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Abstract—The integration of IoT systems in agriculture has 

become a very important need amid the high population and 

increasingly limited farmland, which demands researchers to be 

more innovative in addressing these issues. Using IoT systems for 

automatic irrigation, fertilization, and cooling based on sensor 

values through internet networks. Poor internet connection leads 

to the failure of automation and sustainability in online conditions, 

which can be very dangerous for plants. This paper presents a new 

IoT-based control system divided into two parts: an automation 

system and an IoT system, which can maintain sustainability in 

online conditions to ensure that plants in the planting area are 

always controlled. In addition, the sensors used have undergone 

calibration processes to determine the increase in precision of the 

sensor values produced. The research results show that the system 

can maintain sustainability under online conditions. Mobile apps 

are available for control when the system is online, but if it goes 

offline and is unable to reconnect, the Arduino Mega will fully 

manage control using soil moisture sensor values for irrigation 

processes if the values fall below a certain threshold. This 

demonstrates the sustainability of the system in online conditions, 

allowing continuous control and reducing the risk of plant death 

in the planting area. The calibration result shows an increase in 

precision for the air temperature and humidity (DHT 11 sensor) 

by 7.14 and 6.15, respectively. Additionally, the precision 

improvement for the soil pH sensor is 1.81, while for the soil 

moisture sensor and the water flow sensor, it is 0.13 and 0.008, 

respectively. 
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I. INTRODUCTION 

The increasing population and shrinking agricultural land, 
as well as the increasing need for food, demand researchers to 
be more innovative in addressing these issues. In smart 
agriculture, researchers have a way of integrating IoT systems 
in the field of agriculture. The IoT system is used for automatic 
scheduled irrigation, fertilization, cooling, or sensor value-
based. The system can perform tasks automatically by loading 
or uploading data to and from a database located in the cloud. 
If there is an internet network problem (offline), the automatic 
process will not run, and this situation can be very dangerous 
for plants. In general, the IoT system is unable to reconnect 
automatically to the internet network after a network problem 
occurs (offline), and this is a fundamental problem in 
integrating IoT systems in the field of agriculture. This study 
offers a new control system for smart agriculture based on IoT 

and addresses the research gap that the IoT system does not 
have full control over the entire system but rather serves as a 
tool to control and monitor planting areas so that the system's 
sustainability is ensured in online or on conditions and 
automation is maintained [1]. 

Specifically in urban areas, the construction of high-rise 
buildings continues to be carried out. The rooftops of these 
buildings can be utilized as farming areas for smart agriculture 
by installing greenhouses equipped with pipes and irrigation 
hoses, as seen in the following Fig. 1. 

 

Fig. 1. Greenhouse on the rooftop 

The greenhouse on the third floor, at a height of 12 meters, 
is located on campus at IBI Darmajaya at coordinates (-
5.3774079, 105.2474507) as a place for research. The planting 
area in the greenhouse is divided into two with sizes of 8 x 13 
meters and 8 x 10 meters, both in one control system. There are 
two air ventilators equipped with exhaust fans in each 
greenhouse. Each ventilator has a size of 0.5 x 0.5 meters. There 
are 160 polybags containing a mixture of soil and fertilizer used 
as planting media, each polybag is provided with water and 
liquid fertilizer channels using drip hoses. Each plant in the 
polybag is connected to pipes and hoses as irrigation and 
fertilization channels. In addition to offering a new control 
system for IoT-based smart agriculture, this research also offers 
a new mobile app for control and monitoring of agricultural 
areas in the greenhouse. Other researchers still use websites [2]-
[7]. This will make it difficult for users to use the system, 
especially considering that the users are still very unfamiliar 
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with websites. Meanwhile, the control and monitoring that 
already use mobile applications [8]-[11], according to the 
researchers, still require improvements in the system. 

IoT is a new field in the information technology and 
communication industry that connects almost everything to the 
internet. On the other hand, automation is a continuous cycle 
process that runs without manual intervention until the operator 
decides to stop the process. In theory, two approaches can be 
applied in smart farming, namely automation and IoT. In 
general, IoT systems are shown in Fig. 2 as follows. 

 

Fig. 2. General system IoT  [14], [15] 

The automation system can be seen in Fig. 3, and the 
integration of both to maintain the sustainability of the system 
is an initial hypothesis to be presented in the results of this 
research. The device section is divided into two parts, the first 
part is for the automation system, and the other part is used for 
the IoT system. 

 

Fig. 3. Automation system [16] 

There are mobile apps or websites used by users to monitor 
and control devices through the cloud. Devices can be in the 
form of a nodeMCU as the controller for sensors or actuators. 
There are two ways to communicate with devices on the node, 
namely through the Message Queue Telemetry Transport 
(MQTT) model [17] and Hypertext Transfer, which Protocol 
(HTTP) [18]. This study focuses on HTTP protocol 
communication and will divide the IoT system into two parts, 
namely the automatic system and the IoT system. 

II. RELATED WORKS 

In IoT, system security is very important to ensure that data 
from sensors and users is sent and read properly. Network 
security systems in IoT from the hardware side use the 
hardware platform security Advisor (IoT HarPSecA) 
framework, which can be used safely and easily with the 
elimination of security requirements and good security 
practices [19]. In addition to hardware security, network 
security from the network side using the provenance-based 
network layer forensics IoT (ProvMNet-IoT) method produces 
the best value when compared to other methods [20]. When 
encapsulation and extensible markup language (XML) methods 
are used to communicate between sensor nodes and actuators, 
data loss drops by 1.53% between nodes and 0.4% between the 

gateway and the server [21]. The improper selection of routes 
during data transmission between nodes is one of many factors 
that affect data loss. Besides data loss, the energy required also 
increases. This energy efficiency can be reduced using the 
Incremental Grey Wolf Optimization (IGWO) and Expanded 
Grey Wolf Optimization (Ex-GWO) methods [22]. Improving 
the Adaptive Data Rate (ADR) mechanism to enable cellular 
LoRa increases the performance of long-range wide area 
(LoRA) connectivity by up to 520% [23]. Finding strange data 
on wireless sensors using the DLSHiForest method based on 
Locality-Sensitive Hashing and the time window technique 
works more accurately and quickly than other methods [24]. To 
maintain privacy and user device collaboration in the cloud, the 
implementation of the Hierarchical Data Sandboxing module 
can maintain hierarchically organized application data [25]. 
The use of fog computing only reduces the time delay of control 
and monitoring processes, so this automation integration will 
have a better impact than fog computing [26]. 

The greenhouse is not always located in agricultural areas 
or on the rooftops of buildings, it can also be placed in coastal 
areas, Of course, the provision of freshwater as a source of plant 
nutrition in the greenhouse must be available. The process of 
converting seawater into fresh water for plant needs is also 
carried out. To achieve production efficiency, the prediction of 
this water production also needs to be done well by applying 
the Copula Bayesian Average Model (CBMA), where the Root 
Mean Square Error (RMSE) value is 40% [27]. Monitoring 
nutritional deficiencies in plants using a system engineering 
approach produces a dependability value of 0.9, indicating a 
very good confidence level in the monitoring system [28]. The 
precise use of water in the greenhouse is very important, To 
achieve this, the Decision Support System for Precision 
Irrigation (DSSPIM) can be implemented, and by applying this 
system, water usage for irrigation can be saved by 20% [29], 
Using evaporative cooling, compare two greenhouses, one of 
which is modified, resulting in a 40% water savings [30]. 
Another method to optimize irrigation in the greenhouse using 
recirculation (RC), with an efficiency obtained of 44–93% [31]. 
In addition to irrigation efficiency, the emission of irrigation 
from research that has been carried out produces the right 
recommendations in the irrigation or fertilization process so as 
not to have a negative impact on the environment [32]. The 
sensors used to determine the results of the irrigation process 
are soil moisture sensors, one of which uses semi-empirical soil 
moisture [33]. A multimodal neural network to estimate plant 
water stress can increase the accuracy of plant water stress 
estimation by 21% [34]. 

The optimal agricultural results from the greenhouse 
farming process are highly desirable for every farmer, which 
can be achieved through efficient energy use in the greenhouse. 
Various methods and models are used to obtain efficiency 
through modeling so that the right controllers can be applied in 
the greenhouse to achieve efficiency. Modeling with 
parameters such as internal greenhouse temperature and solar 
radiation shows a 24–34% reduction in efficiency. The 
application of Perception Model Representing (PMR) shows an 
RMSE value of 7.7–16.57% for energy prediction. Maximizing 
the plant photosynthesis process in the greenhouse by adding 
Light Emitting Diode (LED) light instead of using lamp light 
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results in an energy efficiency of 10–25%. In areas with 
extreme heat, cooling the greenhouse using a pressure droplet 
system achieves an efficiency value that is 6.9 times smaller 
compared to cooling with a chiller. In addition to adding LED 
light to enhance photosynthesis, CO2 enrichment is also done. 
Local enrichment is 4.4 times more effective in terms of 
efficiency compared to overall enrichment. By comparing 
conventional open-field farming with soil-based and 
hydroponic greenhouse cultivation, we can see that CO2 
production in vertical farming is 5.6 to 16.7 times higher than 
in conventional farming in baseline scenarios and 2.3 to 3.3 
times higher in alternative scenarios [40]. 

The use of photovoltaics can also generate energy efficiency 
each year, with photovoltaics producing 3,705 kWh of energy 
for greenhouse needs [41]. Using a multi-layer Feature Model 
can also reduce energy consumption [42]. Desalination systems 
and greenhouses for air, soil, plants, and land can generate 
around 85% of the water needed for tomato growth while also 
reducing cooling loads by more than 25% [43]. Utilizing an 
open-field and high-tech greenhouse systems approach can help 
reduce energy needs [44]. Airflows in a rooftop greenhouse 
(iRTG) produce harvested heat energy that can circulate into 
buildings with integrated HVAC systems, totalling 205.2 
kWh/m2y1. [45]. 

Various methods for predicting greenhouse temperature and 
humidity to facilitate decision-making in maintaining 
greenhouse stability have been conducted by many researchers, 
including studies applying one-dimensional transient energy 
balance methods [46], the thermal performance of a 3D tomato 
model with a temperature prediction and real-time difference of 
around 5o Kelvin [47], using Gradient Boost Decision Tree 
with an RMSE value of 0.645 [48], and a combination of water 
curtains and liquid foam [49], using Tiny Machine Learning for 
microclimate in greenhouses, resulting in an average accuracy 
of 97% [50]. A greenhouse lighting model for supplementary 
lighting using LED with the Synthetically Active Radiation 
method resulted in an RMSE value of 5.5% [51]. A 
computation model for maintaining network connectivity in 
IoT systems is with a hybrid fault tolerance model with an 
accuracy level of 12.9% [52]. Thermoelectric generator (TEG) 
modules utilize thermal energy generated in greenhouses to 
produce electricity as an alternative energy source for IoT 
systems, with TEG producing an optimal voltage of 3 volts 
[53]. Manual and automatic irrigation controllers using Arduino 
and NRF24L01 sensor-based IoT systems are believed to save 
recruitment budget and increase productivity for farmers in 
managing agricultural crops [54], [55]. IoT systems using 
ESP32 can be used as weather stations to monitor air quality, 
with air quality data stored in text files [56]. IoT server 
integration based on cloud fog application placement strategies 
can reduce costs and energy consumption [57]. Two-way non-
orthogonal multiple access (TW-NOMA) gives faster data rates 
[58]. A simulation of an IoT network's dual access scheme 
based on user groups demonstrates this. 

Agriculture in a greenhouse with a closed environment with 
insect nets will not be immune to pest attacks, although the 
likelihood is lower compared to agriculture outside the 
greenhouse. Several types of pest attacks and control methods 
are used. For example, depthwise convolutional networks can 

find the Red Palm Weevil (RPW) with a 95.70% ± 1.46% 
accuracy [59], and the proposed deep learning Faster Regions 
with Convolutional Neural Networks (R-CNN) has the best 
recognition accuracy at 99.0% [60]. An early warning system 
for pest attacks on cucumber downy mildew using experimental 
evaluation method based on weather forecast input is 
implemented [61]. 

Researchers have also extensively studied the integration of 
machine learning in smart farming. Machine learning is 
artificial intelligence related to identifying patterns in data and 
using those patterns to make predictions about unseen data [62]. 
In other words, computer programs that are built to 
automatically improve their abilities with experience or 
learning. Decision tree is an algorithm used for decision-
making where each option branches out. The shape or structure 
of a decision tree has roots and leaves like a tree, but upside 
down, where the root is at the top and the leaves are at the 
bottom. The use of decision trees to classify data classes allows 
accurate predictions of target classes from various data. 
Decision trees have rules, and each rule represents a different 
way from the root to each leaf. These rules are also called 
algorithms that have been developed based on decision trees. 
[63]. 

III. METHOD 

The IoT sustainability system, whether online or on 
condition, is very important to ensure that the plants in the 
greenhouse are kept under controlled and well-monitored 
conditions. In conventional IoT systems, to automatically 
activate the water pump in the process of watering the plants, 
data must be loaded from the database in the cloud, making the 
system heavily dependent on the stability of the internet 
network. If the internet network is in good and stable condition, 
smart farming automation in the greenhouse will work well. 
However, if the opposite is true, automation will not work 
properly, posing a serious threat to the plants in the greenhouse, 
especially if it is located on a rooftop. 

 

Fig. 4. System design 

The new design of the control system is shown in Fig. 4, 
and each sensor is being calibrated to find out what its root 
mean square error (RMSE) is for the data from that sensor [64]. 
The RMSE formula serves as a metric for evaluating the 
performance of sensors in accurately measuring actual values. 

𝑅𝑀𝑆𝐸 =  √
∑𝑛

1 (𝑦𝑖 − 𝑦𝑖) 2

𝑛
   (1) 
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The formula for calculating sensor precision uses the RMSE 
of a series of measurements, where n stands for the quantity of 
samples or measurements, yi for the actual value (calibrator), 
and denotes the value the sensor measured. The standard 
approach to calculating sensor precision involves utilizing the 
RMSE derived from a series of measurements. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
1

𝑅𝑀𝑆𝐸
    (2) 

The new smart farming control system being offered uses 
two microprocessors. The first microprocessor on the Arduino 
Mega board controls the system automatically based on soil 
humidity sensor data, while the second microprocessor on the 
ESP8266 board is used for the IoT system connected to the 
cloud and mobile app. Both microprocessors communicate. 
Serially, and each microprocessor works independently. The 
flowchart of the automatic system on the Arduino Mega 
microprocessor is shown in Fig. 5 as follows. 

 

Fig. 5. Automatic system design 

Initialization of the pins used as sensor data paths and serial 
data communication from other microprocessors is done during 
the initial setup of the microprocessor. If there is data in the 
microprocessor's serial buffer requested from the HTTP server, 
the microprocessor will command the relay module to turn on 
or off according to the relay number instructed. However, if 
there is no data, the microprocessor will read data from each 
sensor, and the relay will turn on or off according to the 
predetermined threshold. The threshold used is the soil 
moisture sensor, which has a humidity range of 20% to 80% 
[64]-[66]. 

The algorithm on the HTTP server can be seen in Fig. 6. 
POST and GET are sent and received from the mobile app and 
NodeMCU ESP8266. HTTP GET from NodeMCU is a request 
from NodeMCU to read data from the actuator relay database 
in an on or off condition according to the data in the database. 
HTTP POST from NodeMCU is a command to send data 

received by NodeMCU from Arduino Mega. This data is the 
entire value of the sensors that will be stored in the database. 

 

Fig. 6. Flowchart HTTP server 

The algorithm on the mobile app can be seen in Fig. 7 
below. From the server side, the GET command from the 
mobile app is a command to the server to send data from the 
database to the mobile app. To facilitate the mobile app 
receiving data from the server, the data is created in the form of 
Javascript Object Notation (JSON), both sensor data and 
actuator status data (in on or off condition). The POST 
command from the mobile app is to send commands to the 
server specifically to control the actuator. 

Initialization of pin and serial communication is the first 
step in the NodeMCU flowchart. NodeMCU only acts as a 
bridge between automation systems and IoT, its task is only to 
receive and send data from and to the server or mobile app, with 
the addition of reconnecting procedures to the server. 

 

Fig. 7. Flowchart NodeMCU (a), flowchart mobile app (b) 
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Shortly after the mobile app is running, there is a request to 
the domain https://iot.darmajaya.ac.id, For each command 
POST and GET from the mobile app, the GET command will 
display data on the mobile app, either sensor value data or 
actuator status, while the POST command will send data about 
changing the actuator status from on to off or vice versa to the 
server. 

Testing design of system sustainability to determine the 
sustainability of the internet network connectivity system, the 
data status of the connection between NodeMCU and Arduino 
Mega is sent to the computer via two USB ports. NodeMCU 
and Arduino Mega communicate serially. NodeMCU performs 
reconnection to the server to maintain the system's online status 
and sends the connection data to Arduino Mega. The Arduino 
Mega will operate in offline automation mode if an internet 
connection is not possible as seen in Fig. 8 below. 

 

Fig. 8. Testing system sustainability 

The connection between the Personal Computer and the 
Arduino Mega and NodeMCU is only done during system 
testing, after obtaining sustainability data, further connections 
will not be made again. 

IV. RESULTS AND DISCUSSION 

This section presents the results and discussion of the new 
control system for smart agriculture based on IoT. The system 
consists of automation and IoT systems, the automation system 
uses an Arduino Mega MCU and the IoT system uses a 
NodeMCU 8266 wifi module for cloud connection. Sensors 
have been designed to measure temperature and humidity in the 
greenhouse, PH, humidity, and soil fertility. Water flow sensors 
are used to detect water flow in the pipes during watering and 
fertilizing processes. The fertilizer used is liquid AB Mix 
fertilizer. This detection is crucial to ensuring that both the 
control system and the IoT carry out the watering process 
correctly. Water and fertilizer are stored in separate tanks, there 
are four tanks in total, two tanks for liquid fertilizers A and B, 
one tank for the AB mix mixture, and another tank for water. 
The description of the components used can be seen in Fig. 9 as 
follows. 

 

Fig. 9. System design results 

Two contactors are added to assist the relay in switching the 
water pump and exhaust fan. The electrical power needed for 
the water pump ranges from 125 to 290 watts and the power 
needed for the exhaust fan ranges from 600 to 750 watts, so a 
contractor is needed for the switching process. 

Temperature and humidity sensor DHT11 This sensor 
measures temperature between 0 and 5 degrees Celsius and 
relative humidity from 20% to 90%. The humidity accuracy 
level is ± 5% RH and ± 2oC. It has an 8-bit binary resolution. 
Response time is between 6 seconds and 15 seconds for 
humidity and 6 seconds and 30 seconds for temperature. 
Hysteresis value ± 1% RH and stability value ± 1% RH/year. 
Sensor output data in digital form consists of decimal and 
integral parts. The total data transmission is 40 bits, and the 
sensor sends higher data bits first. Data format: Data RH 
integral 8 bit + data RH decimal 8 bit + data T integral 8 bit + 
data T decimal 8 bit + checksum 8 bit. If the data transmission 
is correct, the checksum should be the last 8 bits of data RH 
integral 8 bit + data RH decimal 8 bit + data T integral 8 bit + 
data T decimal 8 bit. The power supply required 5 volts, and the 
current needed 0.5 mA to 2.5 mA. The internal structure of the 
sensor can be seen in Fig. 10. The parts of the sensor consist of 
lower and upper electrodes, a holding, and a glass substrate. 

 

Fig. 10. Internal structure of DHT11 sensor 

Calibration has been conducted to determine the linearity 
value of the DHT11 sensor in comparison to the calibrator (htc-
1). This calibration involved collecting temperature data 
simultaneously with the object being monitored by the 
temperature and humidity sensors. Presented below are the 
calibration results for both the temperature and humidity sensor 
DHT11 and the calibrator data. Additionally, a graph 
illustrating the calibration of the air temperature sensor DHT11 
is provided. 
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Fig. 11. Calibration graph (air temperature) 

The linearity formula obtained from the calibration 
conducted is y = 0.978*x + 4.44E-03. Provided below is the 
calibration graph for the DHT11 humidity sensor. 

 

Fig. 12. Calibration graph (air humidity) 

Following the calibration process, the linearity formula y = 
0.984*x + 1.43 is derived. These formulas have been integrated 
into the source code to enhance precision. Below is a snippet of 
the source code: 

value_of_DHT11=dht11.read(humi, temp); 

float fix_humi = (0,984*humi) +1,43; 

float fix_temp = (0,978*temp) +0,00444; 

The graphs in Fig. 11 and 12 show a decrease in the RMSE 
value following the integration of the linearity formula into the 
source code, declining from 0.74 to 0.11. 

Soil Moisture Sensor SEN0193 Capacitive Soil Moisture 
Sensor exploits the dielectric contrast between water and soil, 
where dry soil has a relative permittivity between 2 and 6 and 
water has a value around 80. A capacitive soil moisture sensor 
uses the principle of a capacitor to estimate the water content in 
the soil. The amount of charge that a material can store at a 
specific electrical potential is what is known as capacitance 
[68]. Generally, a capacitor is visualized as a parallel plate 
configuration similar to the one shown in the Fig. 13. 

 

Fig. 13. Parallel plate 

The surface integral between the electric field E and the 
dielectric material with relative permittivity ε crossing the area 
of the capacitor surface is used to define charge Q. The 
definition of electric potential V is defined using the line 
integral of the electric field. For parallel plate capacitors, it is 
assumed that the electric field is constant across the entire 
dielectric surface, which is the common relationship between 
the geometric properties of parallel plate capacitors and the 
dielectric material present in the capacitor. Capacitance 
measured by a soil moisture sensor is different from parallel 
plate capacitors because the capacitor plates are not parallel, but 
planar. This means that the plates are adjacent to each other, not 
above each other; and the dielectric material is soil, not a thin 
layer pressed between the plates. This is visually illustrated in 
Fig. 14 below: 

 

Fig. 14. Soil moisture sensor 

It can be seen that the sensor electrode acts as a capacitor 
plate, both exposed to dielectric material and assumed to be dry 
or wet soil. Capacitive soil moisture sensors are paired with the 
IC 555 timer circuit and produce the design cycle of the internal 
sensor circuit. The water condition in the soil is described in 
terms of the amount of water and energy associated with the 
force holding water in the soil. Water potential is the energy 
state of the water, and water content determines the amount of 
water. Plant growth, soil temperature, chemical transport, and 
groundwater recharge all depend on the water conditions in the 
soil. Although there is a unique relationship between water 
content and water potential for a particular soil, these physical 
properties describe the water condition in the soil differently. It 
is important to understand the differences when choosing a soil 
moisture measuring device. Soil water content is expressed 
gravimetrically or volumetrically. Gravimetric water content 
(θg) is the mass of water per unit mass of dry soil. 
Measurements are taken by weighing a soil sample (M wet), 
drying the sample to remove the water, and then weighing the 
dried soil (M dry). 

𝜃𝑔 =  
𝑀 𝑤𝑎𝑡𝑒𝑟

𝑀 𝑠𝑜𝑖𝑙
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= 
𝑀 𝑤𝑒𝑡−𝑀 𝑑𝑟𝑦

𝑀 𝑑𝑟𝑦
   (3) 

The volumetric water content (θv) is the volume of liquid 
water per unit volume of soil. Volume is the ratio of mass to 
density (ρ) that is given: 

𝜃𝑣 =  
𝑉𝑜𝑙𝑢𝑚𝑒 𝑤𝑎𝑡𝑒𝑟

𝑉𝑜𝑙𝑢𝑚𝑒 𝑠𝑜𝑖𝑙
 

= 
𝑀 𝑤𝑎𝑡𝑒𝑟

𝜌 𝑠𝑜𝑖𝑙
 ×  

𝜌 𝑤𝑎𝑡𝑒𝑟

𝑀 𝑠𝑜𝑖𝑙
    

= 
𝜃𝑔 × 𝜌 𝑠𝑜𝑖𝑙

𝜌 𝑤𝑎𝑡𝑒𝑟
   (4) 

Bulk density (ρbulk) is used for soil and is the ratio of the 
dry mass of A capacitive to the sample volume. Water density 
is close to 1 and is often overlooked. Another useful property, 
soil porosity (ε), is related to bulk density, as shown by the 
following expression:. 

𝜀 =  1 −  
𝜌𝑏𝑢𝑙𝑘

𝜌 𝑠𝑜𝑖𝑙
   (5) 

The term ρ dense refers to the density of the solid fraction 
of soil and is approximated to be 2.6 g/cm3. Water flux: the 
movement of water occurs within the soil profile, between soil 
and plant roots, and between soil and atmosphere. As in all 
natural systems, the movement of a material depends on the 
energy gradient. Groundwater potential is an expression of the 
energy state of water in the soil and must be known or estimated 
to describe water flux. Water molecules in the soil matrix are 
subject to various forces. If there are no adhesive forces, water 
molecules will move through the soil at the same speed as in 
free air, minus the delay from collisions with solid materials 
such as sand through a sieve. Groundwater potential contributes 
to adhesive and cohesive forces and describes the energy status 
of groundwater. The fundamental forces acting on groundwater 
are gravity, matrix, and osmotic. Water molecules have energy 
based on their position in the gravitational force field, as all 
materials have potential energy. The gravitational potential 
component of the total water potential is what describes this 
energy component. Here is the calibration for the SEN0193 soil 
moisture sensor. 

 

Fig. 15. Calibration graph soil moisture sensor 

Following the calibration process, the linearity formula y = 
0.521*x + 14.6 is obtained. This formula has been incorporated 
into the source code to enhance precision. Below is a snippet of 
the source code. 

float soil_ moisture_ value = analogRead(pinKelem_tanah); 

float stable_soil_moisture_value  = constrain(soil_ 
moisture_ value,200,700); 

float value = (((stable_soil_moisture_value-
200)/500)*100); 

float fix_velue = (0,521 * value) +14,6; 

The graphs in Fig. 15 depict a decrease in the RMSE value 
subsequent to integrating the linearity formula into the source 
code, reducing from 2.34 to 1.77. This indicates an 
enhancement in measurement precision. 

The potential gravitational effect is easily seen when the 
attractive force between water and soil is smaller than the 
gravitational force acting on water molecules and water flows 
downward. The arrangement of solid soil particle matrices 
produces capillary and electrostatic forces and determines the 
potential matrix of soil water. The magnitude of the force 
depends on the texture and physicochemical properties of solid 
soil materials. Most methods for measuring soil water potential 
are only sensitive to matrix potential. Soil water is the solution. 
The polar nature of water molecules results in their interactions 
with other electrostatic poles present in the solution as free ions. 
The energetic status component is osmotic potential. Methods 
for measuring soil water matric potential include tensiometers, 
thermocouple psychrometers, electrical conduction, and heat 
dissipation methods such as the Campbell Scientific 229 sensor 
model. There is a unique relationship between water content 
and water potential for each soil. The characteristic curve of 
water in soil for three soils is shown below. For a specific water 
potential, the finer the soil texture, the more water is retained in 
the soil. Coarse-textured soils, like sand, consist mostly of 
large, empty pores that do not hold water when subjected to 
relatively small forces. Fine-textured soils have a wider 
distribution of pore sizes and larger particle surface areas. As a 
result, a greater change in water potential is needed to extract 
the same amount of water. A larger surface area means more 
water is absorbed through electrostatic forces. 

The real-time sensor data results within a specific time 
range. The DHT11 and SEN0193 sensors mentioned above 
have the same range of data for air temperature, air humidity, 
and soil moisture, ranging from 0 to 100. Therefore, real-time 
data monitoring is displayed in one graph on the website, 
including the monitoring of the three sensor values (Fig. 16). 

 

Fig. 16. Monitoring data sensor DHT11 and soil humidity 

The air temperature at 12:00 during the day is higher 
compared to 18:00 until 06:00, however, the value of air 
humidity and soil humidity are inversely related to the air 
temperature value. This is because there is no evaporation 
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process, which has a greater value occurring at 12:00 compared 
to 18:00 until 06:00. 

A. Soil pH Sensor 

The measurement range of Power of Hydrogen (pH) or 
acidity or alkalinity level of soil is between 3.5 and 8. This 
sensor requires a power supply voltage between 3 volts and 4.7 
volts and an analog output value between 4 and 4.5 volts. The 
response time is 0.1 seconds to 0.3 seconds, and the sensitivity 
level is 0.036 volts to 0.234 volts. Below is the calibration for 
the soil pH sensor. Using the Digital Soil Analyzer calibrator. 

 

Fig. 17. Calibration graph soil pH sensor 

Following the calibration process, the linearity formula y = 
1.22*x - 0.98 is obtained. This formula has been integrated into 
the source code to enhance precision. Below is a snippet of the 
source code. 

float Soil_pH_sensor_value = analogRead (sensorPh); 

float outputValue = (-0.0693*nilaisensorPh)+7.3855; 

float value_pH = constrain(outputValue, 0, 100); 

float fix_value_pH = (1,22*nilai_ph)-0,984; 

The graph in Fig. 17 shows a decrease in the RMSE value 
subsequent to integrating the linearity formula into the source 
code, decreasing from 0.54 to 0.27. This signifies an 
improvement in measurement precision. 

The application of liquid fertilizer tends to elevate soil pH 
due to its acidic properties, typically having pH values below 7. 
When the initial pH is less than 7.38, it tends to decrease further 
during the fertilization process. However, as the plants absorb 
the fertilizers as nutrients, the pH gradually rises over time. 

B. Nitrogen Phosphorus Potassium (NPK) Sensor 

The measurement range is between 0 and 1999 mg/kg, with 
a response time of less than 1 second. The communication port 
uses RS485 with baud rates of 2400, 4800, and 9600 bits per 
second. The voltage required is between 12 and 24 volts. 
Asynchronous communication protocol uses differential signal 
techniques to transfer binary data from one device to another 
with positive voltage values of 5 volts and negative 5 volts. In 
addition, communication is done in a half-duplex with a 
maximum speed of 30 Mbps, and a distance range of up to 1200 
meters. The value of each element N, P, and K will increase 

along with the fertilization process, and these values will also 
decrease after nutrient uptake by the plants. The values of each 
element will also be proportional, either decreasing or 
increasing, with respect to soil pH. The graph of NPK sensor 
values in mg/kg units can be seen in Fig. 18 as follows. 

 

Fig. 18. NPK values 

The NPK values experience an increase during fertilization 
and a decrease during the absorption process by plants or the 
irrigation process. The solubility of NPK values in irrigation 
water is to blame for this. The NPK values experience 
simultaneous increases and decreases. 

C. YF-S201 Sensor 

The YF-S201 type water flow sensor is a commonly used 
water flow sensor in various applications, especially in 
measuring water flow in monitoring and control systems. The 
working principle of this sensor is based on the Hall effect, 
which utilizes a magnetic field to detect the movement of 
charged particles such as water. When water flows through the 
sensor, the rotor inside it rotates. The rotor has a permanent 
magnet inside. When the rotor rotates, its magnetic field 
changes, which is then detected by the Hall sensor to produce 
an output signal correlated with the water flow rate (Fig. 19). 

 

Fig. 19. Sensor YF-S201 diagram  

When a magnetic field is applied perpendicular to the 
electric current flowing in a conductor, the magnetic field will 
push the electrons in a direction perpendicular to both the 
magnetic field and the electric current. Due to the interaction 
between the magnetic field and the electron charge, electrons 
flowing in the direction of the electric current will experience 
deflection. This Lorentz force causes the electrons to accelerate 
in a direction perpendicular to both fields, resulting in a 
collection of positive and negative charges on the sides of the 
conductor. This collection of charges creates an electric 
potential difference between the two sides of the conductor, 
perpendicular to the direction of the electric current. This 
potential difference is known as the Hall potential, and its 
magnitude is proportional to the strength of the magnetic field, 
electric current, and distance between the two sides of the 
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conductor. The Hall potential can be measured using a Hall 
sensor, which is a semiconductor device sensitive to magnetic 
fields. When a magnetic field is applied, the Hall sensor will 
produce an output voltage proportional to the Hall potential 
occurring in the conductor. By measuring this output voltage, 
we can obtain information about the strength of the magnetic 
field, electric current, or even the characteristics of the 
conductive material. This principle can be integrated into a 
sensor diagram to measure the flow rate of water or other fluids. 
Below is the calibration for the YF-S201 sensor. 

 

Fig. 20. Calibration graph of the YF-S201 sensor 

Following the calibration process, the linearity formula y = 
0.898*x + 26.7 is obtained. This formula has been implemented 
into the source code to enhance precision. Below is a snippet of 
the source code. 

Calc = (TURBINE * 60 / 7.5); 

float fix_Cals = (0,898*x)+26,7; 

The graph in Fig. 20 illustrates a decrease in the RMSE 
value after integrating the linearity formula into the source 
code, decreasing from 18.41 to 11.27. This signifies an 
enhancement in measurement precision (Fig. 21). 

 

Fig. 21. Rate sensor YF-S201 data flow 

The flow rate increases to a certain value during irrigation 
and fertilization and returns to 0 when finished. In addition to 
soil humidity data, the increase in flow rate data is used as 
feedback during irrigation and fertilization. Feedback like this 
is not found in other IoT smart farming systems. Success in the 
irrigation and fertilization processes must be known precisely. 
Failure in this process results in a lack of soil humidity and 

nutrients, which can lead to plant death. The Arduino Mega 
microprocessor is fully in control of this controller. The main 
microprocessor of the Arduino Mega 2560 Rev3 board is the 
ATmega2560 chip, which operates at a frequency of 16 MHz. 
It consists of input and output lines to connect to many external 
devices. At the same time, operation and processing are not 
slow due to the much larger RAM than other processors. The 
board is also equipped with the ATmega16U2 USB Serial 
processor, which serves as an interface between the USB input 
signal and the main processor. The board consists of 16 analog 
input pins and 22 digital inputs. The microprocessor 
communicates serially with the NodeMCU ESP8266. The 
NodeMCU ESP8266EX 32-bit microcontroller (MCU) RSIC 
16-bit. The CPU speed is 80 MHz up to a maximum of 160 
MHz with the Real-Time Operating System (RTOS). 20% of 
the Microprocessor without Interlocked Pipeline Stages (MIPS) 
is occupied by the WiFi stack, the rest can be used for 
programming and user application development. The Random 
Access Memory (RAM) size is less than 36 kB when 
ESP8266EX operates in router-connected mode, with 
programmable space accessible around 36 kB. External Flash 
SPI is used together with ESP8266EX to store the program's 
theoretical memory capacity of up to 16 MB. The firmware has 
access to 17 GPIO pins for use in various functions.  These pins 
are multiplexed with other functions such as I2C, I2S, UART, 
PWM, IR Remote Control, etc. The I/O soldering of I/O data is 
bi-directional and tri-state, which includes input and output data 
control buffers. In addition, I/O can be set to a special and fixed 
state. For example, if you want to reduce chip power 
consumption, all data input and output activation signals can be 
set to low-power standby. You can move some specific statuses 
into I/O. When I/O is not powered by an external circuit, I/O 
will remain in the last used state. Some positive feedback is 
generated by the remaining pin functions, therefore, the 
external drive power needs to be stronger than the positive 
feedback. Nevertheless, the driving energy required is around 5 
uA. 

Based on the obtained calibration data, calculations are then 
conducted using formula 2, resulting in an increase in precision, 
as shown in Fig. 22 below. 

 

Fig. 22. Increase in precision 

Applying the second formula, the precision improvement 
post-calibration for air temperature and humidity (DHT 11 
sensor) is 7.14 and 6.15, respectively. For the soil pH sensor, 
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the increase is 1.81, while for the soil moisture sensor and the 
water flow sensor, it is 0.13 and 0.008, respectively. 

D. Mobile Apps 

Mobile apps are built using Android Studio with a user-
friendly interface for controlling and monitoring farming 
(Fig. 23).  

 

Fig. 23. Mobile apps 

Mobile apps monitor sensor values (NPK, DHT11 sensor, 
soil humidity sensor, soil pH sensor, and Flow sensor) in real 
time during the farming process. The Mobile App also monitors 
the NodeMCU, whether it is online or offline, based on the 
visible time and date data. If the time and date data differs from 
the real-time data on the Android device, then the NodeMCU 
device is considered offline. Problems with the router device, 
server downtime, or internet network can all be the cause of 
this. In such cases, the user must fix the internet connectivity. 
The Arduino Mega will take over the automatic controller while 
it is in offline mode and automatically water the plants in 
accordance with the soil humidity sensor value to prevent plant 
death. To prevent forgetting to stop a command, the user in 
online mode performs the watering, fertilizing, and cooling 
processes within five minutes for each command. 

E. Results of the Sustainability System Testing 

POST instructions are used to send data from the 
NodeMCU device A to the cloud, while GET instructions are 
used to request data from the cloud. The server or cloud will 
respond with a decimal value of 200 if the POST or GET 
instructions are successful and the data is saved in the database. 
This value is used to indicate whether the NodeMCU is online 
or offline. 

 

Fig. 24. The results of sustainability system testing 

The NodeMCU and Arduino Mega are powered up 
simultaneously and establish communication. The NodeMCU 
initiates a POST command to transmit data to the server, and 
upon receiving a server response with a decimal value of 200, 
it indicates successful data entry into the database. Conversely, 
if the data fails to reach the server or encounters network issues, 
the server response decimal value is -1. These two scenarios 
determine the operational mode of the Smart Farming system, 
whether online or offline automation. A response of 200 
triggers the NodeMCU to assume full control of the smart 
farming online automation system, overseeing watering, 
fertilization, and temperature control based on the database 
information. On the other hand, a server response of -1 prompts 
the NodeMCU to instruct the Arduino Mega to execute offline 
automation. Fig. 24 depicts the outcomes of the automation 
system operating alternatively in both online and offline modes 
between NodeMCU and Arduino Mega. When the internet 
network connection is stable, NodeMCU takes charge of the 
online automation system. However, in the event of an internet 
network issue, Arduino Mega takes over control and executes 
offline automation. The Arduino Mega, in offline automation 
mode, conducts parameter monitoring in the Smart Farming 
system, including sensor data for soil moisture levels. 

V. CONCLUSION 

The new control system for IoT-based smart agriculture in 
an experimental framework has shown improved control 
capabilities in agricultural areas. The system is able to maintain 
sustainability in online or on conditions. When online control 
can be done using mobile apps, but if offline control occurs and 
the system cannot reconnect, then control is fully done by 
Arduino Mega using soil moisture sensor values for the 
watering process if the value reaches the minimum limit. This 
shows the sustainability of the system in its current state so that 
control can continue to be carried out and reduce the risk of 
plant death in the planting area. In addition, calibration is also 
carried out on the DHT11 sensor for temperature parameters 
with a standard deviation of 0, soil humidity sensor SEN0193 
with a standard deviation of 0.42, soil pH sensor with a standard 
deviation of 0.54, and the NPK sensor with a standard deviation 
of Nitrogen is 22.50. The standard deviation of phosphorus is 
7.84, and the standard deviation of potassium is 8.36. The water 
flow sensor YF-S201 standard deviation is 19.94. Sensor 
calibration as a measuring tool must be done, this also applies 
to other IoT systems, which must show the standard deviation 
of the sensors used so that it can later be called precision 
farming with a certain standard deviation value. 
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