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Abstract—For the current situation of low AP of tile defect 

detection with incomplete detection of defect types, this paper 

proposes YOLO-SA, a detection neural network based on the 

enhanced attention mechanism and feature fusion. We propose 

an enhanced attention mechanism named amplified attention 

mechanism to reduce the information attenuation of the defect 

information in the neural network and improve the AP of the 

neural network. Then, we use the EIoU loss function, the four-

layer feature fusion, and let the backbone network directly 

involved in the detection and other methods to construct an 

excellent tile defect detection and recognition model Yolo-SA. In 

the experiments, this neural network achieves better 

experimental results with an improvement of 8.15 percentage 

points over Yolov5s and 8.93 percentage points over Yolov8n. 

The model proposed in this paper has high application value in 

the direction of tile defect recognition. 

Keywords—Amplified attention mechanism; defect recognition; 

small target recognition; Yolo; feature fusion 

I. INTRODUCTION 

Tile defect detection is an essential part of modern 
industrial production. Tiles are widely used in the 
manufacturing, construction and decoration industries for 
flooring, walls, kitchens and bathrooms. However, due to 
various factors in the production process, various defects can 
appear on the surface of tiles, such as cracks, unevenness, color 
variations and stains. The detection of these defects is still 
plagued by a large number of small targets, variable and 
irregular shapes, inconspicuous features and other factors, 
companies in the manufacturing process cannot avoid 
producing tiles with various types of defects. These defects not 
only affect the aesthetics, but can also lead to a decrease in the 
functionality and durability of the tiles. Therefore, tile surface 
defect detection is a key task in visual inspection, the goal of 
which is to automatically detect and recognise possible defects, 
damage or undesirable features on the tile surface. A good tile 
defect recognition model can help companies to improve 
quality, save manual inspection costs, increase productivity, 
reduce defect rate, reduce environmental impact and energy 
consumption. 

Several advances have been made in the field of tile defect 
detection. Traditional methods are mainly based on image 
processing techniques such as edge detection, texture analysis 
and shape matching. However, these methods are difficult to 
detect defects in complex textured backgrounds. In recent 
years, the development of deep learning techniques has brought 
new opportunities for tile defect detection. CNN, Faster-RCNN 

[1], Yolov3, Yolov5 [2], etc. have average performance in 
defect detection and still need further improvement. 

Y Huang et al. [3] implemented tile defect segmentation 
using MCue, U-Net [4] and Push networks by generating three 
channels of resized inputs with MCue, including an MCue 
saliency image and two original images; U-Net learns the most 
informative regions, which is essentially a deeply structured 
convolutional network; and Push network defines the 
prediction of defects through two fully connected layers and an 
output layer constructed to define the exact location of the 
predicted surface defects. The model can detect multiple 
surface defects from low-contrast images, but it cannot 
accurately detect multiple defects generated in real production. 
Wan G et al. [5] improved yolov5 by deepening the network 
layers and incorporating a Convolutional Block Attention 
Module (CBAM) [6] attention mechanism, and replaced the 
original convolution with a depth-separable convolution, 
obtaining a lightweight model that can detect small targets. Lu 
Q et al. [7] proposed an intelligent surface defect detection 
method for ceramic tiles based on the improved YOLOv5s 
algorithm, using Shufflenetv2 [8], Path Aggregation Network 
(PAN) [9], Feature Pyramid Network [10] and the attention 
mechanism to improve the model and achieve a lightweight 
and high-performance tile defect detection. Xie L et al. [11] 
proposed fusion feature CNN and added an attention 
mechanism to realise efficient tile surface defect detection. H 
Lu et al. [12] collected 1241 samples and realised tile defect 
detection based on acoustic waves and proposed a cross-
attention mechanism based on acoustic wave information 
features to make the model defect detection, the final accuracy 
rate is 98.8%. Although the method is effective, the 
implementation cost of the method is relatively high. Stephen 
O et al. [13] used a hand-designed neural network to achieve 
the detection of cracks in floor tiles with an accuracy rate of 
99.43%. 

In this paper, methods such as Amplified Attention (AA) 
mechanism, 4-layer feature fusion, and direct addition of 
backbone network feature information to the detection header 
are proposed to improve the performance of the model. AA 
mechanism is a method used to improve the performance of the 
model. In tile defect detection, the AA mechanism can help the 
model to pay more attention to the defective region, thus 
improving the detection accuracy. The specific process is that 
by introducing the cross-channel attention mechanism into the 
convolutional neural network, the model can better capture the 
characteristics of the defects. This approach can further 
improve the performance of tile defect detection. Feature 
fusion improves the overall amount of feature information 
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captured by the model, which in turn improves the 
performance of the tile defect detection model. To enable the 
detection head to acquire more feature information, feature 
information from the backbone network was added to the 
detection head in this study. Finally, the Efficient Intersection 
over Union (EIoU) loss function was used to improve the 
accuracy of the model in predicting the direction of movement 
of the frame and to improve the accuracy of the model in 
predicting defects. 

II. DATASETS 

In this paper, we use the tile defect detection dataset 
provided by the Guangdong Province Tile Defect Detection 
Competition of 2021 Ali Tianchi, which consists of 5,388 
images with image resolutions of 8192px × 6,000px and 
4096px × 3,500px. The dataset is labelled with six categories, 
namely Edge exception, Angular exception, White dotted flaw, 
Light color block flaw, Dark dotted flaw and Aperture flaw. 
Examples of ceramic tile defects are shown in Fig. 1. 

 
Fig. 1. Example of tile defects. 

A. Image Segmentation 

The image labelling frame statistics are shown in Fig. 2A, 
from which it can be seen that the labelling frames are mostly 
concentrated between 0 and 0.05, the size of the labelling 
frames for tile defects is extremely small relative to the whole 
image. If the whole image is fed into the neural network during 
training, the training speed will be very slow. Therefore, here 
the image is segmented for processing, the image segmentation 
method is that each image contains at least one tile defect 
detection point location, if it does not contain a tile defect 
detection point location, the segmented portion is considered as 
an invalid portion, and this segmented image is not generated. 
According to this method, the original image is segmented into 
images of 640 pixels × 640 pixels and a total of 19960 images 
are obtained. The statistics of the labelled boxes after 
segmentation are shown in Fig. 2B, from which it can be seen 
that the size of the labelled boxes of the segmented tile defects 
with respect to the whole image is significantly improved 
compared to the pre-segmentation. 

B. Data Augmentation 

Models built from datasets with sufficient amount of data 
have stronger robustness and generalisation ability. Therefore, 
in order to improve the performance of the tile defect detection 

model, online augmentation of the segmented tile defect 
dataset is improved. Online augmentation is the augmentation 
of the dataset during the training process, and in each epoch, a 
random augmentation is performed in proportion to the set 
augmentation strategy. The data augmentation strategies are 
HSV augmentation, flip, mosaic, zoom and pan, and the 
augmentation ratio of these data augmentation strategies in 
each epoch is 0.15, 0.5, 0.1, 0.5 and 0.3, respectively. The 
effect of the image after augmentation is shown in Fig. 3. 

 
Fig. 2. Comparison of the statistics of defective labeling frames of tiles 

before segmentation and after segmentation. 

 

Fig. 3. Dataset augmentation. 
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III. EXPERIMENTAL DESIGN AND METHODOLOGY 

Firstly, a general overview of the YOLO-SA target 
detection neural network model is given, and then the design of 
the neural network structure of the YOLO-SA model is 
discussed from the three parts of the backbone network, the 
neck network and the detection head, respectively. In the 
YOLO-SA neural network structure, the backbone network is 
responsible for extracting the feature information of the tile 
defect image, the neck network can fuse the shallow feature 
information extracted by the backbone network with the deep 

feature information to improve the feature information 
extraction ability of the neural network, and the detection head 
detects the feature information obtained from the neck 
network. The YOLO-SA network structure is shown in Fig. 4. 
In Fig. 4, conv, BN, LRelu, Silu [14], avgpool, maxpool denote 
convolu-tional computation, batch normalisation, leaky-Relu 
activation function, Silu activation function, average pooling 
and maximum pooling, respectively, and concat denotes the 
channel connection operation. 

 

Fig. 4. YOLO-SA Neural network structure. 

A. Overview 

In YOLO-SA, backbone network includes CBL module, 
S3C module, AA module and Spatial Pyramid Pooling Fast 
(SPPF) [15] module, CBL module can effectively extract flat 
feature information, S3C module has very powerful feature 
information extraction ability, and AA module can effectively 
reduce degree of information loss in backbone network. 
Compared with the traditional CNN-based backbone feature 
extraction network, the backbone network of YOLO-SA only 
uses the information provided by the region when obtaining the 
target feature information, and this backbone network has a 
global modelling capability and a powerful remote 
dependency, which can better detect tile defects. 

The SPPF module can fully extract the deep feature 
information from the backbone network, and the structure of 
the SPPF module is shown in Fig. 5. The main function of the 
SPPF is to perform a convolution operation on each region 
before the pooling operation, and to combine the convolution 
result and the pooling result as the output features. This method 
can retain more local feature information and improve the 
accuracy of the network. The appearance of SPPF makes the 
network more adaptable to objects of different sizes and 
effectively avoids problems such as image distortion caused by 
cropping and scaling operations of image regions. The 
calculation formula is: 

 = 𝑐𝑜𝑛𝑐𝑎𝑡([𝐹, 𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝐹),

     𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝐹)),

     𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝐹)))],1)

 

where, F denotes the input feature map. 

 
Fig. 5. SPPF module. 
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In the neck network of YOLO-SA, the original three-layer 
PANet feature pyramid is expanded to four layers to fully 
integrate the feature information extracted from the backbone 
network. In addition, the Squeeze-and-Excitation Module (SE) 
[16] attention mechanism is added to this neck network to 
increase the attention to the target information in the spatial 
dimension and further improve the performance of the model. 
The SE has excellent information extraction ability, and at the 
same time, this attention mechanism requires much less 
computation compared to the CA mechanism, the CBAM, and 
so on. Therefore, the SE is used in YOLO-SA. The structure of 
the SPPF module is shown in Fig. 6. 

 

Fig. 6. SE module. 

B. Loss Functions 

1) IoU: Intersection over Union (IoU), which is calculated 

as: 

𝐼𝑜𝑈 =
|𝐴∩𝐵|

|𝐴∪𝐵|
   

This means that the intersection of two regions is more than 
the concatenation of the last two sets. The visual representation 
is shown in Fig. 7. 

 

Fig. 7. IoU concept 

2) GIoU, DIoU, CIoU: Since IOU is calculated only for 

the overlapping region between the predicted and real frames 

and does not focus on the non-overlapping region, H 

Rezatofighi et al. [17] developed the Generalized Intersection 

over Union (GIOU) loss calculation function, which is 

formulated as: 

𝐺𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
|𝐶−𝑈|

|C|
, 𝑈 = 𝐴 ∪ 𝐵  

where C denotes the area of the minimum closure area of 
the prediction frame and the real frame, and U is the area of the 
concatenation of the prediction frame and the real frame. The 
image representation of each parameter is shown in Fig. 8. 

 
Fig. 8. Explanation of each parameter of the GIoU, DIoU and CIoU 

In order to obtain more information to better represent the 
gap between the prediction box and the real box, Zhaohui 
Zheng et al. proposed Distance Intersection over Union (DIoU) 
[18], DIoU adds more information into the regression 
calculation, such as the distance between the prediction box 
and the real box, and the size of the prediction box and the real 
box. The formula of DIoU is: 

𝐷𝐼𝑜𝑈 = 𝐼𝑜𝑈 −
𝜌2(𝑏,𝑏𝑔𝑡)

𝑐2   

where 𝑏, 𝑏𝑔𝑡  represent the centroids of the predicted and 
real images, respectively, 𝜌(. )  represents the computed 
Euclidean distance, and c represents the diagonal distance of 
the minimum closure region. The image representation of each 
parameter is shown in Fig. 8. 

The factors considered by DIoU are still not able to meet 
the needs of loss calculation in practice. DIoU does not 
measure the difference in the size of the predicted frame and 
the real frame, so Zhaohui Zheng et al. [18] proposed 
Complete Intersection over Union (CIoU), which is calculated 
by the formula: 

𝐶𝐼𝑜𝑈 = 𝐷𝐼𝑜𝑈 − 𝛼𝑣

𝛼 =
𝑣

(1−𝐼𝑜𝑈)+𝑣

𝑣 =
4

𝜋2 (𝑎𝑟𝑐𝑡𝑎𝑛 
𝑤𝑔𝑡

ℎ𝑔𝑡 − 𝑎𝑟𝑐𝑡𝑎𝑛 
𝑤

ℎ
)2

  

where 𝛼 is the weight function, 𝑣  is used to measure the 
similarity of the width-to-height ratio of the predicted frame to 
the real frame, and 𝑤, ℎ, 𝑤𝑔𝑡 , and ℎ𝑔𝑡 denote the width of the 
predicted frame, the height of the predicted frame, the width of 
the real frame, and the height of the real frame, respectively. 
The picture explanation is shown in Fig. 8. 

CIoU adds the detection frame scale loss to DIoU, which 
allows the prediction frame to more accurately match the real 
frame by taking into account the length and width loss. The 
CIoU loss (𝐿𝐶𝐼𝑜𝑈 = 1 − 𝐶𝐼𝑜𝑈) can help the model to converge 
accurately and quickly during training, and to predict targets in 
complex backgrounds more accurately. 

3) EIoU: The most important thing in YOLO-SA's 

recognition head is the loss function. The purpose of the loss 

function is mainly to make the model localisation more 

accurate and the recognition accuracy higher. In the process of 

tile defect recognition, because the tile defect target is very 
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small, in order to accurately recognise the feature information, 

so the box loss in YOLO-SA uses a more advanced EIoU loss 

[19], which can more accurately measure the difference 

between the predicted bounding box and the real bounding 

box. The EIoU loss is calculated as: 

𝐸𝐼𝑜𝑈 = 𝐼𝑂𝑈 −
𝜌2(𝒃,𝒃𝒈𝒕)

(𝑤𝑐)2+(ℎ𝑐)2 −
𝜌2(𝑤,𝑤𝑔𝑡)

(𝑤𝑐)2 −
𝜌2(ℎ,ℎ𝑔𝑡)

(ℎ𝑐)2 

where 𝑤𝑐  and ℎ𝑐  denote the width and height of the 
minimum closure region, respectively. the EIoU parameter 
image is explained as shown in Fig. 9. 

 
Fig. 9. Explanation of each parameter of the EIoU 

4) Classification loss and box loss: The classification loss 

function 𝐿𝑐𝑙𝑠 used in the YOLO-SA network is formulated as: 

yi = Sigmoid(xi) =
1

1+e−xi
 

𝐵𝐶𝐸 = − ∑  N
n=1 yi

∗lo g(yi) + (1 − yi
∗)lo g(1 − yi) 

𝐿𝑐𝑙𝑠(𝒄p, 𝒄gt) = 𝐵𝐶𝐸𝑐𝑙𝑠
𝑠𝑖𝑔

(𝒄𝑝, 𝒄𝑔𝑡; 𝑤𝑐𝑙𝑠) 

where N  is the total number of categories, xi  is the 
predicted value of the current category, yi is the probability of 
the current category obtained according to the activation 
function, and yi

∗ is the true value of the current category (0 or 
1), 𝒄𝑝  is the predicted probability of the category, 𝒄𝑔𝑡  is the 

ground truth of the category, and 𝑤𝑐𝑙𝑠  is the weight of the 
current category. The confidence loss function is: 

𝐿𝑜𝑏𝑗(𝑝0, 𝑝𝑖𝑜𝑢) = 𝐵𝐶𝐸𝑜𝑏𝑗
𝑠𝑖𝑔

(𝑝0, 𝑝𝑖𝑜𝑢; 𝑤𝑜𝑏𝑗) 

where 𝑝0 is the confidence score of the target, 𝑝𝑖𝑜𝑢  is the 
iou value of the prediction frame and the corresponding target 
frame, and 𝑤𝑜𝑏𝑗  is the current target weight. 

C. S3C Module 

Compared with the Transformer module, the S3C module 
can effectively reduce the amount of computation and 
hardware requirements, and at the same time has almost the 
same ability to extract image information as the Transformer 
module. As shown in Fig. 1, the S3C module first splits the 
input channel, part of which is directly involved in the 
concatenation calculation, and the other part is calculated three 
times by the CBS module, and the result is calculated by the 
concatenation calculation after each calculation, and the final 
calculation result is obtained after the concatenation calculation 
is finished. After the experiment, it is proved that the module 
has excellent performance in the tile defect dataset. The 
calculation formula of S3C module is: 

𝑆3𝐶 = 𝑐𝑜𝑛𝑐𝑎𝑡([𝑠𝑝𝑙𝑖𝑡, 𝐶𝐵𝑆(𝑠𝑝𝑙𝑖𝑡),

              𝐶𝐵𝑆(𝐶𝐵𝑆(𝑠𝑝𝑙𝑖𝑡)),

              𝐶𝐵𝑆(𝐶𝐵𝑆(𝐶𝐵𝑆(𝑠𝑝𝑙𝑖𝑡))],1)
 

D. Amplified Attention Mechanism 

The AA mechanism is proposed to address the situation 
that the tile defect target in this dataset is small and difficult to 
detect accurately. The structure of the enhanced attention 
mechanism is shown in Fig. 1. The avgpool on the left can 
obtain hierarchical feature information, which can better 
distinguish the target area from the non-target area. The 
𝑐𝑜𝑛𝑣1×1 structure on the right can further deepen the feature 
information obtained by the higher-level network; the maxpool 
can highlight the feature information of the deep feature map, 
thus further highlighting the target region; the 𝑐𝑜𝑛𝑣1×1 
structure at the back can narrow the depth of the image to 
facilitate the concatenation operation. The enhanced attention 
mechanism can reduce the degree of feature information loss 
during neural network training. The formula for the AA 
module is: 

𝐴𝐴 = 𝑐𝑜𝑛𝑐𝑎𝑡([𝑎𝑣𝑔𝑝𝑜𝑜𝑙(𝑐𝑜𝑛𝑣),

                           𝑐𝑜𝑛𝑣1×1(𝑚𝑎𝑥𝑝𝑜𝑜𝑙(𝑐𝑜𝑛𝑣1×1))],1)
 

E. Four-Layer Feature Information Fusion 

To further improve the performance of the neural network 
model for tile defect detection, a 4-layer PANet fusion module 
is proposed and the corresponding detection head is added to 
this module. The feature information fusion module is shown 
in the neck part of Fig. 1. In addition, to make the information 
flow more appropriate and reduce the loss of feature 
information, the computation results of an AA module and 
SPPF module in the backbone network are directly fused with 
the 2nd and 4th detection heads before operation. 

IV. EXPERIMENTAL ENVIRONMENT AND EVALUATION 

INDICATORS 

A. Experimental Environment 

Experimental platform: OS Windows 11, CPU i9-12900K, 
GPU RTX5000 24GB, RAM 64GB, Pytorch 2.0.1, CUDA 
11.8, PyCharm 2022.2.1, Anaconda 22.11.1. 

In this study, the segmented dataset is divided into three 
parts according to the ratio of 8:1:1, which are training set, 
validation set and test set. The input size of the neural network 
for the tile defect image dataset is 640 pixels × 640 pixels. The 

optimiser uses AdamW [20] with momentum set to 0.9, an 

initial learning rate of 0.001, and 100 iterations, keeping only 
the optimal model and the model produced by the last iteration. 

B. Evaluation Indicators 

The evaluation indicators used in this study include 
Precision, Recall, and mAP@0.5. Precision represents how 
many of the predicted positive samples are truly positive 
samples, Recall represents how many of the positive examples 
in the sample were predicted correctly, and mAP@0.5 
represents the average accuracy of m categories when IoU is 
0.5. The calculation formulas of precision and recall are shown 
in (1) and (2); the calculation formula of mAP@0.5 is shown in 
formula (3). 
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𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
  

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
   

where TP is the number of positive classes predicted as 
positive, FP is the number of negative classes predicted as 
negative and FN is the number of negative classes predicted as 
negative. 

𝑚𝐴𝑃@0.5 =
1

𝑚
∑ ∫ 𝑃(𝑟𝑖)𝑑𝑟𝑖

1

0
𝑚
𝑖∈𝑚    IoU = 0.50 

𝑃(𝑟𝑖)  denotes the correspondence between recall and 
precision; mAP@a denotes the average precision of m 
categories when IoU is a. 

V. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Performance Comparison Before and After Image 

Segmentation 

Image segmentation has a great impact on the performance 
of the model, and segmentation can increase the size of the 
target and make it easier to detect. The performance 
comparison before and after segmentation on Yolov8n is 
shown in Table I. From the table, we can see that image 
segmentation has significantly improved the performance of 
the model. 

TABLE I.  PERFORMANCE COMPARISON BEFORE AND AFTER 

SEGMENTATION ON YOLOV8N 

Image segmentation Precision Recall mAP@0.5 

Before640×640 0.5712 0.1396 0.1727 

Before1280×1280 0.4027 0.1954 0.2281 

After640×640 0.5206 0.6813 0.6133 

B. Performance Comparison Using the EIoU Loss Function 

The comparison of the effectiveness of GIoU, CIoU and 
EIoU is shown in Table III. The CIoU loss function uses 
proportions to determine whether the size of the prediction 
frame is met or not, as there are very many small targets in this 
dataset, it is not easy to determine the prediction frame in terms 
of width to height proportions, so the EIoU loss function 
achieves a better result among these three loss functions. 

TABLE II.  COMPARISON OF THE EFFECTS OF EIOU, CIOU AND GIOU ON 

YOLOV8N 

Loss Function Precision Recall mAP@0.5 

GIoU 0.3193 0.3724 0.3865 

CIoU 0.5206 0.6813 0.6133 

EIoU 0.5432 0.6859 0.6241 

C. Performance Comparison between 4-layer Feature Fusion 

Module and 3-layer Feature Fusion Module 

The 4-layer feature fusion module can obtain more deep 
information, which can enable the model to detect defects more 
accurately, and its performance is shown in Table IV. 

D. Performance Comparison of the Enhanced Attention 

Mechanism with other Attention Mechanisms 

To verify the effect in the tile recognition dataset, a 
comparison experiment is designed here to verify the effect 
comparison with other attention mechanisms, as shown in 
Table II. From Table II, we can see that the effect of AA 
attention is better than that of other attention mechanisms. A 
From Table II, we can see that the improvement of tile defect 
detection is better than that of other attention mechanisms, 
thanks to the feature of the AA mechanism of reducing the loss 
of feature information during the training process of the neural 
network. 

TABLE III.  PERFORMANCE COMPARISON OF FEATURE FUSION MODULES 

WITH DIFFERENT NUMBER OF LAYERS ON YOLOV8N 

Number of layers in the fusion part Precision Recall mAP@0.5 

Three-layer feature fusion 0.5206 0.6813 0.6133 

Four-layer feature fusion 0.5379 0.6935 0.6472 

TABLE IV.  PERFORMANCE COMPARISON OF AA MECHANISM WITH 

OTHER ATTENTION MECHANISMS IN YOLO-SA 

Module name Precision Recall mAP@0.5 

SE 0.5820 0.7351 0.6925 

CA 0.5783 0.7291 0.6892 

ECA 0.5769 0.7274 0.6744 

CBAM 0.5838 0.7418 0.6892 

Muti-Head Attention 0.5981 0.7353 0.7011 

AA 0.6032 0.7527 0.7024 

E. Feature Information in the Backbone Network Added to 

the Detection Head 

From Table V, it can be seen that the detection results after 
the backbone network is added to the detection head are 
improved over the detection results before it is added, and the 
method can effectively improve the performance of the model. 

TABLE V.  COMPARISON OF THE EFFECT OF YOLO-SA BACKBONE 

NETWORK FEATURE INFORMATION BEFORE AND AFTER ADDING IT DIRECTLY 

TO THE DETECTION HEADER 

Method Precision Recall mAP@0.5 

 0.5206 0.6813 0.6133 

AA 0.5515 0.7381 0.6713 

SPPF 0.5729 0.7442 0.6739 

AA+SPPF 0.6032 0.7527 0.7024 

VI. CONCLUSION 

The mAP@0.5 curves and loss functions of Yolov5s, 
Yolov8n, and Yolo-SA are shown in Fig. 10. Yolo-SA 
outperforms Yolov5s and Yolov8n, proving that the Yolo-SA 
model has a good ability to detect tile defects. 

First, we dramatically improve the accuracy of defect 
detection by using image segmentation techniques, and the 
defect detection mAP@0.5 after segmentation is 48 percentage 
points higher than before segmentation at the same input 
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resolution. Then, we use the EIoU loss function, AA attention 
mechanism, four-layer feature fusion, and let the backbone 
network directly participate in the detection to construct an 
excellent tiled defect detection and recognition model, which is 
capable of recognizing and detecting multiple defects in 
multiple complex backgrounds. The mAP@0.5 of the Yolo-SA 
model improves by 8.15 percentage points and 8.93 percentage 
points compared with that of the Yolov5s and the Yolov8n, 
respectively. The mAP@0.5 of the Yolo-SA model is 
improved by 8.15 percentage points and 8.93 percentage points 
compared to that of the Yolov5s and Yolov8n, respectively. 
The Yolo-SA model is able to detect tile defects under a 
variety of environments, and the actual detection results are 
shown in Fig. 11. 

At present, the performance of the Yolo-SA model still has 
a lot of room for optimization. In practical applications, the 

Yolo-SA model can only be used as an auxiliary model for 
artificial tile defect detection. In the future, large models can be 
combined to further improve the performance of the ceramic 
tile defect detection model, which can further improve the 
accuracy of ceramic tile defect detection in actual production 
scenarios, reduce unnecessary production, and thereby reduce 
energy consumption and environmental pollution. 

TABLE VI.  PERFORMANCE OF YOLOV5S, YOLOV8N, AND YOLO-SA 

Model Precision Recall mAP@0.5 

Yolov5s 0.5310 0.7222 0.6209 

Yolov8n 0.5130 0.6800 0.6131 

Yolo-SA 0.6032 0.7527 0.7024 

 
Fig. 10. mAP@0.5 curve, cls loss curve, box loss curve. 

 

Fig. 11. Yolo SA detection results. 
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