
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

710 | P a g e

www.ijacsa.thesai.org

Optimal Trajectory Planning for Robotic Arm Based

on Improved Dynamic Multi-Population Particle

Swarm Optimization Algorithm

Rong Wu1, Yong Yang2, Xiaotong Yao3, Nannan Lu4

Electronics and Information Engineering, Gansu Province Microelectronics Industry Research Institute1

Gansu Province Integrated Circuit Industry Research Institute1

Lanzhou Jiaotong University, 730070, Lanzhou City, Gansu Province, China2, 3, 4

Abstract—In response to the problem of easy falling into local

optima and low execution efficiency of the basic particle swarm

optimization algorithm for 6-degree-of-freedom robots under

kinematic constraints, a trajectory planning method based on an

improved dynamic multi-population particle swarm optimization

algorithm is proposed. According to the average fitness value, the

population is divided into three subpopulations. The

subpopulation with fitness values higher than the average is

classified as the inferior group, while the subpopulation with

fitness values lower than the average is classified as the superior

group. An equal number of populations are selected from both to

form a mixed group. The inferior group is updated using Gaussian

mutation and mixed particles, while the superior group is updated

using Levy flight and greedy strategies. The mixed group is

updated using improved learning factors and inertia weights.

Simulation results demonstrate that the improved dynamic multi-

population particle swarm optimization algorithm enhances work

efficiency and convergence speed, validating the feasibility and

effectiveness of the algorithm.

Keywords—Particle swarm optimization; Gaussian mutation;

mixed particles; levy flight; greedy strategy

I. INTRODUCTION

Currently, robotic arms have seen extensive development
and application, particularly in the automation of manufacturing
processes [1]. With the continuous expansion of applications
and increasing demands in the field of robotic arms, more and
more researchers have begun to focus on trajectory planning [2]-
[3]. Currently, there are mainly two types of trajectory planning:
one focuses on optimizing time [4]-[5], aiming to improve the
efficiency of robots by optimizing time; the other focuses on
optimizing energy [6], aiming to reduce energy consumption of
robots by optimizing energy.

Over the years, due to advancements in robotics technology
and its increasing ubiquity across various domains, research in
robotics has garnered significant attention. In the process of
robot motion, trajectory planning has become essential. In recent
years, an increasing number of researchers have been
introducing intelligent algorithms [7] [8] [9] [10] [11] [12] [13]
to identify the optimal motion trajectory for robotic arms. In
response to the problem of time-optimal trajectory planning for
robotic arms, numerous intelligent optimization algorithms have
emerged. However, there is still no single outstanding algorithm,
as each of these algorithms has its own advantages and

disadvantages. Therefore, further research is still needed to find
better solutions.

In order to better address the time optimization problem of
robotic arm trajectory planning, this paper adopts an Improved
Dynamic Multi-Population Particle Swarm Optimization
Algorithm (IDM-PSO) [14], which divides the population into
three subpopulations and utilizes strategies such as Levy flight
and greedy strategy, Gaussian mutation and mixed particles, and
improved learning factors and inertia weights to enhance its
global exploration and local exploitation capabilities. By using
MATLAB software for simulation, comparing with Particle
Swarm Optimization (PSO) algorithm and Artificial Fish
Swarm Optimization (AFSA) algorithm, validate the
effectiveness and necessity of the algorithms.

II. ESTABLISHING A MATHEMATICAL MODEL FOR

OPTIMIZING THE TRAJECTORY TIME OF A ROBOTIC ARM

A. 3-5-3 Segment Polynomial Interpolation Establishment

When using polynomial interpolation for trajectory
planning, low-order polynomial interpolation has low
computational complexity but does not guarantee continuous
acceleration, while high-order polynomial interpolation,
although ensuring continuous trajectory, has high computational
complexity and may exhibit Runge's phenomenon [15]. In order
to ensure that the trajectory planning interpolation of the robotic
arm has continuous velocity and acceleration in joint space
without discontinuities, a 3-5-3 segment polynomial
interpolation is used, with the interpolation function shown in
Eq. (1):

3 2

1 13 1 12 1 11 1 10

5 4 3 2

2 25 2 24 2 23 2 22 2 21 20

3 2

3 33 3 32 3 31 3 3

2

0

()

()

()

i i i i i

i i i i i i i

i i i i i

P t a t a t a t a

P t a t a t a t a t a a

P t a t a t a t a

t


   

   

 






 

 
 

In the equation, 𝑃𝑖j represents the angular displacement of

the ith joint in the jth segment of the trajectory planning; 𝑡1, 𝑡2,
𝑡3 represent the motion times of the ith joint for the first, second,
and third segments of the robotic arm, respectively.

During the motion of the robotic arm, each joint passes
through the initial point 𝑋0, intermediate points 𝑋1, 𝑋2, and the
end point 𝑋3. At 𝑋0 and 𝑋3, the velocity and acceleration are set
to 0, and at the three overlapping points of the polynomials, the

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

711 | P a g e

www.ijacsa.thesai.org

velocity and acceleration are all equal [16]. From the above
conditions, the relationships can be expressed as follows:

 1

1 2 3a A b a a a 
 

In the equation:

3 2

1 1

2

1

4 3 2

2 2 2

3 2

2

1

1

1

5

2 2

4

22

2

2

3

3 2

3

2

3

3

3

2 2

3

2

3

t 1 0 0 0 0 0 1 0 0 0 0

2 1 0 0 0 0 0 1 0 0 0 0 0

6t 2 0 0 0 0 0 2 0 0 0 0 0 0

0 0 0 0 1 0 0 0 1

0 0 0 0 5 2 1 0 0 0 1 0

0 0 0 0 20 6 2 0 0 0 2 0 0

0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 0 2 1 0

0 0 0 0 0 0 0 0 0 0 6 2 0 0

0 0 0

3

4

0

3

1

0 1 0 0 0 0 0 0

2

3

t

t t

t t

A

t t

t

t t t

t

t

t

t

t

t

t

t t

tt















0 0

0 0 1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 0 0 1 0 0 0 0

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

  





 
 
 

1 13 12 11 10

2 25 24 23 22 21 20

3 33 32 31 30

i i i i

i i i i i i

i i i i

a a a a a

a a a a a a a

a a a a a

 



   

B. Establishing the Objective Function for Time Optimization

In order to reduce the operation time of the robotic arm and
improve its efficiency, the objective function is established with
time as the optimization target. The objective function is as
follows:

 1 2 3f i i it t t  
 

In the equation: 𝑡i1, 𝑡i2, 𝑡i3 represent the motion times of the
ith joint in the three segments of trajectory planning.
Additionally, in order to reduce uncertainties such as collisions,
damage, and loss of control during the robotic arm's motion,
velocity and acceleration constraints need to be imposed on the
robotic arm. The constraints are as follows:

max

max

ij

ij

v v

a a

 


  

In the equation: "𝑣𝑖𝑗" and "𝑎𝑖𝑗" respectively represent the

velocity and acceleration of the ith joint of the robotic arm as
they vary over time during the jth trajectory segment. "𝑣𝑚𝑎𝑥"
and " 𝑎𝑚𝑎𝑥 " respectively represent the maximum allowable
velocity and maximum acceleration of the ith joint during its jth
trajectory segment.

III. IMPROVED DYNAMIC MULTI-POPULATION PARTICLE

SWARM OPTIMIZATION ALGORITHM

A. Particle Swarm Optimization Algorithm

The Particle Swarm Optimization (PSO) algorithm is a
population-based search algorithm [17]. Suppose in a D-
dimensional search space, a population consists of N particles,
where the i-th particle represents a D-dimensional vector
𝑥𝑖=(𝑥𝑖1，𝑥𝑖2，⋯ ，𝑥𝑖𝐷)𝑇, representing the position of the i-th
particle in the D-dimensional search space. The individual best
solution generated by a particle from the start to the end of the
iteration is denoted as 𝑃𝑖 = (𝑃𝑖1，𝑃𝑖2，⋯ ，𝑃𝑖𝐷)𝑇 , and 𝑃𝑔

represents the global best solution of the entire population. The
velocities and positions of the particles are randomly initialized.
The iterative update formulas for the velocity and position of
particle i in the d -th dimension (1≤d≤D) are as follows:

1

1 1 2 2() ()k k k k

id id id id g idv v c r P x c r P x      
 

1 1k k k

id id idx x v  
 

In the equations: k represents the current iteration number;
𝜔 denotes the inertia weight; 𝑟1 and 𝑟2 are random numbers
uniformly distributed in the range [0, 1]; 𝑐1 and 𝑐2 are the

learning factors; 𝑣𝑖𝑑
𝑘+1 and 𝑥𝑖𝑑

𝑘+1 represent the updated velocity
and position of the particle after the k-th iteration.

B. Improved Dynamic Multi-Population Particle Swarm

Optimization Algorithm

To address the shortcomings of Particle Swarm
Optimization such as difficulty in escaping local optima, low
execution efficiency, and the imbalance between global and
local search capabilities, this paper adopts an Improved
Dynamic Multi-Population Particle Swarm Optimization
Algorithm (IDM-PSO) [18]. Through the dynamic multi-
population strategy, the PSO algorithm is improved by dividing
the population into inferior, superior, and mixed groups based
on their fitness values. The inferior group consists of particles
with fitness values higher than the average, while the superior
group consists of particles with fitness values lower than the
average. An equal number of populations are selected from both
to form a mixed group, ensuring balanced population sizes for
all three groups.

1) The updating mechanism for the superior group: The
main reason for the slow convergence speed of Particle Swarm
Optimization in the later stages of optimization is its difficulty
in escaping from the current local extremum, resulting in a
decrease in accuracy. To enhance the ability of the superior
group to escape from local optima, Levy flight is introduced.
Levy flight has the characteristics of short-distance tracking and
long-distance jumping. This type of flight enhances particle
activity and jumping ability, expands the particle search range,
helps to enhance particle diversity, avoids the algorithm falling
into local optima, and can improve the convergence accuracy
and speed of the algorithm. The formula for Levy flight is as
follows:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

712 | P a g e

www.ijacsa.thesai.org

1

0.01
()Levy x









 

In the equation: ∈[1, 3], In this paper, we set =1.5;  and

 follow a normal distribution. The formula is as follows:

2

2

(0,)

(0,)

N

N





 

 



  

 

1

2

1

2

2

1 sin
2

1
2

2

1



 
















           

   
    
  

   

In Eq. (11),  is the standard gamma function, expressed as
follows:

1

0

t xe t dt    
 

After using Levy flight, the particle velocity update formula
as in Eq. (7), combined with the position update formula
according to Eq. (8), yields:

1 ()l k

idx ex L vy D   
 

In the equation:  is the step size control factor, where

=0.01; 𝑥𝑙 represents the updated position after using the Levy
flight strategy; D is the dimensionality of the particle, where
D=3.

Although Levy flight can help particles escape local optima,
it does not guarantee that the updated particle position is better
than the original position. Therefore, to avoid meaningless
position updates, this paper introduces the evaluation strategy of
greedy algorithm to decide whether to update the optimal
particle position. That is, the position update is only performed
if the updated position is better than the original position;
otherwise, the original position is retained. The process is shown
in Eq. (14):

   

   

1

1 1

,

,

l l k

idnew

k l k

id id

x f x f x
x

x f x f x



 

 
 

  

In Eq. (14): 𝑥𝑛𝑒𝑤 represents the particle position updated

using the greedy strategy; f(𝑥𝑙) is the fitness value of the

particle position updated using Levy flight, and f(𝑥𝑖𝑑
𝑘+1) is the

fitness value of the particle after the k-th iteration.

2) The updating mechanism for the inferior group: The
particles in the inferior group have limited valuable information
and are far from the optimal solution of the problem. They can
be optimized by means of Gaussian mutation [19] to search for
the optimal solution across the entire space. Mutation can
explore various possible solution regions in the entire search

space and also prevent premature convergence and increase the
diversity of subpopulations. The mutation criteria are as follows:

 max

1 4
1 arctan

2

k
r

k 

  
     

    

1 (1 (0,1))g k

idx x N  
 

where, k represents the current iteration number; 𝑘𝑚𝑎𝑥 is the
maximum iteration number; r and N(0, 1) are random numbers
between [0,1]; and 𝑥𝑔 denotes the updated position after
mutation. When Eq. (15) holds true, Eq. (16) is executed to
perform Gaussian mutation on the particles. The probability of
Eq. (15) holding true gradually decreases after multiple
iterations, and consequently, the probability of particle mutation
decreases as well. The mutation operation can cause particles to
mutate with a relatively high probability in the initial stages,
thereby expanding the search range of particles in the solution
space and ensuring particle diversity.

In addition, the concept of mixed particles is introduced to
modify the traditional velocity update formula. The mixed
particle, denoted as 𝑃𝑚𝑖𝑥 , is composed of dimensions randomly
selected from each particle's current historical best position, with
no repetition of dimensions from the same particle. The
generation of mixed particles [20] is illustrated in Fig. 1.

Fig. 1. The process of generating mixed particles.

The velocity update method for the inferior group obtained
from this is as follows:

     1 1

1 1 2 2 3 3

k k k k k

id id id id g id mix idv v c r P x c r P x c r P x        


In the equation: 𝑐3 is the mixed learning factor, 𝑐3 = 1.5; 𝑟3
is a random number between 0 and 1. The mixed particle serves
as a traction factor guiding the velocity update of the particles.
It effectively addresses the issue of falling into local optima.
Additionally, its own excellence also encourages the particles to
evolve towards more optimal directions.

3) The mixed group updating mechanism: The mixed group
lies between the superior group and the inferior group. Due to

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

713 | P a g e

www.ijacsa.thesai.org

significant differences among individuals in the early stages of
the algorithm, it focuses more on their cognitive aspects.
Therefore, improved learning factors and inertia weights are
introduced [21].

1 2

max max

2cos , 2sin
2 2

k k
c c

k k

    
    

     

 min max min

max

cos
k

k


   

 
     

   

From Eq. (18) and Eq. (19), it can be observed that the
velocity and position update formulas for the mixed group are:

   1 1

1 1 2 2

k k k k

id id id id g idv v c r P x c r P x      
 

1 1k k k

id id idx x v  
 

C. The process of the Improved Dynamic Multi-Population

Particle Swarm Optimization Algorithm

Based on the aforementioned method for improving the
particle swarm algorithm, the steps of the Improved Dynamic
Multi-Population Particle Swarm Optimization Algorithm in

optimizing the time-optimal trajectory planning of robotic arms
are as follows:

Step 1: Initialize the parameters of the Improved Dynamic
Multi-Population Particle Swarm Optimization Algorithm,
including the population size N, maximum iteration count 𝑘𝑚𝑎𝑥,
population dimension D, upper bound ub and lower bound lb of
the search space, and initialize the population positions.

Step 2: Calculate the fitness values of the population
according to Eq. (5) and divide them into three subpopulations
based on their fitness values.

Step 3: Calculate the fitness values of the three
subpopulations using Eq. (5). Utilize the runtime of the three
trajectory segments from each subpopulation into Eq. (1) and
(2). Assess whether the constraints are satisfied using Eq. (6). If
satisfied, update the fitness values of the three subpopulations
using the respective methods; otherwise, assign a large value to
eliminate them in the next iteration.

Step 4: Merge the subpopulations. Output the optimal
solution after the iteration ends.

Based on the above steps, the flowchart of the Improved
Dynamic Multi-Population Particle Swarm Optimization
Algorithm is shown in Fig. 2.

Start

population

initialization

Partitioning

subpopulations based on

fitness values

Inferior particle
Dominant

particle
Mixed particle

Satisfy the

constraints?

Satisfy the

constraints?

Satisfy the

constraints?

Particle update (Levy

flight and greedy

strategy)

Particle update (mixed

particle and Gaussian

mutation)

Particle update (improved

learning factor and inertia

weight)

Y Y Y

Maximum

fitness value

Maximum

fitness value

Maximum

fitness value
N N N

Merge populations

Reached maximum

iteration limit?

Output the best

solution

End

Y

N

Fig. 2. Improved dynamic multi-population particle swarm optimization algorithm flowchart.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

714 | P a g e

www.ijacsa.thesai.org

IV. EXPERIMENTAL SIMULATION AND ANALYSIS

A. Experimental Design

The experiment employs the PUMA560 robotic arm model
and conducts simulations for time-optimal trajectory planning of
the robotic arm using MATLAB. The D-H parameters of the
PUMA560 robotic arm are listed in Table Ⅰ. The robotic arm
model constructed based on the D-H parameters table is
illustrated in Fig. 3.

TABLE I. D-H MODELING PARAMETERS OF THE PUMA560 ROBOTIC

ARM

Link 𝜽𝒊/(°) 𝝏𝒊−𝟏/(°) 𝒂𝒊−𝟏/𝒎𝒎 𝒅𝒊/𝒎𝒎

1 𝜃1 0 0.00 0.00

2 𝜃2 -90 0.00 149.09

3 𝜃3 0 431.80 0.00

4 𝜃4 -90 20.32 433.07

5 𝜃5 90 0.00 0.00

6 𝜃6 -90 0.00 0.00

Fig. 3. Model of the PUMA560 robotic Arm.

Interpolation using a 3-5-3 polynomial requires specified
preset times to calculate the polynomial coefficients. In this
study, the preset interpolation time for each segment is set to
four seconds, totaling 12 seconds for all three segments. The
path points for each joint of the robotic arm are provided in
Table Ⅱ.

TABLE II. JOINT SPACE PATH POINTS OF THE ROBOTIC ARM

Joint X0(rad) X1(rad) X2(rad) X3(rad)

1 0.1024 0.4164 0.1374 -0.2236

2 -0.3157 0.2236 0.9763 0.3492

3 0.2384 -0.1752 0.7600 0.3893

4 0.1232 0.4535 -0.2478 0.4457

5 0.2453 -0.2223 0.3479 -0.0045

6 0.3253 -0.0886 0.2976 -0.1672

B. Experimental Simulation

In order to validate the correctness and effectiveness of the
Improved Dynamic Multi-Population Particle Swarm

Optimization Algorithm (IDM-PSO), comparative experiments
were conducted with the Basic Particle Swarm Optimization
Algorithm (PSO) and the Artificial Fish Swarm Algorithm
(AFSA). During the iterative optimization process, for PSO, the
number of particles N = 30, the learning factors 𝑐1 = 𝑐2 = 1.5,
the inertia weight 𝜔 = 0.9, and the maximum number of
iterations 𝑘𝑚𝑎𝑥 = 90; for IDM-PSO, the number of particles N =
30, in the inferior and superior groups 𝑐1 = 𝑐2 = 1.5, in the mixed
group, 𝑐1 and 𝑐2 vary according to Eq. (18), the inertia weights
𝜔𝑚𝑎𝑥 = 0.9 and 𝜔𝑚𝑖𝑛 = 0.4, and 𝜔 varies according to Eq. (19),
with the maximum number of iterations 𝑘𝑚𝑎𝑥 = 90; for AFSA,
the number of particles N = 30, and the maximum number of
iterations 𝑘𝑚𝑎𝑥 = 90. To ensure the stability of the robotic arm's
actual operation and the accuracy of trajectory planning, the
maximum angular velocity for each joint was set to 3.5 rad/s,
and the maximum acceleration was set to 6.5 rad/s^2. The
experiment will optimize the trajectory planning time of the six
joints of the robotic arm using these three different intelligent
algorithms. The comparison of adaptation curves for each joint
is depicted in the simulated results as shown in Fig. 4 to Fig. 9.

Fig. 4. Comparison chart of convergence for joint 1.

Fig. 5. Comparison chart of convergence for joint 2.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

715 | P a g e

www.ijacsa.thesai.org

Fig. 6. Comparison chart of convergence for joint 3.

Fig. 7. Comparison chart of convergence for joint 4.

Fig. 8. Comparison chart of convergence for joint 5.

Fig. 9. Comparison chart of convergence for joint 6.

From Fig. (4) to Fig. (9), it can be observed that the
Improved Dynamic Multi-Population Particle Swarm
Optimization Algorithm exhibits higher convergence accuracy
compared to the Basic Particle Swarm Optimization Algorithm
and significantly improved efficiency compared to the Artificial
Fish Swarm Algorithm. While retaining the advantages of the
Basic Particle Swarm Optimization Algorithm, the Improved
Dynamic Multi-Population Particle Swarm Optimization
Algorithm is more capable of escaping local optima and
achieves faster optimization efficiency. The time taken for each
joint segment in the 3-5-3 polynomial trajectory planning under
the optimization of the three algorithms is shown in Tables Ⅲ,
Ⅳ, and Ⅴ.

TABLE III. MOTION TIME FOR TRAJECTORY PLANNING OF EACH JOINT

(PSO)

Joint 𝒕(𝐬) 𝒕𝟏(𝐬) 𝒕𝟐(𝐬) 𝒕𝟑(𝐬)

1 2.717 0.895 1.031 0.791

2 3.670 0.889 1.466 1.315

3 4.296 1.021 2.253 1.022

4 4.639 0.851 2.297 1.491

5 4.150 1.183 2.054 0.913

6 4.163 1.041 1.953 1.169

TABLE IV. MOTION TIME FOR TRAJECTORY PLANNING OF EACH JOINT

(AFSA)

Joint 𝒕(𝐬) 𝒕𝟏(𝐬) 𝒕𝟐(𝐬) 𝒕𝟑(𝐬)

1 2.864 0.939 1.098 0.827

2 3.902 1.000 1.470 1.432

3 4.497 1.143 2.318 1.036

4 4.888 0.907 2.370 1.611

5 4.372 1.258 2.141 0.973

6 4.382 1.109 2.040 1.233

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

716 | P a g e

www.ijacsa.thesai.org

TABLE V. MOTION TIME FOR TRAJECTORY PLANNING OF EACH JOINT

(IDM-PSO)

Joint 𝒕(𝐬) 𝒕𝟏(𝐬) 𝒕𝟐(𝐬) 𝒕𝟑(𝐬)

1 2.386 0.814 0.861 0.711

2 3.221 0.755 1.296 1.170

3 3.743 0.922 1.985 0.836

4 4.071 0.758 2.038 1.275

5 3.639 1.026 1.816 0.797

6 3.657 0.972 1.606 1.079

In Tables Ⅲ, Ⅳ, and Ⅴ, the time taken for each joint for each
trajectory segment under optimization by the three intelligent
algorithms is statistically recorded. In which, "t" represents the
total time used for trajectory planning in three segments after
polynomial trajectory interpolation for each joint optimized
using intelligent algorithms. "𝑡1, 𝑡2, 𝑡3" represent the time used
for trajectory planning in three segments for each joint. To
ensure that all joints can complete the motion task while
satisfying velocity and acceleration constraints, the maximum
time for each segment of the trajectory for all six joints needs to
be selected. Therefore, for the Basic Particle Swarm
Optimization Algorithm, the time for the three segments of the
trajectory is as follows: 𝑡1=1.183s, 𝑡2= 2.297s, 𝑡3=1.491s, with
a total time t=4.971s. For the Artificial Fish Swarm Algorithm,
the time for the three segments of the trajectory is 𝑡1=1.258s,
𝑡2 =2.370s, 𝑡3 = 1.611s, with a total time t=5.239s. For the
Improved Dynamic Multi-Population Particle Swarm
Optimization Algorithm, the time for the three segments of the
trajectory is 𝑡1=1.026s, 𝑡2=2.038s, 𝑡3=1.275s, with a total time
t=4.339s. The comparison shows that the Improved Dynamic
Multi-Population Particle Swarm Optimization Algorithm
reduces the trajectory planning time by approximately 12.7%
compared to the Basic Particle Swarm Optimization Algorithm
and by approximately 17% compared to the Artificial Fish
Swarm Algorithm, leading to improved efficiency. Three
algorithms (IDM-PSO, PSO, and AFSA) were subjected to six
repeated experiments, and the experimental results are shown in
Table Ⅵ.

The experimental data from Table Ⅵ indicates that over six
experiments, there is no significant difference in the time taken
to complete the trajectory planning of the robotic arm among the
three algorithms, validating the accuracy of the algorithms.

TABLE VI. THE EXPERIMENTAL RESULTS OF DIFFERENT OPTIMIZATION

ALGORITHMS (UNIT: S)

Number of

Experiments
IDM-PSO PSO AFSA

1 4.339 4.971 5.239

2 4.379 5.019 5.240

3 4.354 5.007 5.249

4 4.357 5.281 5.242

5 4.289 4.915 5.247

6 4.300 5.087 5.226

Average value 4.336 5.047 5.241

The motion characteristics, including displacement, velocity,
and acceleration of each joint optimized by the Improved
Dynamic Multi-Population Particle Swarm Optimization
Algorithm during trajectory planning, as well as the end-effector
trajectory of the robotic arm, are illustrated in the following
figures.

Fig. 10. Displacement curves of each joint.

Fig. 11. Velocity curves for each joint.

Fig. 12. Acceleration curves for each joint.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

717 | P a g e

www.ijacsa.thesai.org

Fig. 13. The end-effector trajectory of the robotic arm.

From the above Fig. 10 to Fig. 13, it can be observed that
under the optimization of the improved dynamic multi-
population particle swarm optimization algorithm, the
displacement, velocity, and acceleration curves of each joint are
continuous without abrupt changes, satisfying the constraint
conditions. This validates the correctness and effectiveness of
the improved dynamic multi-population particle swarm
optimization algorithm.

V. CONCLUSION

This paper focuses on the time-optimal trajectory planning
of the PUMA560 robotic arm. Under the constraints of velocity
and acceleration of the robotic arm, the trajectory interpolation
is conducted using the 3-5-3 polynomial interpolation function.
An improved dynamic multi-population particle swarm
optimization algorithm is employed for optimization, compared
with the basic particle swarm optimization algorithm and the
artificial fish swarm optimization algorithm. The improved
algorithm achieves higher optimization accuracy and stronger
capability to escape local optima. Through simulation
experiments, it is observed that the trajectory curves of each
joint are continuous without discontinuities. Compared with the
basic particle swarm optimization algorithm and the artificial
fish swarm optimization algorithm, the proposed approach
reduces the time by approximately 12.7% and 17%,
respectively, thus improving efficiency. The results demonstrate
the correctness and effectiveness of the improved multi-
population particle swarm optimization algorithm.

In this paper, time-optimal trajectory planning for the robotic
arm has been conducted, with factors such as energy and impact
left unconsidered. In future work, further research is required to
explore objectives such as energy optimality, impact optimality,
and hybrid optimality.

ACKNOWLEDGMENT

This work was supported by the Major Cultivation Project
of Innovative Platform in Gansu Province in 2024.

REFERENCES

[1] Xue-ling Yan, Bo-kai Zhu, and Chao Ma. "The Use of Industrial Robots
and Employment in Manufacturing: Evidence from China." Statistical
Research, vol. 37, no. 1, pp. 74-87, 2020.

[2] Yong Guo, and Lai Guang. Review of Joint Space Trajectory Planning
and Optimization for Industrial Robots. Mechanical Transmission, vol.
44, no. 2, pp.154-165, 2020.

[3] Li Li, Jun-yun Shang, Yan-li Feng, and Ya-wen Huai. A Review of Joint-
Type Industrial Robot Trajectory Planning. Computer Engineering and
Applications, vol. 54, no. 5, pp.36-50, 2018.

[4] Zhe Zhou, and Yong Ouyang. Time-Optimal Trajectory Planning for Six-
Axis Painting Robots. Combined Machine Tools and Automated
Manufacturing Technology, no. 6, pp.53-57, 2023.

[5] Jia Xie, Jia-zhen Wu, Yong-guo Li, and Jin-tao Liang. Application of
Improved Particle Swarm Optimization Algorithm in Trajectory Planning
of Manipulator Arms. Mechanical Science and Technology, vol. 38, no.
1, pp. 368-378, 2024.

[6] Yu-xue Pu, Peng-fei Shu, Qi Jiang, and Wei-zhong Chen. Time-Energy
Optimal Trajectory Planning for Industrial Robots. Computer
Engineering and Applications, vol. 55, no. 22, pp. 86-90, 2019.

[7] Rong Fu, and He-hua Ju. Time-Optimal Trajectory Planning Algorithm
for Manipulator Arms Based on Particle Swarm Optimization.
Information and Control, vol. 40, no. 6, pp. 802-808, 2011.

[8] Wei Deng, Qi-wan Zhang, Ping Liu, and Rui Song. Optimal Time
Trajectory Planning Based on Dual Population Genetic Chaotic
Optimization Algorithm. Computer Integrated Manufacturing Systems,
vol. 24, no. 1, pp. 101, 2018.

[9] Ji-chun Wu, Zhai-wu Zhang, Yong-da Yang, Ping Zhang, and Da-peng
Fan. Time-Optimal Trajectory Planning for Manipulator Arms Based on
Improved Swordfish Algorithm. Computer Integrated Manufacturing
Systems, pp. 1-19, 2024.

[10] Qiang Xu, Jian-lei Xu, Yan-hai Hu, Hai-hui Chen, Xing Zhang, and Zhao-
hui Xing. "Mechanical Arm Trajectory Optimization Based on Improved
Simulated Annealing Genetic Algorithm." Journal of System Simulation,
pp. 1-10, 2024.

[11] Guo-yu Zuo, Mi Li, and Bang-gui Zheng. "Optimal Trajectory Planning
Method for Mechanical Arm Based on Improved Adaptive Multi-
objective Particle Swarm Optimization Algorithm." Experimental
Technology and Management, pp.1-14, 2024.

[12] Miao, X., Fu, H. and Song, X.. Research on motion trajectory planning of
the robotic arm of a robot. Artificial Life and Robotics, vol. 27, no. 3, pp.
561-567, 2022.

[13] Fan, Pu, and Hai-dong Hu. "Trajectory planning of vibration suppression
for hybrid structure flexible manipulator based on differential evolution
particle swarm optimization algorithm." Journal of Physics: Conference
Series, vol. 2691. no. 1, 2024.

[14] Yu-jia Wang, Shan-kun Nie, and Shan-li Xiao. Particle Swarm
Optimization Algorithm Based on Dynamic Multi-Population. Electronic
Science and Technology, vol.30, no. 7, pp. 9-12+16, 2017.

[15] Zhang Long, Xian-tao Li, Tao Shuai, Fei-juan Wen, Wen-rong Feng, and
Chun-ping Liang. A Review of Research Status on Industrial Robot
Trajectory Planning. Mechanical Science and Technology, vol. 40, no. 6,
pp. 853-862, 2021.

[16] Shi-qi Li, Ping He, Ke Han, and Zhi-yong Zhang. A Redundant
Manipulator Inverse Kinematics Solution and Optimization Method.
Journal of Huazhong University of Science and Technology (Natural
Science Edition), pp. 1-8, 2024.

[17] Tao Sui, Hao Jiang, Liu-jun Kong, and Qiang Jiang. Research on
Manipulator Arm Trajectory Planning Based on Improved Particle Swarm
Optimization Algorithm. Journal of Shenyang Ligong University, vol.42,
no. 1, pp. 7-12, 2023.

[18] Yun-long Gao, and Peng Yan. Joint Optimization Algorithm Based on
Multi-Population Particle Swarm Optimization and Cuckoo Search.
Control and Decision, vol. 31, no. 4, pp. 601-608, 2016.

[19] Yang Yang, and Feng-yong Li. Short-Term Load Forecasting Based on
Gaussian Mutation Particle Swarm Optimization. Computer Simulation,
vol. 40, no. 1, pp. 125-130, 2023.

[20] Ke-xin Tang, Xiao-lei Liang, Wen-feng Zhou, Qian-hui Ma, and Yu
Zhang. Dynamic Multi-Population Particle Swarm Optimization
Algorithm with Recombination Learning and Hybrid Mutation. Control
and Decision, vol. 36, no. 12, pp. 2871-2880, 2021.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

718 | P a g e

www.ijacsa.thesai.org

[21] Xian-shan Shi, Hong-bin Miao, and Wei Zhang. Time-Optimal Trajectory
Planning for Six-DOF Manipulator Arm Based on Improved Particle

Swarm Optimization Algorithm. Machine Tool & Hydraulics, vol. 51, no.
1, pp. 20-25, 2023.

