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Abstract—In response to the problem of easy falling into local 

optima and low execution efficiency of the basic particle swarm 

optimization algorithm for 6-degree-of-freedom robots under 

kinematic constraints, a trajectory planning method based on an 

improved dynamic multi-population particle swarm optimization 

algorithm is proposed. According to the average fitness value, the 

population is divided into three subpopulations. The 

subpopulation with fitness values higher than the average is 

classified as the inferior group, while the subpopulation with 

fitness values lower than the average is classified as the superior 

group. An equal number of populations are selected from both to 

form a mixed group. The inferior group is updated using Gaussian 

mutation and mixed particles, while the superior group is updated 

using Levy flight and greedy strategies. The mixed group is 

updated using improved learning factors and inertia weights. 

Simulation results demonstrate that the improved dynamic multi-

population particle swarm optimization algorithm enhances work 

efficiency and convergence speed, validating the feasibility and 

effectiveness of the algorithm. 

Keywords—Particle swarm optimization; Gaussian mutation; 

mixed particles; levy flight; greedy strategy 

I. INTRODUCTION 

Currently, robotic arms have seen extensive development 
and application, particularly in the automation of manufacturing 
processes [1]. With the continuous expansion of applications 
and increasing demands in the field of robotic arms, more and 
more researchers have begun to focus on trajectory planning [2]-
[3]. Currently, there are mainly two types of trajectory planning: 
one focuses on optimizing time [4]-[5], aiming to improve the 
efficiency of robots by optimizing time; the other focuses on 
optimizing energy [6], aiming to reduce energy consumption of 
robots by optimizing energy. 

Over the years, due to advancements in robotics technology 
and its increasing ubiquity across various domains, research in 
robotics has garnered significant attention. In the process of 
robot motion, trajectory planning has become essential. In recent 
years, an increasing number of researchers have been 
introducing intelligent algorithms [7] [8] [9] [10] [11] [12] [13] 
to identify the optimal motion trajectory for robotic arms. In 
response to the problem of time-optimal trajectory planning for 
robotic arms, numerous intelligent optimization algorithms have 
emerged. However, there is still no single outstanding algorithm, 
as each of these algorithms has its own advantages and 

disadvantages. Therefore, further research is still needed to find 
better solutions. 

In order to better address the time optimization problem of 
robotic arm trajectory planning, this paper adopts an Improved 
Dynamic Multi-Population Particle Swarm Optimization 
Algorithm (IDM-PSO) [14], which divides the population into 
three subpopulations and utilizes strategies such as Levy flight 
and greedy strategy, Gaussian mutation and mixed particles, and 
improved learning factors and inertia weights to enhance its 
global exploration and local exploitation capabilities. By using 
MATLAB software for simulation, comparing with Particle 
Swarm Optimization (PSO) algorithm and Artificial Fish 
Swarm Optimization (AFSA) algorithm, validate the 
effectiveness and necessity of the algorithms. 

II. ESTABLISHING A MATHEMATICAL MODEL FOR 

OPTIMIZING THE TRAJECTORY TIME OF A ROBOTIC ARM 

A. 3-5-3 Segment Polynomial Interpolation Establishment 

When using polynomial interpolation for trajectory 
planning, low-order polynomial interpolation has low 
computational complexity but does not guarantee continuous 
acceleration, while high-order polynomial interpolation, 
although ensuring continuous trajectory, has high computational 
complexity and may exhibit Runge's phenomenon [15]. In order 
to ensure that the trajectory planning interpolation of the robotic 
arm has continuous velocity and acceleration in joint space 
without discontinuities, a 3-5-3 segment polynomial 
interpolation is used, with the interpolation function shown in 
Eq. (1): 
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In the equation, 𝑃𝑖j  represents the angular displacement of 

the ith joint in the jth segment of the trajectory planning; 𝑡1, 𝑡2, 
𝑡3 represent the motion times of the ith joint for the first, second, 
and third segments of the robotic arm, respectively. 

During the motion of the robotic arm, each joint passes 
through the initial point 𝑋0, intermediate points 𝑋1, 𝑋2, and the 
end point 𝑋3. At 𝑋0 and 𝑋3, the velocity and acceleration are set 
to 0, and at the three overlapping points of the polynomials, the 
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velocity and acceleration are all equal [16]. From the above 
conditions, the relationships can be expressed as follows: 
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B. Establishing the Objective Function for Time Optimization 

In order to reduce the operation time of the robotic arm and 
improve its efficiency, the objective function is established with 
time as the optimization target. The objective function is as 
follows: 

 1 2 3f i i it t t  
 

In the equation: 𝑡i1, 𝑡i2, 𝑡i3 represent the motion times of the  
ith joint in the three segments of trajectory planning. 
Additionally, in order to reduce uncertainties such as collisions, 
damage, and loss of control during the robotic arm's motion, 
velocity and acceleration constraints need to be imposed on the 
robotic arm. The constraints are as follows: 
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In the equation: "𝑣𝑖𝑗" and "𝑎𝑖𝑗" respectively represent the 

velocity and acceleration of the ith joint of the robotic arm as 
they vary over time during the jth trajectory segment. "𝑣𝑚𝑎𝑥" 
and " 𝑎𝑚𝑎𝑥 " respectively represent the maximum allowable 
velocity and maximum acceleration of the ith joint during its jth 
trajectory segment. 

III. IMPROVED DYNAMIC MULTI-POPULATION PARTICLE 

SWARM OPTIMIZATION ALGORITHM 

A. Particle Swarm Optimization Algorithm 

The Particle Swarm Optimization (PSO) algorithm is a 
population-based search algorithm [17]. Suppose in a D-
dimensional search space, a population consists of N particles, 
where the i-th particle represents a D-dimensional vector 
𝑥𝑖=(𝑥𝑖1，𝑥𝑖2，⋯ ，𝑥𝑖𝐷)𝑇, representing the position of the i-th 
particle in the D-dimensional search space. The individual best 
solution generated by a particle from the start to the end of the 
iteration is denoted as 𝑃𝑖 = (𝑃𝑖1，𝑃𝑖2，⋯ ，𝑃𝑖𝐷)𝑇 , and 𝑃𝑔 

represents the global best solution of the entire population. The 
velocities and positions of the particles are randomly initialized. 
The iterative update formulas for the velocity and position of 
particle  i  in the d -th dimension (1≤d≤D) are as follows: 
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In the equations: k represents the current iteration number; 
𝜔  denotes the inertia weight; 𝑟1  and 𝑟2  are random numbers 
uniformly distributed in the range [0, 1]; 𝑐1  and 𝑐2  are the 

learning factors; 𝑣𝑖𝑑
𝑘+1 and 𝑥𝑖𝑑

𝑘+1 represent the updated velocity 
and position of the particle after the k-th iteration. 

B. Improved Dynamic Multi-Population Particle Swarm 

Optimization Algorithm 

To address the shortcomings of Particle Swarm 
Optimization such as difficulty in escaping local optima, low 
execution efficiency, and the imbalance between global and 
local search capabilities, this paper adopts an Improved 
Dynamic Multi-Population Particle Swarm Optimization 
Algorithm (IDM-PSO) [18]. Through the dynamic multi-
population strategy, the PSO algorithm is improved by dividing 
the population into inferior, superior, and mixed groups based 
on their fitness values. The inferior group consists of particles 
with fitness values higher than the average, while the superior 
group consists of particles with fitness values lower than the 
average. An equal number of populations are selected from both 
to form a mixed group, ensuring balanced population sizes for 
all three groups. 

1) The updating mechanism for the superior group: The 
main reason for the slow convergence speed of Particle Swarm 
Optimization in the later stages of optimization is its difficulty 
in escaping from the current local extremum, resulting in a 
decrease in accuracy. To enhance the ability of the superior 
group to escape from local optima, Levy flight is introduced. 
Levy flight has the characteristics of short-distance tracking and 
long-distance jumping. This type of flight enhances particle 
activity and jumping ability, expands the particle search range, 
helps to enhance particle diversity, avoids the algorithm falling 
into local optima, and can improve the convergence accuracy 
and speed of the algorithm. The formula for Levy flight is as 
follows: 
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In the equation: ∈[1, 3], In this paper, we set =1.5;  and 

 follow a normal distribution. The formula is as follows: 
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In Eq. (11),  is the standard gamma function, expressed as 
follows: 
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After using Levy flight, the particle velocity update formula 
as in Eq. (7), combined with the position update formula 
according to Eq. (8), yields: 
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In the equation:  is the step size control factor, where 

=0.01; 𝑥𝑙 represents the updated position after using the Levy 
flight strategy; D is the dimensionality of the particle, where 
D=3. 

Although Levy flight can help particles escape local optima, 
it does not guarantee that the updated particle position is better 
than the original position. Therefore, to avoid meaningless 
position updates, this paper introduces the evaluation strategy of 
greedy algorithm to decide whether to update the optimal 
particle position. That is, the position update is only performed 
if the updated position is better than the original position; 
otherwise, the original position is retained. The process is shown 
in Eq. (14): 
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In Eq. (14): 𝑥𝑛𝑒𝑤  represents the particle position updated 

using the greedy strategy; f(𝑥𝑙)  is the fitness value of the 

particle position updated using Levy flight, and f(𝑥𝑖𝑑
𝑘+1) is the 

fitness value of the particle after the k-th iteration. 

2) The updating mechanism for the inferior group: The 
particles in the inferior group have limited valuable information 
and are far from the optimal solution of the problem. They can 
be optimized by means of Gaussian mutation [19] to search for 
the optimal solution across the entire space. Mutation can 
explore various possible solution regions in the entire search 

space and also prevent premature convergence and increase the 
diversity of subpopulations. The mutation criteria are as follows: 
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where, k represents the current iteration number; 𝑘𝑚𝑎𝑥 is the 
maximum iteration number; r and N(0, 1) are random numbers 
between [0,1]; and 𝑥𝑔  denotes the updated position after 
mutation. When Eq. (15) holds true, Eq. (16) is executed to 
perform Gaussian mutation on the particles. The probability of 
Eq. (15) holding true gradually decreases after multiple 
iterations, and consequently, the probability of particle mutation 
decreases as well. The mutation operation can cause particles to 
mutate with a relatively high probability in the initial stages, 
thereby expanding the search range of particles in the solution 
space and ensuring particle diversity. 

In addition, the concept of mixed particles is introduced to 
modify the traditional velocity update formula. The mixed 
particle, denoted as 𝑃𝑚𝑖𝑥 , is composed of dimensions randomly 
selected from each particle's current historical best position, with 
no repetition of dimensions from the same particle. The 
generation of mixed particles [20] is illustrated in Fig. 1. 

 

Fig. 1. The process of generating mixed particles. 

The velocity update method for the inferior group obtained 
from this is as follows: 
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In the equation: 𝑐3 is the mixed learning factor, 𝑐3 = 1.5; 𝑟3 
is a random number between 0 and 1. The mixed particle serves 
as a traction factor guiding the velocity update of the particles. 
It effectively addresses the issue of falling into local optima. 
Additionally, its own excellence also encourages the particles to 
evolve towards more optimal directions. 

3) The mixed group updating mechanism: The mixed group 
lies between the superior group and the inferior group. Due to 
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significant differences among individuals in the early stages of 
the algorithm, it focuses more on their cognitive aspects. 
Therefore, improved learning factors and inertia weights are 
introduced [21]. 
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From Eq. (18) and Eq. (19), it can be observed that the 
velocity and position update formulas for the mixed group are: 
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C. The process of the Improved Dynamic Multi-Population 

Particle Swarm Optimization Algorithm 

Based on the aforementioned method for improving the 
particle swarm algorithm, the steps of the Improved Dynamic 
Multi-Population Particle Swarm Optimization Algorithm in 

optimizing the time-optimal trajectory planning of robotic arms 
are as follows: 

Step 1: Initialize the parameters of the Improved Dynamic 
Multi-Population Particle Swarm Optimization Algorithm, 
including the population size N, maximum iteration count 𝑘𝑚𝑎𝑥, 
population dimension D, upper bound ub and lower bound lb of 
the search space, and initialize the population positions. 

Step 2: Calculate the fitness values of the population 
according to Eq. (5) and divide them into three subpopulations 
based on their fitness values. 

Step 3: Calculate the fitness values of the three 
subpopulations using Eq. (5). Utilize the runtime of the three 
trajectory segments from each subpopulation into Eq. (1) and 
(2). Assess whether the constraints are satisfied using Eq. (6). If 
satisfied, update the fitness values of the three subpopulations 
using the respective methods; otherwise, assign a large value to 
eliminate them in the next iteration. 

Step 4: Merge the subpopulations. Output the optimal 
solution after the iteration ends. 

Based on the above steps, the flowchart of the Improved 
Dynamic Multi-Population Particle Swarm Optimization 
Algorithm is shown in Fig. 2. 
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Fig. 2. Improved dynamic multi-population particle swarm optimization algorithm flowchart. 
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IV. EXPERIMENTAL SIMULATION AND ANALYSIS 

A. Experimental Design 

The experiment employs the PUMA560 robotic arm model 
and conducts simulations for time-optimal trajectory planning of 
the robotic arm using MATLAB. The D-H parameters of the 
PUMA560 robotic arm are listed in Table Ⅰ. The robotic arm 
model constructed based on the D-H parameters table is 
illustrated in Fig. 3. 

TABLE I.  D-H MODELING PARAMETERS OF THE PUMA560 ROBOTIC 

ARM 

Link 𝜽𝒊/(°) 𝝏𝒊−𝟏/(°) 𝒂𝒊−𝟏/𝒎𝒎 𝒅𝒊/𝒎𝒎 

1 𝜃1 0 0.00 0.00 

2 𝜃2 -90 0.00 149.09 

3 𝜃3 0 431.80 0.00 

4 𝜃4 -90 20.32 433.07 

5 𝜃5 90 0.00 0.00 

6 𝜃6 -90 0.00 0.00 

 
Fig. 3. Model of the PUMA560 robotic Arm. 

Interpolation using a 3-5-3 polynomial requires specified 
preset times to calculate the polynomial coefficients. In this 
study, the preset interpolation time for each segment is set to 
four seconds, totaling 12 seconds for all three segments. The 
path points for each joint of the robotic arm are provided in 
Table Ⅱ. 

TABLE II.  JOINT SPACE PATH POINTS OF THE ROBOTIC ARM 

Joint X0(rad) X1(rad) X2(rad) X3(rad) 

1 0.1024 0.4164 0.1374 -0.2236 

2 -0.3157 0.2236 0.9763 0.3492 

3 0.2384 -0.1752 0.7600 0.3893 

4 0.1232 0.4535 -0.2478 0.4457 

5 0.2453 -0.2223 0.3479 -0.0045 

6 0.3253 -0.0886 0.2976 -0.1672 

B. Experimental Simulation 

In order to validate the correctness and effectiveness of the 
Improved Dynamic Multi-Population Particle Swarm 

Optimization Algorithm (IDM-PSO), comparative experiments 
were conducted with the Basic Particle Swarm Optimization 
Algorithm (PSO) and the Artificial Fish Swarm Algorithm 
(AFSA). During the iterative optimization process, for PSO, the 
number of particles N = 30, the learning factors 𝑐1 = 𝑐2 = 1.5, 
the inertia weight 𝜔  = 0.9, and the maximum number of 
iterations 𝑘𝑚𝑎𝑥 = 90; for IDM-PSO, the number of particles N = 
30, in the inferior and superior groups 𝑐1 = 𝑐2 = 1.5, in the mixed 
group, 𝑐1 and 𝑐2 vary according to Eq. (18), the inertia weights 
𝜔𝑚𝑎𝑥  = 0.9 and 𝜔𝑚𝑖𝑛  = 0.4, and 𝜔 varies according to Eq. (19), 
with the maximum number of iterations 𝑘𝑚𝑎𝑥 = 90; for AFSA, 
the number of particles N = 30, and the maximum number of 
iterations 𝑘𝑚𝑎𝑥 = 90. To ensure the stability of the robotic arm's 
actual operation and the accuracy of trajectory planning, the 
maximum angular velocity for each joint was set to 3.5 rad/s, 
and the maximum acceleration was set to 6.5 rad/s^2. The 
experiment will optimize the trajectory planning time of the six 
joints of the robotic arm using these three different intelligent 
algorithms. The comparison of adaptation curves for each joint 
is depicted in the simulated results as shown in Fig. 4 to Fig. 9. 

 
Fig. 4. Comparison chart of convergence for joint 1. 

 

Fig. 5. Comparison chart of convergence for joint 2. 
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Fig. 6. Comparison chart of convergence for joint 3. 

 
Fig. 7. Comparison chart of convergence for joint 4. 

 
Fig. 8. Comparison chart of convergence for joint 5. 

 
Fig. 9. Comparison chart of convergence for joint 6. 

From Fig. (4) to Fig. (9), it can be observed that the 
Improved Dynamic Multi-Population Particle Swarm 
Optimization Algorithm exhibits higher convergence accuracy 
compared to the Basic Particle Swarm Optimization Algorithm 
and significantly improved efficiency compared to the Artificial 
Fish Swarm Algorithm. While retaining the advantages of the 
Basic Particle Swarm Optimization Algorithm, the Improved 
Dynamic Multi-Population Particle Swarm Optimization 
Algorithm is more capable of escaping local optima and 
achieves faster optimization efficiency. The time taken for each 
joint segment in the 3-5-3 polynomial trajectory planning under 
the optimization of the three algorithms is shown in Tables Ⅲ, 
Ⅳ, and Ⅴ. 

TABLE III.  MOTION TIME FOR TRAJECTORY PLANNING OF EACH JOINT 

(PSO) 

Joint 𝒕(𝐬) 𝒕𝟏(𝐬) 𝒕𝟐(𝐬) 𝒕𝟑(𝐬) 

1 2.717 0.895 1.031 0.791 

2 3.670 0.889 1.466 1.315 

3 4.296 1.021 2.253 1.022 

4 4.639 0.851 2.297 1.491 

5 4.150 1.183 2.054 0.913 

6 4.163 1.041 1.953 1.169 

TABLE IV.  MOTION TIME FOR TRAJECTORY PLANNING OF EACH JOINT 

(AFSA) 

Joint 𝒕(𝐬) 𝒕𝟏(𝐬) 𝒕𝟐(𝐬) 𝒕𝟑(𝐬) 

1 2.864 0.939 1.098 0.827 

2 3.902 1.000 1.470 1.432 

3 4.497 1.143 2.318 1.036 

4 4.888 0.907 2.370 1.611 

5 4.372 1.258 2.141 0.973 

6 4.382 1.109 2.040 1.233 
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TABLE V.  MOTION TIME FOR TRAJECTORY PLANNING OF EACH JOINT 

(IDM-PSO) 

Joint 𝒕(𝐬) 𝒕𝟏(𝐬) 𝒕𝟐(𝐬) 𝒕𝟑(𝐬) 

1 2.386 0.814 0.861 0.711 

2 3.221 0.755 1.296 1.170 

3 3.743 0.922 1.985 0.836 

4 4.071 0.758 2.038 1.275 

5 3.639 1.026 1.816 0.797 

6 3.657 0.972 1.606 1.079 

In Tables Ⅲ, Ⅳ, and Ⅴ, the time taken for each joint for each 
trajectory segment under optimization by the three intelligent 
algorithms is statistically recorded. In which, "t" represents the 
total time used for trajectory planning in three segments after 
polynomial trajectory interpolation for each joint optimized 
using intelligent algorithms. "𝑡1, 𝑡2, 𝑡3" represent the time used 
for trajectory planning in three segments for each joint. To 
ensure that all joints can complete the motion task while 
satisfying velocity and acceleration constraints, the maximum 
time for each segment of the trajectory for all six joints needs to 
be selected. Therefore, for the Basic Particle Swarm 
Optimization Algorithm, the time for the three segments of the 
trajectory is as follows: 𝑡1=1.183s, 𝑡2= 2.297s, 𝑡3=1.491s, with 
a total time t=4.971s. For the Artificial Fish Swarm Algorithm, 
the time for the three segments of the trajectory is 𝑡1=1.258s, 
𝑡2 =2.370s, 𝑡3 = 1.611s, with a total time t=5.239s. For the 
Improved Dynamic Multi-Population Particle Swarm 
Optimization Algorithm, the time for the three segments of the 
trajectory is 𝑡1=1.026s, 𝑡2=2.038s, 𝑡3=1.275s, with a total time 
t=4.339s. The comparison shows that the Improved Dynamic 
Multi-Population Particle Swarm Optimization Algorithm 
reduces the trajectory planning time by approximately 12.7% 
compared to the Basic Particle Swarm Optimization Algorithm 
and by approximately 17% compared to the Artificial Fish 
Swarm Algorithm, leading to improved efficiency. Three 
algorithms (IDM-PSO, PSO, and AFSA) were subjected to six 
repeated experiments, and the experimental results are shown in 
Table Ⅵ. 

The experimental data from Table Ⅵ indicates that over six 
experiments, there is no significant difference in the time taken 
to complete the trajectory planning of the robotic arm among the 
three algorithms, validating the accuracy of the algorithms. 

TABLE VI.  THE EXPERIMENTAL RESULTS OF DIFFERENT OPTIMIZATION 

ALGORITHMS (UNIT: S) 

Number of 

Experiments 
IDM-PSO PSO AFSA 

1 4.339 4.971 5.239 

2 4.379 5.019 5.240 

3 4.354 5.007 5.249 

4 4.357 5.281 5.242 

5 4.289 4.915 5.247 

6 4.300 5.087 5.226 

Average value 4.336 5.047 5.241 

The motion characteristics, including displacement, velocity, 
and acceleration of each joint optimized by the Improved 
Dynamic Multi-Population Particle Swarm Optimization 
Algorithm during trajectory planning, as well as the end-effector 
trajectory of the robotic arm, are illustrated in the following 
figures. 

 
Fig. 10. Displacement curves of each joint. 

 

Fig. 11. Velocity curves for each joint. 

 
Fig. 12. Acceleration curves for each joint. 
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Fig. 13. The end-effector trajectory of the robotic arm. 

From the above Fig. 10 to Fig. 13, it can be observed that 
under the optimization of the improved dynamic multi-
population particle swarm optimization algorithm, the 
displacement, velocity, and acceleration curves of each joint are 
continuous without abrupt changes, satisfying the constraint 
conditions. This validates the correctness and effectiveness of 
the improved dynamic multi-population particle swarm 
optimization algorithm. 

V. CONCLUSION 

This paper focuses on the time-optimal trajectory planning 
of the PUMA560 robotic arm. Under the constraints of velocity 
and acceleration of the robotic arm, the trajectory interpolation 
is conducted using the 3-5-3 polynomial interpolation function. 
An improved dynamic multi-population particle swarm 
optimization algorithm is employed for optimization, compared 
with the basic particle swarm optimization algorithm and the 
artificial fish swarm optimization algorithm. The improved 
algorithm achieves higher optimization accuracy and stronger 
capability to escape local optima. Through simulation 
experiments, it is observed that the trajectory curves of each 
joint are continuous without discontinuities. Compared with the 
basic particle swarm optimization algorithm and the artificial 
fish swarm optimization algorithm, the proposed approach 
reduces the time by approximately 12.7% and 17%, 
respectively, thus improving efficiency. The results demonstrate 
the correctness and effectiveness of the improved multi-
population particle swarm optimization algorithm. 

In this paper, time-optimal trajectory planning for the robotic 
arm has been conducted, with factors such as energy and impact 
left unconsidered. In future work, further research is required to 
explore objectives such as energy optimality, impact optimality, 
and hybrid optimality. 
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