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Abstract—In the field of visual communication, image clarity 

and accuracy are the key to convey effective information. A new 

sparsity-enhanced image processing model is introduced to 

address the limitations of traditional image processing models in 

terms of image resolution and fidelity. This model combines a deep 

neural networks learning framework with a sparse convolutional 

neural networks enhancement module to complete image 

reinforcement processing, thereby achieving more accurate image 

reconstruction techniques. Dictionary learning is used to train 

models so that the sparse representation of low resolution and 

high-resolution images has the same dictionary coefficients. By 

comparing with the existing techniques Enhanced Super-

Resolution Generative Adversarial Network, Wide Activation for 

Efficient and Accurate Image Super-Resolution, and Bicubic 

Interpolation, and the new model achieves an average peak signal-

to-noise ratio of 32.9334 dB, which significantly outperforms the 

comparison group, respectively, with improvements of 1.9252 dB, 

6.6509 dB, and 9.7297 dB, respectively. In addition, the new model 

demonstrates advantages in structural similarity and learning to 

perceive image block similarity, implying that it not only enhances 

the objective quality of the image, but also improves the subjective 

visual effect of the image. The improved resolution and fidelity of 

the output image confirms the model's superior performance in 

processing details and textures. This advancement not only 

improves the accuracy and efficiency of image processing 

techniques, but also provides strong technical support for the 

creation and dissemination of high-quality visual content, which is 

particularly suitable for application scenarios requiring high-

precision visual displays, such as satellite image analysis, remote 

sensing detection and medical imaging. 

Keywords—Deep neural networks; convolutional neural 
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I. INTRODUCTION 

In the digital era, the rapid development of image processing 
technology has brought new challenges and opportunities for 
visual communication design [1]. High-quality visual content 
can not only improve the efficiency of information 
dissemination, but also enhance the user experience [2, 3]. 
However, existing image processing techniques face the 
problems of high computational complexity and resource 
consumption when dealing with high-resolution images [4, 5]. 
Therefore, the research explores new methods for image feature 
extraction and reconstruction using sparse representation theory, 
which is committed to reducing the computational cost while 
maintaining or even improving the visual quality of images. 

The research proposes a novel convolutional sparsity 
enhancement module, which can effectively extract key features 
from images and has good compression ability for redundant 
information in images. By combining with deep learning 
algorithms, a complex network model that can adaptively learn 
and abstract features from images is formed. The model is not 
only capable of generating high-quality dictionaries from high-
resolution images, but also capable of constructing 
corresponding dictionaries for low-resolution images, and then 
realizing accurate reconstruction of high-resolution images 
through specific reconstruction strategies. 

The innovation of the method lies in its extended application 
of the concept of sparsity. By embedding the concept of sparsity 
enhancement into the convolutional network, it not only 
enhances the sensitivity of the model to image details, but also 
improves the accuracy of feature extraction and the clarity of the 
reconstructed image. In addition, the convolutional sparsity 
enhancement module reduces the number of parameters of the 
model through rational design to accommodate the limitation of 
computational resources in practical applications. 

The research helps to shorten the design cycle and enhance 
the iteration speed of the design by improving the efficiency of 
image processing, which further improves the outward 
expression of the image. The study is divided into six sections. 
Section II is a summary overview of the research related areas, 
Section III is the implementation of the proposed methodology 
of the study. Section IV is the validation as well as the testing of 
the proposed methodology of the study. Results and discussion 
is given in Section V and finally Section VI concludes the paper. 

II. RELATED WORKS 

Sparse representation theory is an important theory in the 
field of signal processing and applied mathematics, mainly 
about how to accurately represent signals with as few nonzero 
elements as possible. Sparse representation theory is widely 
used in many fields such as image processing, audio processing, 
machine learning, and data compression and so on. For example, 
in image processing, tasks such as image denoising, 
compression, and super-resolution reconstruction can be 
effectively performed by sparse representation. In machine 
learning, sparse representation can be used for feature selection 
and dimensionality reduction, which helps to improve the 
performance and efficiency of the algorithms. Cheng et al. 
proposed a joint statistical and spatial sparse representation 
scheme for the challenges of practical image classification, and 
the study proved that it outperforms the existing methods on 
FMD, UIUC, ETH-80, and YTC databases, and that it efficiently 
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overcomes the noise effects and adapts to the small-scale 
datasets [6]. Wang et al. proposed a hierarchical method using 
term sparsity to address the challenge of improving the 
efficiency of polynomial optimization, and the study proved that 
it effectively accelerated the solution process while maintaining 
the accuracy of the solution [7]. Xue et al. proposed an image 
domain method based on material sparsity for the accuracy of 
multi-material decomposition of monoenergy CT images and 
proved that this method improved the accuracy of voxel fraction 
on images and patient data, and optimized its image quality in 
clinical applications [8]. Anderson et al. proposed a projection 
model downscaling method by introducing sparsity into the 
downscaling basis for numerical prediction acceleration under 
highly nonlinear problems, and the study proved that the method 
significantly improves the computational efficiency and 
achieves a 1.5 times acceleration performance relative to the 
traditional method [9]. Wu et al. proposed a method using 
feature streaming to address deep neural network parameter 
redundancy, proposed the use of feature flow regularization 
(FFR) method to enhance structural sparsity, and the study 
proved that the method improves sparsity and meets or exceeds 
the effect of advanced pruning methods on CIFAR-10 and 
ImageNet datasets [10]. 

Image enhancement is a key technique in the field of 
computer vision and image processing, aiming to improve the 
visualization of an image through various algorithms to make 
the features in the image more visible, and thus facilitating 
observation by the human eye or analysis by automated systems. 
Image enhancement is usually not concerned with the absolute 
accuracy of an image, but rather focuses on enhancing the 
information that is most important for a particular application. 
Zou et al. proposed a night vision image enhancement method 
based on the fusion of data from infrared, RGB camera and 
LiDAR sensors to address the issue of operational risk in dark 
environments. The study proved that the method can accurately 
identify the location of obstacles, realize instant alarms in night 
operations and have a better detection performance [11]. Tang 
proposed a diversity-maximizing Makarov image enhancement 
method based on Simpson exponent for the detection of 
malicious behavior in encrypted traffic and achieved 
classification through CNN, and the study proved that the 
method significantly improved the classification accuracy under 
different balance degrees and effectively mitigated the 
generalization bias caused by the difference in the depth of the 
network [12]. Yang et al. proposed a nonlinear anisotropic 
diffusion system combined with time-delay regularization to 
construct a structure tensor for image enhancement and 
segmentation, and verified the effectiveness of the method by 
Galerkin's method [13]. Zhou et al. proposed an improved 
single-image defogging algorithm based on weighted guidance 
coefficients for the visibility degradation of outdoor images due 
to haze, and combined it with joint adaptive image enhancement, 
and the experimental The results show that the algorithm can 
effectively overcome image distortion and loss of detail 
information, and the efficiency exceeds that of the traditional 
dehaze algorithm [14]. Peng et al. proposed an attenuated image 
enhancement method with adaptive color compensation and 
detail optimization for color compensation and loss of local 
detail information in underwater image enhancement, and the 

study proved that the method can effectively enhance the 
contrast, detail information, and balance the color [15]. 

To summarize, the current development of image processing 
models shows unprecedented great potential, while sparsity 
enhancement greatly enriches the theory and methods of image 
processing from a unique perspective. With the advancement of 
technology, image enhancement plays an increasingly important 
role in maintaining and improving image quality. However, how 
to balance the relationship between processing efficiency and 
enhancement effect is still the focus of future research. Further 
optimization and innovative improvement of algorithms in the 
research will bring new development opportunities for the field, 
especially in terms of the breadth and depth of practical 
applications to be deepened and explored. 

III. CONSTRUCTION OF SPARSITY-BASED ENHANCED 

IMAGE PROCESSING MODEL 

The study begins with the design of a sparsity-enhanced 
convolutional module and its application to image enhancement 
for enhanced feature reconstruction of images. The construction 
of image enhancement processing model based on this sparsity-
enhanced convolutional module generates corresponding 
dictionaries from high- and low-resolution images, and then 
realizes the accurate reconstruction of high resolution images 
through specific reconstruction strategies. 

A. Sparsity-Enhanced Convolutional Module Construction 

In the current era of high-dimensional data flooding, 
traditional image processing models are often computationally 
intensive due to the large number of parameters, susceptible to 
noise interference, and difficult to extract features quickly and 
accurately [16]. The study proposes a sparsity-enhanced 
convolution module in this context. By optimizing the 
convolution module, the model complexity is streamlined, and 
the computational resources are concentrated on the key features 
of the data, thus effectively enhancing the stability and accuracy 
of signal processing. In addition, the sparsity-enhanced 
convolution module also enhances the interpretability of the 
model due to its simplicity, which is crucial for the requirement 
of algorithm credibility in practical application scenarios [17]. 
For this convolution module, the sparse representation of the 
image itself is first extracted and then the extracted sparse 
representation is further utilized to enhance the image 
reconstruction. It is first assumed that the given training set is 
shown in Eq. (1). 
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In Eq. (1) and Eq. (2), ih
 denotes low-resolution image, iv

 

denotes high-resolution image, 


 denotes sparse coding, 

h

i p


 

denotes sparsity, and 
  denotes weighting of sparsity. In 

order to avoid the scale blurring problem of D  and F  during 

sparse coding, 
 ,a b

 should satisfy Eq. (3) [18]. 
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For sparsity in Eq. (2), it is usually measured using the 1l  
norm, and the sparse coding of a given signal x  over the 

dictionary D  can be found by Eq. (4). 
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It can be seen by Eq. (4) that hh D 
 denotes the ideal low 

resolution image and vv F 
 denotes the ideal high resolution 

image. By slightly modifying the notation, the sparse solution of 

the dictionary D  and the sparse solution of the dictionary F  
can be expressed as shown in Eq. (5). 
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Unlike conventional sparse coding, the sparsity-enhanced 
convolution module proposed in the study directly processes the 
whole image instead of processing the image in chunks. This 
approach avoids the edge effects and seam problems that may 
result from chunking, and ensures the global coherence and 
integrity of the image content. Specifically, in the proposed 
convolutional sparse coding module, each layer is implemented 
with an independent convolution operation, and these 
convolutional layers not only extract features of the image, but 
also enhance the sparse representation of these features layer by 
layer. In each iteration, the image is processed through a 
convolutional filter to extract features and apply a nonlinear 
activation function to enhance sparsity. Subsequently, the 
difference between the current sparse representation and the 
original image is evaluated by a loss function to guide the feature 
extraction and sparse enhancement in the next iteration layer. 
This iterative process continues until a preset sparse 
representation accuracy or an upper limit on the number of 
iterations is reached, and the final output of the enhanced sparse 
feature map provides a high-quality feature representation for 
subsequent image processing tasks. The study further employs a 
linear transformation to ensure the consistency of the sparse 
representation of the source image and the target image, which 
is shown in Eq. (6). 

    
i iv h iF A D     (6) 

In Eq. (6), i  denotes the error. After obtaining the sparse 
representation of the low-resolution image, it is further enhanced 
to obtain enhanced sparsity by linear transformation. The 

convolutional sparse coding module as well as the linear 
transformation module are shown specifically in Fig. 1. 
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Fig. 1. Schematic diagram of the linear conversion strengthening module. 

Eventually, the structure of sparsity-enhanced convolutional 
modules constructed by the study is shown in Fig. 3. The 
structure is designed to highlight the modularity, in which the 
number of each reinforcement module is not fixed but 
dynamically adjusted according to the required magnification to 
meet the precise control of different resolution enhancement 
requirements. This design allows the model to be flexibly 
adapted to a variety of magnification tasks, be it slight 
magnification or multiple magnification, ensuring that the image 
quality is guaranteed. 

Input

Shrinkage 
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Convolutional sparse coding

Reconstruction enhancement

Sparsity

3×3 Conv

Sparsity 

enhances 

the output

 

Fig. 2. Sparsity enhanced convolutional module structure diagram. 

In Fig. 2, the convolutional kernel sizes used in the network 
are all. Choosing an appropriate convolutional kernel size can 
effectively balance the breadth of the sensory field with the local 
sensitivity of feature extraction, and thus optimize the model 
performance. In summary, the sparsity-enhanced convolutional 
module structure shown in Fig. 2 utilizes the flexibility in the 
number of its modules and the precise configuration of the 
convolutional kernel sizes to work together on the image 
processing task in order to achieve highly customized and 
optimized image magnification and feature enhancement 
results. Since conventional neural networks suffer from the 
problem of enhanced image smearing after processing the 
image, an anti-loss discriminator network module is further 
introduced to improve the problem. The structure of the 
adversarial loss discriminator module is specifically shown in 
Fig. 3. 
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Fig. 3. Schematic diagram of counter loss discriminator module. 

The introduced adversarial loss discriminator module is 
shown in Fig. 3, through which the batch normalization as well 
as the fully connected layer is introduced to effectively enhance 
the final image processing by further processing the sparsity in 
order to avoid the problem of severe smearing of the image. 

B. Enhanced Image Processing Model Construction 

Based on the constructed sparsity-enhanced convolutional 

model, let Y  denote a low-resolution image that needs to be 

enhanced, and X  denote an enhanced high-resolution image, 
then the relationship between them can be expressed as shown 
in Eq. (7). 

 Y DownHX n   (7) 

In Eq. (7), Down  denotes down sampling, H  denotes 

fuzzy matrix, and n  denotes additive noise. The goal after 

combining the sparse representation is to approximate X  by 

the dictionary D . For a data sample jx
, its sparse 

representation vector ja
. Then for the sparse representation 

matrix A , which is shown in Eq. (8). 
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In Eq. (8), 0


 denotes the pseudo-paradigm number, which 

is set to the number of non-zero elements of A , and X DA  
is replaced by a fault-tolerant constraint form, as shown in Eq. 
(9). 
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In Eq. (9),   denotes the BER threshold. The optimization 

of pseudo-paradigm belongs to the NP hard  problem, by 
minimizing the number of paradigms, the sparsity can be 
effectively reduced to represent the sparsity, so the model will 
be rewritten as shown in Eq. (10). 
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Then, the sparse representation coefficients lifting as well as 
the dictionary need to be estimated as shown in Eq. (11). 

    
2' '

, 12
, arg minA DA D X DA A     (11) 

In Eq. (11), a data fitting term as well as a regularization term 

are included, and   denotes the penalty parameter. In image 
enhancement processing, the extraction of visual features is 
carried out first, and the extraction process of visual features is 
specifically shown in Fig. 4. 

Locally constrained linear coding

Input

Locally constrained linear coding

Convolutional 

neural network

Eigenvector

Coding feature  
Fig. 4. Schematic diagram of the extraction process of visual features. 

The VGG16 deep convolutional network trained on the 
ILSVRC-2012 dataset is chosen as the feature extractor, and for 

an image of size 224 224 , the dimension of the extracted 

feature vector if  is 4096 . After obtaining the feature vector, the 
features are encoded by locally constrained linear coding. 
Firstly, a codebook is created and the set of feature vectors is 

divided into M  clusters using the K-means clustering 

algorithm, and then a codebook is created at 
1 , ,T T

MB b b    , 

where ib
 denotes the center of mass of the i  cluster. Then based 

on the codebook, each feature vector is encoded [19]. Let the 

extracted N  the D  dimensional feature vector be 

1 ,T T

MF f f    , then the set of code words 
1 , ,T T

MF f f     

corresponding to F  is searched by the condition of  Eq. (12). 
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In Eq. (12),   denotes the element-level multiplication 

operation, B  denotes the codebook,   denotes the regular term 

coefficients, and id
 denotes the local adjustment variables. 

Then id
 can be expressed as shown in (13). 
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In Eq. (13), 
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and   denotes the weight descent rate control parameter. For 
dictionary learning, a pair of high resolution as well as low 

resolution blocks are set to 
 ,k k

h l k
P p p

. The main objective 
of dictionary learning is to train for this block so that the 
dictionary coefficients for sparse representation of low 
resolution as well as high resolution images are same. The sparse 
representation model for low resolution features is shown in Eq.  
(14) [20]. 

 l lp D A  (14) 

In Eq. (14), 1p
 denotes a low-resolution image block, lD

 

denotes a low-resolution dictionary, and A  denotes the sparsity 

factor. For lD
, the K-SVD dictionary training method is used 

for calculation, as shown in Eq. (15). 
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In Eq. (15), L  denotes the maximum sparsity. If the sparse 
representation sparsity of the high resolution and low-resolution 
image block is the same, the sparse representation of the high 
resolution image block is specifically shown in Eq. (16). 
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This is then solved by the pseudo-inverse matrix as shown in 
Eq. (17). 

  
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For high- and low-resolution learning training, the process is 
shown in Fig. 5, which is mainly based on visual depth features 
in order to generate dictionaries of corresponding resolutions. 
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Fig. 5. Schematic of training for high- and low-resolution dictionary learning. 

For the enhanced reconstruction processing of high-
resolution images, based on the features extracted above, the 
features are multiplied with the projections obtained by 

dictionary learning to obtain the low resolution features 
k

lp
. 

Then 
k

lp
 is encoded using the orthogonal matching tracking 

algorithm as shown in Eq. (18). 
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Then, by multiplying its sparse representation sparsity with 

the high-resolution dictionary hD
, a more approximate high-

resolution image block can be restored, as shown in Eq. (19). 
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As shown in Fig. 6, the complete process of image super-
resolution reconstruction is demonstrated, and the key technical 
link in this process is the sparsity-enhanced convolution-based 
module. The advantage of this module is that it can directly carry 
out one-time feature extraction for low-resolution images and 
realize the reconstruction of high-resolution images on this 
basis. In traditional super-resolution methods, multiple feature 
extraction and up sampling steps are often unavoidable, and 
each step may introduce noise or cause loss of information, thus 
affecting the clarity and texture of the final image. 

High resolution 

dictionary

Low resolution 

dictionary

Test 

image

High resolution 

image reconstruction

Sparsity 

enhancement

High-

resolution 

enhanced 

images

Deep learning

 

Fig. 6. Schematic diagram of image super-resolution reconstruction process. 

With the sparsity-enhanced convolutional module, the low-
resolution image first passes through a feature extraction layer 
that uses a well-designed convolutional kernel to refine the 
essential features and texture information in the image. These 
features are then processed through a sparsity enhancement 
layer, which utilizes the sparsity principle to further filter and 
highlight meaningful signals while suppressing unnecessary 
redundant information. The sparsity-enhanced features not only 
retain the key visual information of the image, but also enhance 
the expressiveness of the features, laying a solid foundation for 
the next reconstruction steps. Thereafter, the reconstruction 
module maps these enhanced features to the high-resolution 
space. In this process, up-sampling techniques such as 
interpolation, transpose convolution, etc. can be employed to 
recover the high-resolution structure of the image. Finally, a 
fine-tuning layer optimizes the reconstructed image to eliminate 
possible artifacts, enhance naturalness, and ensure that the 
resulting high-resolution image is visually as close as possible 
to the real HD image. Through such an efficient and integrated 
process, the image super-resolution reconstruction is not only 
computationally more efficient, but also more effective, 
resulting in accurate recovery of image details and significant 
improvement in overall quality. 

IV. TESTING OF SPARSITY-ENHANCED IMAGE PROCESSING 

MODELS 

To test the sparsity-enhanced image processing model 
proposed in the study, a more balanced hardware is required to 
perform the corresponding tests, considering the deep learning 
model used in it. To avoid the impact of hardware performance 
on the experiments, the study chose to use a cloud server 
platform for the tests, considering cost constraints and 
affordability. The DIV2k, Set5, and Set14 datasets are used for 
testing, and the DIV2K dataset is a benchmark dataset for image 
super-resolution that contains 2,000 high-quality 2K-resolution 
images; Set5 is a small dataset of five high-resolution images, 
which is often used for testing and validating super-resolution 
algorithms; and Set14 is like Set5, which contains 14 different 
images. Set14 contains 14 high-resolution images of different 
subjects and is also used to evaluate the performance of super-
resolution algorithms. Bicubic Interpolation (BI) image 
enhancement method, Wide Activation for Efficient and 
Accurate Image Super-Resolution (WDSR) and Enhanced 
Super-Resolution Generative Adversarial Network (EGRAN) 
were selected for the study. Super-Resolution Generative 
Adversarial Networks (ESRGAN) are compared with the 
Sparsity intensifies image processing model (SIIP) proposed by 
the Institute. As shown in Table I, the details of hardware and 
software and model parameters used in the institute. 

TABLE I.  SOFTWARE AND HARDWARE DETAILS AND MODEL 

PARAMETER SETTINGS 

Hardware Software 

Name Supplier Details Ubuntu Server 
20.04 

LTS 

Cloud server AWS TensorFlow 2.8.0 

Instance type p3.2xlarge PyTorch 1.10.0 

VCpu Intel 8 CUDA 11.2 

GPUs Nvidia 
Tesla 

V100 
cuDNN 8.1.0 

RAM 61GiB Python 3.8.5 

MEM EBS 500GB 
Jupyter 

Notebook 
6.4.5 

Parameter setting 

Name Details Name Details Name Details 

Filters 64 

lambda 

(Greek letter 
Λλ) 

0.01 β1 0.0 

Kernel_size 3x3 Pool_size 2x2 β2 0.999 

Strides 1 Units 1024 
Batch 

Size 
32 

Padding 'same' Optimizer Adam Epochs 20 

Activation ReLU Learning_rate 1e-4 
Early 

Stopping 

Patience 

= 10 

The Peak Signal-to-Noise Ratio (PSNR) and Structural 
Similarity (SSIM) of the four models are tested and the results 
are shown in Fig. 7. From Fig. 7(a), the proposed SIIP model 
possesses the best PSNR value. The high PSNR value of the 
SIIP model indicates that it retains a lot of details and structural 
information in the recovered image and reduces the noise and 
distortion, which is usually indicative of clearer and more 
accurate image recovery results. As can be seen in Fig. 7(b), the 
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proposed SIIP model of the study possesses the best SSIM 
values. The high score of the SIIP model on SSIM indicates its 
excellent ability to maintain the texture and structure of the 
image locally, especially when recovering the image, and to 
preserve its natural visual characteristics and consistency. 

Ten images are selected to test the PSNR as well as SSIM of 
the four models in practical applications and the test results are 
shown in Fig. 8. From Fig. 8(a), the proposed SIIP model has 
the best PSNR value performance on all image processing, 
which indicates that the proposed SIIP model can output clearer 
results on image enhancement. From Fig. 8(b), the proposed 
SIIP model has the highest SSIM value performance on all the 
images, which indicates that the output image of the proposed 
SIIP model has the best fidelity, and it is able to achieve high 
resolution enhancement of the image without loss of image 
details. 
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Fig. 7. Iterative performance testing of PSNR and SSIM for four models. 
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Fig. 8. PSNR and SSIM in image testing for four models. 

The average performance of the four models at 2x zoom is 
tested, and the test metrics include PSNR, SSIM and Learned 
Perceptual Image Patch Similarity (LPIPS). The test results are 
shown in Table II. As can be seen from Table II, the average 
PSNR value of the proposed SIIP model reaches 32.9334 dB, 
which is 1.9252 dB, 6.6509 dB and 9.7297 dB ahead of the 
ESRGAN, WDSR, and BI models, respectively, and the average 
value of SSIM of the SIIP model is ahead of the other three 
models, and the value of LPIPS is also ahead of the other three 
models. Three models also showed the same lead. This result 
shows that the proposed SIIP model has better image 
enhancement performance and stronger image fidelity. 

The response times of the four models at different 
magnifications are tested and the results are shown in Table III. 
From Table III, the average response time of the SIIP model 
proposed by the institute is 0.82 s, which is 4.99 s, 9.45 s and 
18.30 s ahead of ESRGAN, WDSR and BI models, respectively. 

TABLE II.  AVERAGE PERFORMANCE TEST RESULTS OF THE FOUR 

MODELS AT 2X MAGNIFICATION 

Algorithms Index 
Data set 

Average 
DIV2k Set5 Set14 

SIIP 

PSNR 32.7811 33.2371 32.7821 32.9334 

SSIM 0.8621 0.8792 0.8914 0.8775 

LPIPS 0.0231 0.0124 0.0167 0.0174 

ESRGAN 

PSNR 30.2943 30.8762 31.8541 31.0082 

SSIM 0.8152 0.8064 0.8169 0.8128 

LPIPS 0.0672 0.0729 0.0861 0.0754 

WDSR 

PSNR 26.2356 27.3267 25.2854 26.2825 

SSIM 0.7561 0.7152 0.7217 0.7310 

LPIPS 0.0891 0.0998 0.0826 0.0905 

BI 

PSNR 22.2366 23.4371 23.9374 23.2037 

SSIM 0.6273 0.5964 0.6342 0.6193 

LPIPS 0.1274 0.1102 0.0998 0.1124 
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TABLE III.  RESPONSE TIME TESTS OF FOUR MODELS AT DIFFERENT 

MAGNIFICATIONS 

Data set Magnification 
Response time/s 

SIIP ESRGAN WDSR BI 

DIV2k 

2 1.9 9.2 15.7 25.9 

3 1.7 8.7 14.2 24.1 

4 1.5 7.1 13.1 22.7 

Set5 

2 0.4 4.9 8.6 17.1 

3 0.4 4.1 7.2 16.5 

4 0.3 3.8 7.1 13.7 

Set14 

2 0.5 5.3 9.8 18.7 

3 0.4 5.2 8.7 17.5 

4 0.3 4.0 8.1 16.2 

The actual image enhancement effects of the four models are 
tested and the results are shown in Fig. 9, from which the 
enhanced image output by the proposed SIIP model has a better 
resolution performance, its fidelity is high, and the image has 
good expressiveness. The image output by ESRGAN model 
lacks some details. The image output by WDSR model has poor 
resolution and some details of the image are missing. The image 
output by BI model has serious distortion and very poor 
resolution performance. 

(a) SIIP (b) ESRGAN

(c) WDSR (d) BI  

Fig. 9. Actual image enhancement tests of the four models. 

V. RESULT AND DISCUSSION 

Through experimental verification, the proposed sparse 
enhanced image processing model has shown excellent 
performance in image enhancement and super-resolution 
reconstruction tasks. In terms of PSNR and SSIM metrics, the 
average performance test results of this model on the DIV2k, 
Set5, and Set14 datasets are superior to the other three models, 
especially in image processing at high magnification, where the 
performance advantage of this model is more obvious. In 
addition, the response time of this model is significantly better 
than other models, and it has high processing efficiency. 
Meanwhile, the proposed sparse enhanced image processing 

model can better preserve image details and structural 
information during the image processing process, thereby 
achieving clearer and more accurate image restoration. 
Compared with existing methods, this model has higher 
performance and better robustness in image enhancement and 
super-resolution reconstruction tasks. By comparing the 
practical application effects of the four models, it can be found 
that the sparse enhanced image processing model proposed in 
this study has significant advantages in image quality and 
resolution. Compared with other models, this model can better 
solve the problems of blurring and distortion during image 
enlargement, achieving higher quality image output. In 
summary, the sparse enhanced image processing model 
proposed in the study has shown superior performance in image 
enhancement and super-resolution reconstruction tasks, 
providing effective image processing solutions for practical 
application scenarios. The efficiency, accuracy, and stability of 
this model in image processing make it widely applicable in 
practical applications. 

VI. CONCLUSION 

In the field of visual communication, image quality 
enhancement is crucial for the clarity and effectiveness of 
information delivery. Aiming at the limitations of existing image 
processing methods in quality enhancement, SIIP, an image 
processing model enhanced by sparsity, aims to improve the 
resolution and visual quality of images by reducing redundant 
information and enhancing the contribution of key pixels. A 
sparse coding technique based on deep learning is employed, 
and the SIIP model automatically learns the sparse 
representation during the training process to optimize the image 
reconstruction process. By comparing and analyzing with 
ESRGAN, WDSR and BI models, the SIIP model shows 
significant advantages. In the PSNR metric, the SIIP model 
reaches an average value of 32.9334 dB, which significantly 
outperforms the other models, with an improvement of 1.9252 
dB compared to the closest model, ESRGAN. In the SSIM 
metric, the SIIP model also shows better structure preservation 
than the other models, and it also demonstrates better perceptual 
similarity in the LPIPS evaluation. In terms of response time, the 
SIIP model averages 0.82 seconds, which is much faster than the 
other compared models, including 18.30 seconds faster 
compared to the slowest BI model. These results of the SIIP 
model mark a significant advancement in the field of sparsity-
enhanced image processing, which achieves an increase in the 
speed of image processing while maintaining a high level of 
fidelity. However, the computational complexity and real-time 
processing capability of the model are yet to be further 
optimized, especially in terms of performance scaling when 
processing higher resolution images. The real-time processing 
performance of the model should be further optimized in future 
research. 
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