
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

670 | P a g e

www.ijacsa.thesai.org

Method Resource Sharing in On-Premises

Environment Based on Cross-Origin Resource

Sharing and its Application for Safety-First

Constructions

Kohei Arai1, Kodai Norikoshi2, Mariko Oda3

Information Science Department, Saga University, Saga City, Japan1

Information Network Department, Kurume Institute of Technology, Kurume City, Japan1, 2, 3

Abstract—The method of resource sharing in an on-premises

environment based on Cross-Origin Resource Sharing (CORS) is

proposed for security reasons. However, using CORS entails

several risks: Cross-Site Request Forgery (CSRF), difficulties in

secure configuration, handling credentials, controlling complex

requests, and restrictions associated with using wildcards. (1) To

mitigate these risks, the following countermeasures are proposed:

(2) Use CSRF tokens and the “SameSite” attribute. (3) Minimize

preflight requests by allowing only specific origins. (4) Use the

“withCredentials” flag or set the “Access-Control-Allow-

Credentials” header on the server. (5) Handle custom headers by

adding the required headers to CORS settings. (6) Specify a

specific origin in the “Access-Control-Allow-Origin” header

instead of using wildcards. Additionally, applying CORS for

safety-first constructions, which helps raise awareness of

dangerous actions in construction fields, is also being explored.

Keywords—Cross-Origin Resource Sharing: CORS; CSRF

(Cross-Site Request Forgery); SameSite; withCredentials flag;

Access-Control-Allow-Credentials header; safety first constructions

I. INTRODUCTION

Cross-Origin Resource Sharing (CORS) is a security feature
of web browsers that uses additional HTTP headers to control
how web applications can access resources located on different
origins. This mechanism allows secure data exchange between
different origins, enabling browsers and servers to communicate
safely. CORS prevents malicious websites from accessing other
sites' data without explicit permission.

When CORS fails, JavaScript cannot determine the specific
error due to security restrictions. Instead, developers must check
the browser's console for detailed error information. Although
CORS was introduced to address security issues, it presents
several challenges:

CSRF (Cross-Site Request Forgery) Risk: Allowing cross-
origin requests can increase the risk of CSRF attacks, where an
attacker could exploit the victim's browser to perform
unintended actions on behalf of an authenticated user. Careful
management of cross-origin requests is essential.

Difficulty in Secure Setup: Proper CORS configuration is
required on both the server and client sides. Incorrect
configurations can lead to security vulnerabilities.

Credential Handling: Browsers do not include authentication
information (such as cookies or HTTP authentication) in cross-
origin requests by default. Enabling this requires careful
configuration on both the server and client sides.

Controlling Complex Requests: Handling complex requests,
such as preflight requests or custom headers, requires
meticulous configuration to ensure security.

Restrictions Associated with Using Wildcards: Using
wildcards in the Access-Control-Allow-Origin header grants
access to all origins, reducing security. Specifying a specific
origin is preferable for enhanced security.

In this paper, we propose countermeasures to mitigate these
risks. We also explore the application of secure CORS in a local
development environment. Specifically, we develop a web-
based system that runs in browsers to provide construction
workers with YouTube content highlighting dangerous actions
as a safety-first measure. By limiting CORS to trusted domains
and allowing only necessary methods and headers, we minimize
associated risks. This ensures construction workers can view
safety videos on their smartphones before starting work.

The following sections outline the research background and
related work in Section II, detail the proposed countermeasures
for CORS risks in Section III. The web application system for
local content delivery is given in Section IV. Results, conclusion
and future research work is given in Section V, VI and VII
respectively.

II. RESEARCH BACKGROUND AND RELATED RESEARCH

WORKS

A. Research Background

Considering the occurrence of occupational accidents in the
construction industry in recent years, although the number of
such accidents in Japan has been decreasing over the long term,
approximately 300 people still die each year. The most common
fatalities and injuries in the construction industry are falls,
accounting for approximately 40% of fatalities and 30% of all
injuries. From 2017 to 2021, 162 accidents occurred while
working at heights using ladders, stepladders, etc. [1]. The
primary causes of these accidents are improper handling or
carelessness by users, such as not using appropriate lifting

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

671 | P a g e

www.ijacsa.thesai.org

equipment, leaning over and falling, and inadequate
environmental preparation around work sites.

To prevent such accidents, we have developed and verified
a web application aimed at preventing falls while working at
heights using ladders, stepladders, etc. The web application
allows workers to check and select their daily tasks and displays
relevant videos and text instructions. These videos are stored and
managed on a video distribution platform. After development,
workers can access and use the URL on their mobile devices.
Additionally, an administrator's web application tracks the
number of views of the videos played on the workers' web
application to ensure it is being used appropriately. The database
stores the ID of each video, which is required to obtain the
number of video views.

B. Related Research Works

With the application of BIM/CIM principles, various
initiatives using CIM models have been proposed. Instead of
traditional construction briefs and design drawings, we use
highly expressive CIM models with VR goggles and tablet
devices to promote a three-dimensional understanding of
construction work [2]. VR technology is employed not only to
visualize work progress and discrepancies between design
drawings and construction drawings but also to simulate
dangerous locations and movements. Consequently, robust
security features for web applications are essential.

Several research works focus on detecting dangerous
actions:

A comparative study on discrimination methods for
identifying dangerous red tide species using wavelet-based
classification methods [3].

A method for detecting dangerous actions by cars using
wavelet Multi-Resolution Analysis (MRA) based on the
appropriate support length of the base function [4].

Research on pedestrian safety through eye contact between
autonomous cars and pedestrians [5].

In addition, research on web application services and
systems includes:

A wearable computing system with input and output devices
based on eye-based Human-Computer Interaction (HCI),
enabling location-based web services [6].

Numerical representation of websites of remote sensing
satellite data providers and its application to knowledge-based
information retrieval with natural language processing [7].

A mashup-based e-learning content search engine for mobile
learning using Yahoo! Search and web APIs [8].

A web-based data acquisition and management system for
GOSAT validation Lidar data analysis [9].

Improvements to the web-based data acquisition and
management system for GOSAT validation Lidar data analysis
[10].

A method for Web GIS systems applicable to assimilation
model database constructions [11].

These research efforts demonstrate the integration of
advanced technologies in both dangerous action detection and
web application services, highlighting the need for secure,
efficient, and user-friendly systems.

III. COUNTERMEASURES FOR CORS RISKS

CORS (Cross-Origin Resource Sharing) is a mechanism for
controlling resource access from different origins (domains,
protocols, ports) in web browsers. Below is an illustration of the
CORS concept:

Client (browser): The browser in which the user opens the
web page.

Website A (Origin A): The site where the page is hosted, e.g.,
https://example.com.

Website B (Origin B): An external site, e.g.,
https://api.example.com.

Request: JavaScript on Website A sends an HTTP request to
Website B to retrieve data.

Preflight request: Before the actual request, the browser
sends an OPTIONS request to check if the web server is
authorized.

Verifying CORS headers: The web server responds with
CORS headers. If they are not present or incorrect, the browser
denies the request.

Data retrieval: If the server permits, the original request is
sent, and the data is retrieved.

This flow controls cross-origin requests and improves
security. Proper CORS configuration is necessary on both the
server and client sides.

Important Notes on the CORS Specification:

Same-origin policy: For security reasons, the browser
restricts direct access from one origin to another. CORS helps to
overcome this limitation.

Preflight requests: These are made before the actual request
if it contains unsafe methods (e.g., POST, PUT) or certain
headers.

Requirement of CORS headers: The server must set
appropriate CORS headers, including Access-Control-Allow-
Origin (specifying allowed origins), Access-Control-Allow-
Methods, and Access-Control-Allow-Headers.

Handling credentials: By default, browsers do not include
credentials in cross-origin requests. If needed, set the
withCredentials flag and enable credential handling on both
server and client.

Restrictions on using wildcard origins: While a wildcard (*)
in Access-Control-Allow-Origin allows access from all origins,
specifying a specific origin is more secure.

By considering these aspects, you can implement CORS
properly and build secure web applications. CORS uses
additional HTTP headers to instruct the browser to grant a web
application running in one origin access to specific resources in
a different origin. When a web application requests a resource

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

672 | P a g e

www.ijacsa.thesai.org

from a different origin, the browser performs a cross-origin
HTTP request.

Problems of CORS and Their Countermeasures:

Risk of CSRF attacks: Use CSRF tokens and the SameSite
attribute.

Difficulty in configuring secure CORS: Minimize preflight
requests by allowing only specific origins.

Handling credentials: Use the withCredentials flag or set the
Access-Control-Allow-Credentials header on the server.

Controlling complex requests: Handle custom headers or
add the required headers to CORS settings.

Limitations of using wildcards: Specify a specific origin in
the Access-Control-Allow-Origin header instead of using
wildcards.

By addressing these countermeasures, the proposed web
application services are designed to be secure and efficient.

IV. WEB APPLICATION SYSTEM FOR CONTENT PROVIDING

IN A LOCAL ENVIRONMENT

A. Development Environment

At construction sites, KY (Kiken Yochi, or hazard
prediction) activities are conducted to improve workers' safety
awareness. The purpose of these activities is to predict potential
dangers before starting work, enabling workers to take
countermeasures and prevent accidents. Creating a safe worksite
environment and preventing accidents are crucial for
construction companies. To support effective and non-
burdensome KY activities, we have developed safety education
videos (onsite hazard prediction videos) with features for
presentation and for checking and managing workers' safety
awareness and behavior.

We used Docker [12], FastAPI [13], and React [14] to
develop the web applications. After checking the day's work
details, workers can access the hazard prediction video page via
the worker web application. The site hazard prediction videos,
hosted on YouTube, will be played. The playback count
information is accessible from the administrator's web
application, allowing supervisors to issue warnings to workers
who have not watched the videos.

There are two web applications: one for workers and one for
supervisors. The development environment is as follows:

OS: Windows 11

Editor: Microsoft Visual Studio Code

Languages Used: TypeScript, CSS

Server: Vercel [15]

Virtual Environment: Docker Engine v24.0.6 [16]

Additional Languages: JavaScript, Python, HTML,
Dockerfile

The administrator web application was developed using a
containerized virtual environment with Docker. The container

setup is divided into three parts: one for the server, one for the
database, and one for the web application.

B. Web Applications for Workers

Additionally, during the development of the web application
for workers, we used a virtual environment provided by Python
without containerizing it, to verify actual operation on mobile
devices.

The application includes the following functions:

Login Function: This function has a high priority and is used
to create and register a worker's user account and log in. It also
helps track the usage status of workers. By registering each user,
the application can count the number of views for each user,
thereby monitoring their engagement.

Danger Video Viewing and Precaution Display: This
function also has a high priority. Workers can select and watch
hazard prediction videos. Precautions related to the work are
displayed for workers to review. Additionally, when a video is
selected, the application counts the views and updates the
relevant table to keep track of this information.

C. Web Applications for Supervisors

On the other hand, regarding functions, we consider
checking the number of views of dangerous videos by each
worker, managing dangerous videos, and implementing a login
function. Here are the details:

View Count of Dangerous Videos: This function has high
priority. It involves checking how many times a worker has
viewed a dangerous video. By ensuring that workers have
watched appropriate videos for the day's tasks, the system can
effectively monitor video usage. This function is essential for
assessing worker engagement with safety content.

Management of Dangerous Videos: This function has
medium priority. It involves accessing the YouTube channel
page where dangerous videos are stored and managed. The
system posts videos for workers to watch, with channels set to
limit access.

Login Function: This function also has high priority. It
allows for the creation and registration of worker user accounts
and facilitates logging in. The login function provides insight
into the usage status of workers. By registering each user, the
system counts the number of video views per user, providing
comprehensive usage statistics.

Given that workers are expected to view dangerous videos at
job sites, the application layout is designed exclusively for
mobile devices like smartphones and tablets. In contrast,
administrators are assumed to review all information in a control
room, so the layout is tailored for PC screens.

D. Functionalities of Web Applications

Fig. 1 illustrates the overall system diagram of the proposed
web application. The operational requirements for the server
(cloud-provided system) are detailed below:

Server Operation Mode: The server will operate in Autopilot
mode on Google Kubernetes Engine (GKE) [17]. In Autopilot
mode, Google Cloud automatically manages and scales nodes,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

673 | P a g e

www.ijacsa.thesai.org

and you only pay for the resources required to run your
workloads. This reduces server operating costs and management
efforts. Notably, since nodes are managed by GKE, there are no
charges for unused node capacity, system pods, operating
system costs, or unscheduled workloads.

Server Network Mode: The server will adopt the VPC native
cluster [18] for network mode. VPC native clusters assign IP
addresses from the VPC network to nodes and Pods, improving
network performance and security. This setup also facilitates
communication with other resources within the VPC network.

Server Configuration: Web Server: Deployed as a container
using FastAPI, a fast and modern Python web framework ideal
for developing RESTful APIs [19].

Database: The database container utilizes Cloud SQL [20],
Google Cloud Platform's fully managed relational database
service supporting database engines such as MySQL and
PostgreSQL.

Application Container: Cloud Run is used as the container
platform for the application. Cloud Run is GCP's serverless
container platform, enabling you to run container images using
any language or library.

Security and Availability:

Server security and availability are maintained according to
GCP's best practices.

Containers are stored in encrypted storage and communicate
using SSL/TLS.

Containers are distributed across multiple zones and regions
to enhance resilience against failures and disasters.

This configuration ensures secure, scalable, and cost-
effective operation of the web application on Google Cloud
Platform.

Fig. 1. Functional requirements.

E. Network Configurations

Regarding network configuration, CORS is essential for web
applications running in a local development environment.

CORS (Cross-Origin Resource Sharing) uses additional HTTP
headers to instruct the browser to allow a web application
running in one origin to access specific resources in another
origin. When a web application requests a resource from a
different origin, the browser performs a cross-origin HTTP
request.

For instance, if the front-end JavaScript code of a web
application served from https://website-1.com makes a request
to https://api-server.com/data-info using XMLHttpRequest,
CORS ensures that this request is allowed if the appropriate
CORS headers are set.

The same-origin policy restricts web applications to
requesting resources only from the origin they are loaded from.
CORS is implemented to relax this restriction securely. Fig. 2
illustrates an example of the CORS operation flow.

Fig. 2. CORS operations.

CORS works by adding new HTTP headers that allow
servers to specify which origins are permitted to access their
resources from a web browser. Additionally, browsers use the
HTTP OPTIONS request method for certain HTTP methods
(especially those other than GET and POST, and those with
specific MIME types) that can have side effects on server data.
This preflight request asks the server to indicate the methods
supported before sending the actual request with proper
authorization.

The server can also instruct the client whether it should
include credentials (such as cookies or HTTP authentication) in
the request. Therefore, these aforementioned considerations are
necessary for implementing CORS securely.

V. DEVELOPMENT RESULTS

To prevent falls while working at heights, we integrated a
web application for workers that displays dangerous videos and
precautions, a database for managing these resources, and a
system to track the number of video views per worker. We
developed and studied a cloud computing system for this
purpose.

The web application for workers allows them to use a mobile
device to select tasks and view danger videos and precautions.
The administrator's web application monitors the number of
video views from the worker's interface to ensure appropriate
usage. Additionally, an authentication function was introduced
to enhance security and reliability in system development,
particularly in security-critical environments.

YouTube

Dangerous action contents

Supervisors

Playing dangerous action
videos, checking the number of
times precautions are displayed,

managing danger videos,
checking the entry and exit of

workers, tracing the movement
of workers (warning if they

enter a dangerous area)

Workers

Confirmation of work details for
the day, playing dangerous

action videos for the work, and
displaying precautions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

674 | P a g e

www.ijacsa.thesai.org

This initiative aims to prevent falls while working at heights,
which is the primary objective of this research. We achieved the
development of features such as "confirmation of the number of
times each worker has viewed a dangerous video" and a "login
function." Upon signing up and signing in, users are directed to
the main page where they can check task details and view
statistics on video usage by workers. As an example of the
developed web applications, the supervisor's main page is
shown in Fig. 3.

Fig. 3. Main page for the supervisor.

Fig. 4 shows an example of awareness video contents of
dangerous action on stepladder in Japanese for workers’ safety-
first.

Fig. 4. Example of awareness video contents of dangerous action on

stepladder in Japanese for workers’ safety-first.

VI. CONCLUSION

A method for resource sharing in an on-premises
environment using Cross-Origin Resource Sharing (CORS) is

proposed for security reasons. However, using CORS presents
several risks: CSRF (Cross-Site Request Forgery) risks,
difficulties in secure configuration, handling credentials,
controlling complex requests, and restrictions associated with
using wildcards. To mitigate these risks, the following
countermeasures are recommended:

Use CSRF tokens and the SameSite attribute.

Minimize preflight requests by allowing only specific
origins.

Use the withCredentials flag or set the Access-Control-
Allow-Credentials header on the server.

Handle custom headers or add required headers to CORS
settings.

Specify a specific origin in the Access-Control-Allow-
Origin header instead of using wildcards.

Additionally, the application of these measures in safety-first
construction scenarios, aimed at increasing awareness of
dangerous actions on construction sites, is being explored.

Through the integration of the proposed web application
system, it was found that the major risks associated with CORS
can be mitigated with these countermeasures. By using a risk-
avoided CORS configuration, a web application system focused
on safety for construction workers was developed. This system
includes features such as tracking the number of times each
worker has viewed a dangerous video and a login function. Once
users sign up and log in, they are directed to the main page where
they can check the number of views for each task and track the
number of views by each worker.

VII. FUTURE RESEARCH WORKS

Since the developed web application could not be tested in
the field, we were unable to obtain feedback from the actual
users. User feedback is crucial for improving the UI, so
collecting data from actual usage is necessary. Additionally, we
were unable to develop a login function or create a container for
the worker's web application. Therefore, enhancing the quality
of actual operations, including implementing future security
measures and deployment strategies, is necessary.

For the administrator's web application, there are still issues
to address, such as "developing pages for video management"
and "deploying on the cloud." While an authentication function
has been introduced as a security measure, it has not yet been
tested in a real-world environment. Consequently, its resistance
to potential attacks still needs to be evaluated.

ACKNOWLEDGMENT

The authors would like to thank to Professor Dr. Hiroshi
Okumura and Professor Dr. Osamu Fukuda of Saga University
for their valuable discussions.

REFERENCES

[1] https://www.kensaibou.or.jp/index.html, https://www.nite.go.jp/jiko/
chuikanki/mailmagazin/2022fy/vol414_221011.html

[2] https://www.kkr.mlit.go.jp/plan/happyou/thesises/2023/lbhrsn000000m6
ag-att/a1684912390134.pdf

https://www.kensaibou.or.jp/index.html
https://www.nite.go.jp/jiko/
https://www.kkr.mlit.go.jp/plan/happyou/thesises/2023/lbhrsn000000m6ag-att/a1684912390134.pdf
https://www.kkr.mlit.go.jp/plan/happyou/thesises/2023/lbhrsn000000m6ag-att/a1684912390134.pdf

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

675 | P a g e

www.ijacsa.thesai.org

[3] Kohei Arai, Comparative study on discrimination methods for identifying
dangerous red tide species based on wavelet utilized classification
methods, International Journal of Advanced Computer Science and
Applications, 4, 1, 95-102, 2013.

[4] Kohei Arai, Tomoko Nishikawa, Method for car in dangerous action
detection by means of wavelet Multi-Resolution Analysis based on
appropriate support length of base function, International Journal of
Advanced Research in Artificial Intelligence, 2, 4, 13-17, 2013.

[5] Kohei Arai, Akihiro Yamashita, Hiroshi Okumura, Pedestrian safety with
eye contact between autonomous car and pedestrian, International Journal
of Advanced Computer Science and Applications IJACSA, 10, 5, 161-
165, 2019.

[6] Kohei Arai, Wearable computing system with input output devices based
on eye-based Human Computer Interaction: HCI allowing location-based
web services, International Journal of Advanced Research in Artificial
Intelligence, 2, 8, 34-39, 2013.

[7] Kohei Arai, Numerical representation of web sites of remote sensing
satellite data providers and its application to knowledge-based
information retrievals with natural language, International Journal of
Advanced Research in Artificial Intelligence, 2, 10, 26-31, 2013.

[8] Kohei Arai, Yahoo! Search and web API utilized mashup-based e-
learning content search engine for mobile learning, International Journal
of Advanced Research on Artificial Intelligence, 4, 6, 1-7, 2015.

[9] H. Okumura, S. Takubo, T. Kawsaki, I.N. Abdulah, T. Sakai, T. Maki,
Kohei Arai, Web based data acquisition and management system for
GOSAT validation Lidar data analysis, Proceedings of the SPIE
Vol.8537, Conference 8537: Image and Signal Processing for Remote
Sensing, Paper #8537-43, system, 2012.

[10] Hiroshi Okumura, Shoichiro Takubo, Takeru Kawasaki, Indra Nugraha
Abdulah, Osamu Uchino, Isamu Morino, Tatsuya Yokota, Tomohiro
Nagai, Tetu Sakai, Takashi Maki, Kohei Arai, Improvement of web-based
data acquisition and management system for GOSAT validation Lidar
data analysis (2013), SPIE Electronic Imaging Conference, 2013.

[11] Kohei Arai, Method for Web. GIS System Applicable to Assimilation
Model Database Constructions, Proceedings of the Future Technology
Conference 2021, 2021.

[12] Docker,Docker: Accelerating container application development, [online]
https://www.docker.com/ja-jp/ (accessed January 1, 2024).

[13] FasstAPI, [online] https://fastapi.tiangolo.com/ja/ (accessed January 1,
2024).

[14] React,React, [online] https://ja.react.dev/(accessed January 1, 2024).

[15] Build and deploy the best Web experiences with The Frontend Cloud –
Vercel, [online]URL, https://vercel.com/.

[16] Docker Engine v24.0.6 https://docs.docker.com/engine/release-
notes/24.0/.

[17] Google Kubernetes Engine https://www.cloudskillsboost.google
/course_templates/2.

[18] VPC native cluster https://cloudacademy.com/course/advanced-cluster-
options-gke-3500/routes-based-vs-vpc-native/.

[19] RESTful APIs https://blog.hubspot.com/website/what-is-rest-api.

[20] cloudsql gcp https://console.cloud.google.com/marketplace/product/
google-cloud-platform/cloud-sql?pli=1&project=serene-bonbon-368602.

AUTHORS’ PROFILE

Kohei Arai, He received BS, MS and PhD degrees in 1972, 1974 and 1982,
respectively. He was with The Institute for Industrial Science and Technology
of the University of Tokyo from April 1974 to December 1978 also was with
National Space Development Agency of Japan from January, 1979 to March,
1990. During from 1985 to 1987, he was with Canada Centre for Remote
Sensing as a Post Doctoral Fellow of National Science and Engineering
Research Council of Canada. He moved to Saga University as a Professor in
Department of Information Science on April 1990. He was a councilor for the
Aeronautics and Space related to the Technology Committee of the Ministry of
Science and Technology during from 1998 to 2000. He was a councilor of Saga
University for 2002 and 2003. He also was an executive councilor for the
Remote Sensing Society of Japan for 2003 to 2005. He is a Science Council of
Japan Special Member since 2012. He is an Adjunct Professor of University of
Arizona, USA since 1998. He also is Vice Chairman of the Science
Commission “A” of ICSU/COSPAR since 2008 then he is now award
committee member of ICSU/COSPAR. He wrote 87 books and published 710
journal papers as well as 650 conference papers. He received 66 of awards
including ICSU/COSPAR Vikram Sarabhai Medal in 2016, and Science award
of Ministry of Mister of Education of Japan in 2015. He is now Editor-in-Chief
of IJACSA and IJISA. http://teagis.ip.is.saga-u.ac.jp/index.html

Kodai Norikoshi, He received BE degree from Kurume Institute of
Technology in 2024.

Mariko Oda, She graduated from the Faculty of Engineering, Saga
University in 1992, and completed her master's and doctoral studies at the
Graduate School of Engineering, Saga University in 1994 and 2012,
respectively. She received Ph.D(Engineering) from Saga University in 2012.
She also received the IPSJ Kyushu Section Newcomer Incentive Award. In
1994, she became an assistant professor at the department of engineering in
Kurume Institute of Technology; in 2001, a lecturer; from 2012 to 2014, an
associate professor at the same institute; from 2014, an associate professor at
Hagoromo university of International studies; from 2017 to 2020, a professor
at the Department of Media studies, Hagoromo university of International
studies. In 2020, she was appointed Deputy Director and Professor of the
Applied of AI Research Institute at Kurume Institute of Technology. She has
been in this position up to the present. She is currently working on applied AI
research in the fields of education.

https://vercel.com/
https://docs.docker.com/engine/release-notes/24.0/
https://docs.docker.com/engine/release-notes/24.0/
https://cloudacademy.com/course/advanced-cluster-options-gke-3500/routes-based-vs-vpc-native/
https://cloudacademy.com/course/advanced-cluster-options-gke-3500/routes-based-vs-vpc-native/
https://blog.hubspot.com/website/what-is-rest-api
https://console.cloud.google.com/marketplace/product/%20google-cloud-platform/cloud-sql?pli=1&project=serene-bonbon-368602
https://console.cloud.google.com/marketplace/product/%20google-cloud-platform/cloud-sql?pli=1&project=serene-bonbon-368602
http://teagis.ip.is.saga-u.ac.jp/index.html

