 
Each attribute of QoS inside an atomic service is weighted by 
Wi. The weights are bounded between the range of 0 and 1 (0 ≤ 
𝑊 ≤ 1), and the total sum of all weights ∑4𝑖=1𝑊𝑖 is equivalent 
to 1. Qi denotes the cumulative attribute value of the solution 
that corresponds to the ith QoS attribute. 
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In the context of IoT service composition, the energy 
consumption of candidate services is an important factor that 
significantly affects the devices hosting those services. To 
facilitate the selection of services with better energy-saving 
effects, each candidate service is associated with an energy 
consumption parameter. The energy profile of a specific service 
represented as EproFile(Csij), consists of several variables. One 
of the factors is the service's autonomy, denoted as SA(Csij). The 
autonomy of a service is determined by the power capacity of 
the device that hosts the service. The calculation is performed 
using Eq. (4), where CE(Csij) represents the current energy level 
of the battery-powered device housing the service Csij, and 
ET(Csij) represents the energy threshold of the battery-powered 
device capable of hosting the service Csij. 

𝑆𝐴(𝐶𝑠𝑖𝑗) = 𝐶𝐸(𝐶𝑠𝑖𝑗) − 𝐸𝑇(𝐶𝑠𝑖𝑗) (4) 

The energy consumption for operating a concrete service, 
represented as EC(Csij), remains fixed and can be determined 
using Eq. (5). The equation defines RT(Csij) as the mean 
duration of the service Csij, and ECR(Csij) as the rate at which 
energy is used. 

𝐸𝐶(𝐶𝑠𝑖𝑗) = 𝐸𝐶𝑅(𝐶𝑠𝑖𝑗) × 𝑅𝑇(𝐶𝑠𝑖𝑗) (5) 

Thus, Eq. (6) is used to compute the energy profile for the 
service Csij, considering the variables of autonomy and energy 
consumption. 

𝐸 𝑃𝑟 𝑜 𝐹𝑖(𝐶𝑠𝑖𝑗) =
𝐸𝐶(𝐶𝑠𝑖𝑗)

𝑆𝐴(𝐶𝑠𝑖𝑗)
 (6) 

A low energy profile suggests that the IoT device running 
the service Csij has a comparatively extended lifespan. Hence, 
Eq. (7) is used to compute the energy profile for composite 
services. Within this equation, the variable xi denotes the 
specific component chosen from the abstract service class, 
corresponding to the ith position. 

𝐶𝐸 𝑃𝑟 𝑜 𝐹𝑖(𝑥) =∑𝐸𝑃𝑟 𝑜 𝐹𝑖𝑙𝑒(𝑥𝑖)

𝑛

𝑖=1

 (7) 

The ABC algorithm is a popular optimization algorithm that 
draws inspiration from the foraging activity of bees. It employs 
the principles of labor division and knowledge sharing to 
address both continuous and discrete optimization issues. ABC 
is renowned for its straightforwardness, few control settings, and 
robust stability. The population in ABC consists of three distinct 
categories of bees: worker bees, observer bees, and scouts. 
These bees are linked to three exploration procedures: the 
employed bee stage, the onlooker bee stage, and the scout stage. 
The quantity of engaged bees is the same as the quantity of 
spectator bees. 

The process begins by establishing an initial population of n 
solutions, denoted as Xi = (xi,1, xi,2, ..., xi, D), where i ranges from 
1 to n. In this context, n represents the size of the population, 
whereas D refers to the size of the dimension. During the 
employed bee stage, each individual bee is assigned the task of 
investigating the surrounding area of a particular solution. The 
employed bee associated with the ith solution, Xi, develops a new 
solution, Vi, following a search method outlined in Eq. (8). 

𝑣𝑖,𝑗 = 𝑥𝑖,𝑗 + 𝜑𝑖,𝑗(𝑥𝑖,𝑗 − 𝑥𝑘,𝑗) (8) 

In Eq. (1), 𝜑 is a stochastic variable that takes on values 
uniformly distributed in the interval [-1, 1], xk denotes a distinct 
solution chosen at random from the group, with the exception of 
the current solution 𝑋𝑖 (where 𝑘 is not equal to 𝑖), j is a number 
selected at random from the set of integers ranging from 1 to D, 
and D is the size of the dimension. The conventional ABC 
algorithm utilizes an elite selection technique to decide whether 
Vi or Xi is selected for the subsequent iteration. If Vi is superior 
to Xi, it supplants Xi in the population. Eq. (8) states that the 
disparities between Vi and Xi are only present in the 𝑗th 
dimension. For the other 𝐷-1 dimensions, the values of Vi and Xi 
are identical. As a result, Vi and Xi exhibit a high degree of 
similarity, and the step size for the present search is minimal 
since it only investigates a single dimension. Consequently, the 
search process can see a decrease in speed. 

During the observer bee stage of the ABC algorithm, the 
primary emphasis is placed on conducting an extensive search 
rather than examining the surroundings of all solutions inside 
the swarm. The solutions chosen in this phase are determined by 
their selection probabilities, which are computed using Eq. (9). 
The probability of selecting the 𝑖-th option, denoted as 𝑝𝑟𝑜𝑏𝑖, is 
derived based on the fitness value of 𝑋𝑖, which is calculated 
using Eq. (10). Eq. (10) calculates the fitness value of the 
solution 𝑋𝑖, where 𝑓V𝑎𝑙𝑖 represents the function value of 𝑋𝑖. 

𝑝𝑟𝑜𝑏𝑖 =
𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖

∑ 𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑗
𝑆𝑁
𝑖=1

 (9) 

𝑓𝑖𝑡𝑛𝑒𝑠𝑠𝑖 = {

1

1 + 𝑓𝑣𝑎𝑙
, 𝑖𝑓𝑓𝑣𝑎𝑙𝑖 ≥ 0

1 + |𝑓𝑣𝑎𝑙𝑖|, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

 (10) 

The observer bees, like the worker bees, generate a new 
solution 𝑉𝑖 using Eq. (8) and then evaluate its function value 
against 𝑋𝑖. If 𝑉𝑖 is superior to 𝑋𝑖, it supplants 𝑋𝑖 in the population 
for the subsequent iteration. 

In the elite selection approach, if 𝑉𝑖 is inferior to 𝑋𝑖, it 
signifies that the enhancement of 𝑋𝑖 is seen as a failure. If 𝑉𝑖 is 
superior to 𝑋𝑖, the enhancement is considered successful. A 
counter, denoted as 𝑡𝑟𝑎𝑖𝑙𝑖, is used to monitor the number of 
failures for each solution in the population. If the value of 𝑡𝑟𝑎𝑖𝑙𝑖 
grows quite big, it indicates that 𝑋𝑖 could have reached a local 
minimum and is unable to move away from it. In such instances, 
𝑋𝑖 is reset using Eq. (11). 

𝑥𝑗 = 𝐿𝑜𝑤𝑗 + 𝑟𝑗 . (𝑈𝑝𝑗 − 𝐿𝑜𝑤𝑗) (11) 

In Eq. (11), 𝑟𝑗 is a random number within the range [0, 1], 
and [Low, Up] represents the definition domain of the problem. 

A technique called dimensional perturbation with a DR 
approach is suggested to enhance the traditional ABC algorithm 
by addressing the problem of delayed convergence and 
improving exploitation. At first, the number of dimension 
perturbations is assigned a high value, which must be less than 
the dimension size (D). By increasing the number of dimension 
perturbations, it is possible to create greater disparities between 
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children and their parent solutions. This aids in expediting the 
search process and swiftly identifying superior options. 

As the iterations continue, the frequency of dimension 
disturbances gradually reduces. The objective of reducing the 
number of dimension perturbations is to minimize the 
differences between offspring and their parent solutions, hence 
enhancing the identification of more precise solutions. Eq. (12) 
governs the dynamic updating of the number of dimension 
perturbations, which is indicated as DP(t). 

𝐷𝑃(𝑡) = (1 −
𝑡

𝑇𝑚𝑎𝑥0

) (12) 

Eq. (12) defines 𝑇𝑚𝑎𝑥 as the maximum number of repetitions, 
and 𝐷0 as the beginning value for dimension perturbation. The 
suggested technique sets the value of 𝐷0 as the product of 𝜆 and 
𝐷, where 𝜆 is a parameter that falls within the range of (0,1). At 
the start of the procedure, at iteration 0, (0) is equivalent to 𝐷0. 
During the course of the iterations, 𝐷(𝑡) steadily diminishes 
from 𝐷0 to zero. However, if the value of 𝐷(𝑡) drops below 1, 
the number of dimension perturbations will be fewer than one, 
which is considered unacceptable. In order to prevent this 
scenario, a simple approach is used, as shown in Eq. (13). 

𝐷𝑃(𝑡) = {
𝐷𝑃(𝑡), 𝑖𝑓𝐷𝑃(𝑡) ≥ 1

1, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (13) 

IV. RESULTS AND DISCUSSION 

The simulation was performed using a CPU core i5 2.5 GHz 
with 8GB RAM, and the programming language used was 
MATLAB R2020a. MATLAB is widely recognized as one of 
the best tools for simulating metaheuristic algorithms, and it is 
commonly employed in research papers. The QWS dataset was 
utilized, which consists of QoS measurements for 2507 service 
implementations. To deal with fluctuations in QoS values under 
dynamic IoT conditions of service delivery, a technique 
randomly updates the QoS status after each service iteration by 
multiplying each QoS value with a random integer between 0.9 
and 1.1. 

The assessment of the suggested approach comprises four 
essential quality of service metrics: cost, energy, reliability, and 
availability. The findings clearly indicate the exceptional 
efficacy of the suggested approach. The simulation experiments 
were performed using 10, 30, 50, 70, and 100 service classes, 
each representing a specific job, and a pool of 50 potential 
services. Fig. 3 presents a comparison of the energy parameter 
of the proposed technique with the methods specified in studies 
[9], [17], [18]. Fig. 4 and Fig. 5 depict the logarithm (base 10) 
of the attained outcomes for the availability and reliability 
metrics, correspondingly. The figures demonstrate that the 
suggested strategy produces good results in all three indicated 
parameters. Fig. 6 demonstrates that the cost parameter of the 
suggested technique is lower compared to other algorithms. As 
the quantity of requests grows, this parameter undergoes a 
substantial reduction. This may be credited to the efficient 
choice of services facilitated by the suggested algorithm. 

 
Fig. 3. Energy consumption comparison. 

 

Fig. 4. Availability comparison. 

 
Fig. 5. Reliability comparison. 

 

Fig. 6. Cost comparison. 
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The performance of the proposed method was assessed 
against benchmark algorithms considering four key parameters, 
namely variation time rate (Jitter), Packet Delivery Ratio (PDR), 
throughput, and average end-to-end delay. Jitter is the 
fluctuation in delay that occurs in the transmission of data 
packets between two nodes. Jitter is a prominent measurement 
that exerts a substantial impact on real-time applications. PDR 
is the proportion of successfully received data packets to the 
total number of data packets sent. Throughput denotes the rate 
at which data may be transmitted via a communication channel, 
measured as a ratio of data transferred to time. End-to-end delay 
refers to the average duration it takes for a data packet to reach 
its destination node, including the time required to compute its 
arrival time. 

Fig. 7 depicts the rate of change of the end-to-end packet 
delay (jitter) for the proposed technique, as compared to the 
benchmark algorithms PSO, GA, and FSCA-EQ. This figure 
demonstrates that the curve of the suggested method constantly 
surpasses other state-of-the-art procedures. Our technique is 
regarded as an asymptotically optimum algorithm. 
Consequently, the outcomes are not excessively responsive to 
the original control values. 

Fig. 8 illustrates the fluctuation of PDR for the suggested 
technique compared to other cutting-edge algorithms. Our 
solution clearly outperforms other methods in terms of 
providing a high PDR for data packets via the network. 

Fig. 9 presents a comparison of approaches based on the 
overall throughput. Our approach achieved a significant 
improvement of around 53% and 75% compared to GA and 
FSCA-EQ, respectively. At first, the FSCA-EQ and GA are 
inherently parallel. This parallelism enables the identification of 
all potential options for achieving an ideal solution in several 
directions. Nevertheless, these strategies do not provide a 
universal solution for wireless network difficulties, particularly 
when they are time-related. The efficiency of FSCA-EQ and GA 
is contingent upon both the population size and the values of the 
input control parameters. Consequently, this has a negative 
impact on both the predicted operating time and the 
computational cost. This accounts for the decrease in the slope 
of the FSCA-EQ and GA curves when the service size is 
enlarged. Conversely, the proposed method curve has 
demonstrated a very high throughput rate as it remains 
unaffected by the change in population size. 

According to Fig. 10, our solution surpasses previous 
methods by providing decreased latency as the arrival rate 
increases. It demonstrates a significant improvement of around 
65%, 58%, and 71% compared to GA, FSCA-EQ, and PSO, 
respectively. The stability of the suggested approach was the 
defining characteristic of its curve, surpassing that of other 
benchmark algorithms. It should be noted that the behavior of 
the suggested technique remains mostly unchanged when the 
scale of the network is altered. The benchmark algorithms, 
namely FSCA-EQ, GA, and PSO, exhibit a linear trend where a 
rise in the service scale is accompanied by an increase in the 
delay time. In contrast, our approach exhibits consistent 
performance even when the scope of the services is expanded. 

 
Fig. 7. Jitter comparison. 

 
Fig. 8. PDR comparison. 

 
Fig. 9. Throughput comparison. 

 
Fig. 10. End-to-end delay comparison. 
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The research findings highlight the exceptional efficacy and 
novelty of the proposed service composition approach, 
integrating cloud and fog computing within an IoT ecosystem. 
The assessment, which focused on four essential QoS metrics—
cost, energy, reliability, and availability—demonstrated 
significant improvements across all parameters when compared 
to existing methods. Specifically, the proposed technique 
showed lower energy consumption and cost, which can be 
attributed to the efficient selection of services facilitated by the 
algorithm. The simulation experiments, spanning multiple 
service classes and requests, consistently indicated superior 
performance in availability and reliability metrics. Additionally, 
the proposed method outperformed benchmark algorithms in 
terms of jitter, Packet Delivery Ratio (PDR), throughput, and 
end-to-end delay. Notably, the technique achieved a substantial 
improvement in throughput (53% and 75% higher than GA and 
FSCA-EQ, respectively) and demonstrated remarkable stability 
and lower latency even as the service scale increased. This 
consistency and robustness in performance, unaffected by 
network scale changes, underscore the method's capability to 
effectively handle diverse and dynamic IoT environments, 
presenting a significant advancement in IoT service 
composition. The findings validate the proposed approach as a 
highly efficient and scalable solution, offering substantial 
improvements over state-of-the-art algorithms, and confirming 
its potential to enhance real-time processing, resource 
allocation, and overall QoS in IoT applications. 

V. CONCLUSION 

The proposed method enhances IoT service composition by 
building on the ABC algorithm, a nature-inspired optimization 
technique. The study introduces a Dynamic Reduction (DR) 
methodology to optimize the ABC algorithm, dynamically 
adjusting the number of dimension perturbations during solution 
generation. This approach effectively balances the trade-off 
between exploration and exploitation, fostering diversity in 
solutions during the initial phases and promoting convergence 
toward optimal solutions in later iterations. The experimental 
results highlight substantial improvements with the proposed 
algorithm: a 17% reduction in average energy consumption, and 
enhancements in availability and reliability by 10% and 8%, 
respectively. Additionally, a notable 23% reduction in average 
cost underscores the economic viability of this approach for 
QoS-aware service composition in IoT. 

However, while these results are promising, there are 
limitations to consider. The complexity of the DR methodology 
may pose challenges in terms of computational overhead and 
implementation in resource-constrained IoT devices. 
Furthermore, the performance gains observed in controlled 
experimental settings may not fully translate to real-world 
environments with diverse and dynamic IoT applications. 

Future work should focus on addressing these limitations by 
optimizing the computational efficiency of the DR methodology 
and validating its performance in varied real-world scenarios. 
Potential areas for improvement include exploring automated 
parameter tuning to enhance adaptability and investigating the 
integration of this approach with emerging edge computing 
paradigms. Additionally, expanding the scope of QoS metrics to 
include other critical factors such as security and user 

satisfaction could provide a more comprehensive evaluation of 
the proposed method's effectiveness. By addressing these areas, 
the robustness and applicability of the proposed service 
composition approach can be further strengthened, paving the 
way for more reliable and efficient IoT systems. 
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