
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

754 | P a g e

www.ijacsa.thesai.org

Enhancing Smart Contract Security Through Multi-

Agent Deep Reinforcement Learning Fuzzing: A

Survey of Approaches and Techniques

Muhammad Farman Andrijasa1, Saiful Adli Ismail2, Norulhusna Ahmad3, Othman Mohd Yusop4

Faculty of Artificial Intelligence, Universiti Teknologi Malaysia, Kuala Lumpur, Malaysia1, 2, 3, 4

State Polytechnic of Samarinda, Samarinda, Indonesia1

Abstract—Multi-Agent Systems (MAS) and Deep

Reinforcement Learning (DRL) have emerged as powerful tools

for enhancing security measures, particularly in the context of

smart contract security in blockchain technology. This literature

review explores the integration of Multi-Agent DRL fuzzing

techniques to bolster the security of smart contracts. The study

delves into the formalization of emergence in MAS, the

comprehensive survey of multi-agent reinforcement learning, and

progress on the state explosion problem in model checking. By

addressing challenges such as state space explosion, real-time

detection, and adaptability across blockchain platforms,

researchers aim to advance the field of smart contract security.

The review emphasizes the significance of Multi-Agent DRL

fuzzing in improving security testing processes and calls for future

research and collaboration to enhance the resilience and integrity

of decentralized applications. Through advancements in

algorithmic efficiency, the incorporation of Explainable AI, cross-

domain applications of MAS, and cooperation with blockchain

development teams, the future of smart contract security holds

promise for robust and secure blockchain ecosystems.

Keywords—Smart contract security; multi-agent systems; deep

reinforcement learning; fuzzing techniques; blockchain technology

I. INTRODUCTION

Smart contracts, self-executing contracts with the terms of
the agreement directly written into code, are a fundamental
component of blockchain technology. Ensuring the security of
smart contracts is paramount due to their immutable nature once
deployed on the blockchain. Vulnerabilities in smart contracts
can lead to significant financial losses and undermine trust in the
decentralized applications [1]. For instance, the DAO hack 2016
resulted in the loss of millions of dollars due to a vulnerability
in a smart contract [2]. Recent research has highlighted the
importance of addressing smart contract defects to enhance
security and reliability [3].

Fuzzing, a dynamic software testing technique, involves
providing invalid, unexpected, or random data as inputs to a
program to uncover vulnerabilities. Traditional fuzzing
techniques have effectively identified bugs and security flaws in
software systems. However, recent advancements in machine
learning, particularly deep reinforcement learning (DRL), have
revolutionized fuzzing by enhancing its efficiency and
effectiveness [4]. By leveraging machine learning algorithms,
fuzzing can intelligently generate test inputs to explore the

program's behavior and identify vulnerabilities that may be
challenging to detect through traditional methods [5].

Deep reinforcement learning (DRL) has gained prominence
in various domains, including cybersecurity. DRL combines
deep learning with reinforcement learning to enable agents to
learn optimal strategies through trial and error. In fuzzing, DRL
algorithms can adapt and improve over time by interacting with
the software system and learning from the feedback received [6].
Recent studies have demonstrated the effectiveness of DRL-
based fuzzing in detecting complex vulnerabilities in deep
neural networks and other software applications [7].

Multi-agent systems (MAS) have emerged as a promising
approach to enhance the capabilities of DRL-based fuzzing.
MAS involves multiple intelligent agents that can collaborate
and communicate to achieve common goals. In the context of
security testing, MAS can enable coordinated efforts among
agents to explore different parts of the software system
simultaneously, leading to a more comprehensive vulnerability
detection [8]. By leveraging MAS in DRL fuzzing, researchers
aim to improve the scalability and efficiency of security testing
processes [9].

This review aims to provide a comprehensive overview of
the advancements in smart contract security through the
integration of multi-agent DRL fuzzing techniques. By
synthesizing existing literature and research findings, this
review aims to analyze the effectiveness of DRL-based fuzzing
in enhancing smart contract security, discuss the challenges and
open issues in this field, and propose future research directions.
The structured outline will guide the discussion on key concepts,
survey approaches, and techniques, evaluate existing solutions,
address challenges, and propose future directions in enhancing
smart contract security through multi-agent DRL fuzzing.

II. BACKGROUND AND KEY CONCEPTS

A. Understanding Smart Contracts

Smart contracts are self-executing agreements with the terms
of the contract directly written into code. They run on
blockchain platforms and automatically execute actions when
predefined conditions are met. The execution environment of
smart contracts is crucial, as they operate within a decentralized
and immutable blockchain network. For example, Ethereum, a
popular blockchain platform, allows developers to create and
deploy smart contracts using its native programming language,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

755 | P a g e

www.ijacsa.thesai.org

Solidity. The Ethereum Virtual Machine (EVM) executes these
contracts, ensuring their integrity and security [10].

Smart contracts are susceptible to various security
vulnerabilities that malicious actors can exploit. By categorizing
smart contract vulnerabilities into three levels - Blockchain,
EVM, and Solidity - we can better understand potential risks and
mitigate them accordingly (see Table I). This approach allows

us to identify and address weaknesses within each level,
ultimately leading to stronger and more secure smart contracts.
Examples of common vulnerabilities include reentrancy,
timestamp dependence, transaction ordering attacks, and
assertion failures. These vulnerabilities have led to significant
financial losses and highlight the importance of conducting
thorough security analyses before deploying smart contracts on
the blockchain [11], [12].

TABLE I. THE SMART CONTRACT VULNERABILITY LEVEL

Level Vulnerability Type Definition Real-World Attack Security Issue

Blockc

hain

Front-Running
Acting on visible pending transactions ahead

of processing.
EtherDelta Hack (2017)

Unfair advantage, manipulation under

order operation.

Replay Attacks
Transactions can be replayed on forked
chains.

Ethereum Classic Replay
Attacks (2016)

Double spending, loss of funds.

Timestamp

Dependence

Reliance on block timestamps for critical

contract logic.
GovernMental (2016)

Manipulation of behavior, transaction

timing.

Block State

Dependence

Dependence on the changing state of the

blockchain.
N/A

Unpredictable behavior, manipulation of

transaction outcomes.

EVM

Gas Limit and Loops
Contracts with unbounded loops can run out

of gas.
GovernMental (2016)

Denial of Service (DoS), failed

transactions.

Stack Size Limit
Exceeding the EVM's stack size limit can
cause failure.

N/A Contract execution failure.

Opcode Limitations
Unexpected behavior or limitations of EVM

opcodes.
N/A Exploitation of opcode behavior.

Solidit

y

Reentrancy
Execution is re-entered before the first
completion completes.

The DAO Hack (2016) Unexpected behavior, loss of funds.

Arithmetic Issues Issues like integer overflow and underflow.
BatchOverflow and

ProxyOverflow (2018)

Manipulation of contract logic,

unexpected results.

Unchecked External
Calls

Failing to check the return value of external
calls.

Parity Wallet Freeze (2017)
Loss of contract functionality,
manipulation of contract.

Timestamp

Dependence

Relying on block timestamps for critical

logic.
N/A

Vulnerabilities time-dependent outcomes,

inaccuracies.

Visibility Modifiers Misuse of function visibility modifiers. Rubixi (2016)
Unauthorized access, unintended exposure
of functions.

Delegatecall Injection
Malicious code execution through

delegatecall.

Parity Multi-Sig Wallet Hack

(2017)
Loss of funds, breach of contract integrity.

Phishing with
tx.origin

Using tx.origin for authentication. N/A Phishing attacks, unauthorized access.

Short

Address/Parameter
Attack

ABI decoding doesn't properly handle

incorrect length parameters.

Multiple ICOs Affected

(2017)

Loss of funds, manipulation of transaction

parameters.

Improper Access

Control
Flaws in permission settings or checks.

Parity Multi-Sig Wallet Hack

(2017)

Unauthorized access, manipulation of

contract state.

Fallback Function
Vulnerabilities

Issues with fallback functions. N/A
Unintended behavior when receiving
Ether or data.

Storage Collisions
Poorly designed storage layouts leading to

collisions.
N/A

Loss of data, unintentional data written to

wrong locations.

Uninitialized Storage
Pointers

Using storage pointers without proper
initialization.

N/A
Data loss, unintended access to critical
data.

Self-Destruct

Vulnerabilities
Misuse of the selfdestruct function. N/A

Loss of contract functionality, loss of

funds.

Upgradeability Issues Flaws in upgradeable contract patterns. N/A Unexpected behavior, loss of data.

Floating Pragma Not locking the Solidity compiler version. N/A
Unpredictable behavior due to compiler

changes.

B. Fuzzing Techniques: Traditional vs. DRL-based

Fuzzing is a software testing technique that involves
providing invalid or unexpected inputs to a program to uncover
vulnerabilities. Traditional fuzzing techniques generate random
inputs to test software systems for bugs. In contrast, DRL-based
fuzzing leverages machine learning algorithms to intelligently
generate test inputs and adapt the testing strategy based on
feedback received during the testing process. This approach
enhances the efficiency and effectiveness of fuzz testing by

enabling automated and targeted vulnerability discovery [13],
[14].

Integrating Deep Reinforcement Learning (DRL) algorithms
in fuzz testing has shown promise in enhancing security
vulnerability identification in software systems. The study in
[15] discuss DeepFuzzer, which accelerates deep grey-box
fuzzing, aiding in the identification of software bugs and
security vulnerabilities. The research in [16] explores automated
decision-making using deep reinforcement learning, illustrating

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

756 | P a g e

www.ijacsa.thesai.org

the potential of integrating machine learning techniques in
complex scenarios. The study in [17] delved into fuzz testing for
continuous integration, stressing the importance of
incorporating testing methodologies into the software
development lifecycle. The research in [18] present
FIRMCORN, a vulnerability-oriented fuzzing approach for IoT
firmware, underscoring the significance of targeted fuzzing
techniques. The survey of approaches and techniques in single-
agent and multi-agent DRL fuzzing offers valuable insights into
the advancements in security testing processes. Key techniques
and models in single-agent DRL fuzzing, such as Q-learning and
DQN, have showcased the potential of machine learning in
enhancing vulnerability detection. Transitioning to multi-agent
systems in DRL fuzzing provides collaborative problem-solving
capabilities that enhance the scalability and efficiency of
security testing efforts. Comparative analyses between single-
agent and multi-agent approaches aid researchers in selecting
the most appropriate methodology for detecting vulnerabilities
in software systems. Successful case studies of multi-agent DRL
fuzzing implementations highlight the impact of collaborative
interactions on smart contract security, emphasizing the
importance of leveraging machine learning-based analysis
models for vulnerability detection. The study in [5] introduce
Learn and Fuzz, a machine learning-based approach for input
fuzzing, showcasing the effectiveness of combining artificial
intelligence with fuzz testing methodologies. These references
collectively support the idea that combining DRL algorithms
with fuzz testing techniques can significantly enhance the
identification of security vulnerabilities in software systems,
ultimately leading to more robust and secure software
applications.

C. Fundamentals of Deep Reinforcement Learning

Deep reinforcement learning (DRL) algorithms combine
deep learning with reinforcement learning to enable agents to
learn optimal strategies through interactions with the
environment [19]. According to Ji et al. (2020), DRL is an area
of machine learning that combines deep learning with
reinforcement learning. The connection between AI (Artificial
Intelligence), ML (Machine Learning), RL (Reinforcement
Learning), DL (Deep Learning), and DRL (Deep Reinforcement
Learning) can be represented as a series of nested subsets, as
illustrated in Fig. 1. Deep reinforcement learning (DRL)
algorithms combine deep learning with reinforcement learning
to enable agents to learn optimal strategies through interactions
with the environment [19]. DRL uses deep neural networks to
approximate the functions required in reinforcement learning.
This allows agents to learn policies directly from high-
dimensional sensory inputs.

DRL has been used successfully in various domains,
including playing video games, robotic control, and autonomous
vehicles. In security testing, DRL algorithms can improve their
performance over time by integrating feedback received during
testing, proving effective in identifying complex vulnerabilities
in software systems, including smart contracts on blockchain
platforms [21].

Incorporating DRL in security testing has transformed
vulnerability detection in software systems, providing better
performance than traditional methods [22]. By training agents to
explore program behaviors and identify security flaws

intelligently, DRL-based approaches have shown significant
success in uncovering vulnerabilities in deep neural networks,
smart contracts, and other critical software applications [23],
[24]. This application highlights the potential of DRL in
enhancing cybersecurity measures and strengthening software
systems against malicious exploits [25].

D. Multi-Agent Systems (MAS)

Multi-agent systems (MAS) involve multiple intelligent
agents working together to achieve common goals [26]. These
agents can interact and communicate with each other, making
collective decisions and coordinating their actions to solve
complex problems. With Multi-Agent methods, DRL can be
extended to scenarios with multiple interacting agents, as
illustrated in Fig. 2. MADDPG is a highly effective extension of
DDPG for multi-agent environments, while Independent Q-
Learning empowers each agent to learn its Q-value function
independently, as highlighted in Fig. 1.

In security testing, MAS can enhance the capabilities of
individual agents by enabling collaborative exploration of
various software system components simultaneously. This
collaborative approach improves the comprehensiveness of
vulnerability detection and enhances efficiency in security
testing processes, addressing scalability challenges and complex
vulnerability identification in software systems [27], [28].

Fig. 1. Fundamentals of AI, ML, RL, DL and DRL.

Fig. 2. The relationship between AI, ML, RL, DL and DRL.

MAS offers several advantages in complex problem-solving
scenarios, particularly in security testing. By distributing tasks

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

757 | P a g e

www.ijacsa.thesai.org

among multiple agents and allowing them to communicate and
share information, MAS can effectively tackle intricate security
challenges beyond individual agents Field's capabilities [29].
The collaborative nature of MAS enables agents to leverage
collective intelligence, coordinate testing efforts, and adapt to
dynamic testing environments. These advantages make MAS a
promising approach for enhancing the efficiency and
effectiveness of security testing processes, especially in the
context of deep reinforcement learning fuzzing.

The background and key concepts section provides a
foundational understanding of smart contracts, fuzzing
techniques, deep reinforcement learning, and multi-agent
systems in the context of security testing. Smart contracts
operate within a decentralized and immutable blockchain
environment, making them susceptible to various security
vulnerabilities. Traditional fuzzing techniques and DRL-based
fuzzing have transformed how vulnerabilities are identified in
software systems, with DRL algorithms offering adaptive and
intelligent testing capabilities. Multi-agent systems enhance
security testing by enabling collaborative problem-solving
among intelligent agents, leading to more comprehensive
vulnerability detection. Understanding these key concepts is
essential for exploring the advancements in smart contract
security through multi-agent deep reinforcement learning
fuzzing.

III. SURVEY OF APPROACHES AND TECHNIQUES

A. Single-Agent DRL Fuzzing Techniques

Single-agent deep Reinforcement Learning (DRL) fuzzing
techniques utilize algorithms that enable an agent to learn
optimal strategies for generating test inputs and detecting
vulnerabilities in software systems. Techniques such as Q-
learning, Deep Q-Networks (DQN), and Proximal Policy
Optimization (PPO) have been applied to enhance the efficiency
and effectiveness of fuzz testing and for example, introduced a
deep convolution generative adversarial networks (DCGAN)
based fuzzing framework for industry control protocols,
showcasing the potential of machine learning in improving
security testing processes [8]. These models aim to intelligently
explore the program's behavior and identify vulnerabilities that
may be challenging to detect through traditional methods.

Researchers face inherent limitations and challenges despite
the advancements in single-agent DRL fuzzing techniques. One
primary challenge is the complexity of training DRL agents to
effectively fuzz software systems, particularly in scenarios with
high-dimensional input spaces. Additionally, the interpretability
of DRL models and the need for extensive computational
resources pose challenges in practical implementations.
Transitioning from traditional fuzzing methods to DRL-based
approaches requires careful consideration of these limitations to
ensure the effectiveness and scalability of security testing
processes [30].

B. Transition to Multi-Agent DRL Fuzzing

The shift from single-agent to multi-agent DRL fuzzing is
driven by the necessity to overcome the limitations of individual
agents in exploring complex software systems. Multi-agent
systems (MAS) facilitate collaborative problem-solving by
enabling multiple intelligent agents to interact and share

information during testing. By incorporating MAS in DRL
fuzzing, researchers aim to enhance security testing efforts'
scalability, efficiency, and coverage. For instance, it emphasized
the role of role-based embedded domain-specific languages in
facilitating collaborative interactions among multi-agents using
blockchain technology, underscoring the importance of effective
communication and coordination in the security testing [31].

A comparative analysis between single-agent and multi-
agent DRL fuzzing approaches offers insights into the strengths
and weaknesses of each methodology. While single-agent
approaches focus on individual agent learning and decision-
making, multi-agent systems emphasize collaborative problem-
solving and information sharing among agents. The study in [8]
illustrated the benefits of a deep convolution generative
adversarial network (DCGAN) based fuzzing framework in
enhancing the efficiency and scalability of security testing
processes through collaborative multi-agent interactions. By
evaluating the performance and effectiveness of single-agent
and multi-agent approaches, researchers can determine the most
suitable methodology for detecting vulnerabilities in software
systems.

C. Case Studies: Successful Implementations of Multi-Agent

DRL Fuzzing

Successful implementations of multi-agent DRL fuzzing
techniques have validated the effectiveness of collaborative
problem-solving in improving security testing processes.
Additionally, a survey of security enhancement technologies for
smart contracts in blockchain highlighted the role of fuzz testing
in automatically generating many test inputs to uncover
potential safety hazards during program execution [32]. By
leveraging machine learning-based analysis models, such as K-
nearest neighbors (KNN), researchers have successfully
predicted and detected vulnerabilities in smart contracts,
including re-entrancy, access control, and denial of service [30].

The outcomes of successful implementations of multi-agent
DRL fuzzing techniques have significantly impacted smart
contract security. By identifying vulnerabilities in smart
contracts and blockchain systems, researchers have contributed
to enhancing the reliability and integrity of decentralized
applications. For example, developed a novel machine learning-
based analysis model for smart contract vulnerability detection,
demonstrating the potential of machine learning algorithms in
improving security testing processes [30]. These case studies
underscore the significance of collaborative multi-agent
interactions in identifying complex vulnerabilities and
mitigating security risks in software systems.

The survey of approaches and techniques in single-agent and
multi-agent DRL fuzzing offers valuable insights into the
advancements in security testing processes. Key techniques and
models in single-agent DRL fuzzing, such as Q-learning and
DQN, have showcased the potential of machine learning in
enhancing vulnerability detection. Transitioning to multi-agent
systems in DRL fuzzing provides collaborative problem-solving
capabilities that enhance the scalability and efficiency of
security testing efforts. Comparative analyses between single-
agent and multi-agent approaches aid researchers in selecting
the most appropriate methodology for detecting vulnerabilities
in software systems. Successful case studies of multi-agent DRL

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

758 | P a g e

www.ijacsa.thesai.org

fuzzing implementations highlight the impact of collaborative
interactions on smart contract security, emphasizing the
importance of leveraging machine learning-based analysis
models for vulnerability detection.

IV. EMPIRICAL VALIDATION

Empirical validation of Multi-Agent Deep Reinforcement
Learning (DRL) fuzzing techniques has demonstrated their
potential in enhancing software security testing across various
domains. For example, in the domain of Internet of Things (IoT),
the application of Multi-Agent DRL fuzzing to firmware
analysis has shown significant improvements in detecting
vulnerabilities that traditional methods often miss. A study by
[18] introduced FIRMCORN, a vulnerability-oriented fuzzing
approach for IoT firmware, which leveraged DRL to optimize
the virtual execution of firmware, resulting in higher detection
rates of critical vulnerabilities compared to conventional fuzzing
techniques.

In the context of autonomous vehicles, [16] utilized deep
reinforcement learning to improve the decision-making process
for automated vehicles. The study demonstrated that DRL could
effectively identify and mitigate security risks in real-time,
showcasing its adaptability and robustness in dynamic
environments.

In software development, DRL-based fuzzing has been
applied to continuous integration (CI) pipelines to enhance
security testing. Reference [17] developed CIDFuzz, a DRL-
based fuzzing framework for CI environments, which
significantly improved the detection of security vulnerabilities
during the development lifecycle. This empirical validation
highlighted the framework's efficiency in integrating security
testing seamlessly into the CI process, leading to more secure
software deployments.

These examples underscore the versatility and effectiveness
of Multi-Agent DRL fuzzing techniques across various
domains, affirming their potential in enhancing software
security testing.

V. RESULTS AND DISCUSSION

A. Findings of Empirical Validation

The empirical validation of Multi-Agent DRL fuzzing
techniques has yielded promising results in various domains.
The application of these techniques to smart contracts has
demonstrated their superior ability to uncover complex
vulnerabilities that traditional methods often overlook. For
instance, in the evaluation of smart contracts on the Ethereum
blockchain, DRL-based fuzzing identified critical issues such as
reentrancy attacks and gas limit exploits, which are notoriously
difficult to detect using conventional approaches.

In the domain of IoT firmware, the application of Multi-
Agent DRL fuzzing revealed vulnerabilities related to memory
corruption and unauthorized access, providing insights into the
security weaknesses of widely used IoT devices. These findings
are pivotal in enhancing the overall security posture of IoT
ecosystems.

B. Implications of the Results

The results of these empirical validations suggest that Multi-
Agent DRL fuzzing techniques significantly improve the
detection and mitigation of security vulnerabilities. The ability
of these techniques to adapt to various domains and dynamically
learn optimal fuzzing strategies enhances their effectiveness in
real-world scenarios. Moreover, the collaborative nature of
multi-agent systems allows for more comprehensive exploration
of software systems, leading to the identification of a broader
range of vulnerabilities.

C. Limitations and Potential for Generalization

Despite the promising results, the empirical validation also
highlighted certain limitations. The computational complexity
and resource requirements of DRL-based fuzzing can be
significant, posing challenges for large-scale implementations.
Additionally, the generalization of these techniques to different
blockchain platforms and smart contract languages may require
further adaptation and fine-tuning.

However, the potential for generalization remains high, as
the underlying principles of Multi-Agent DRL can be tailored to
address specific security challenges in various domains. Future
research should focus on optimizing these techniques for
different environments and reducing their computational
overhead to enhance their practical applicability.

VI. COMPARISON WITH OTHER APPROACHES

To highlight the strengths and weaknesses of multi-agent
DRL fuzzing techniques, we compare them with other common
approaches.

A. Symbolic Execution

Symbolic execution tools, such as Oyente and Mythril, are
effective in detecting control flow and arithmetic vulnerabilities
in smart contracts. However, they often struggle with path
explosion and false positives, limiting their scalability and
accuracy. In contrast, Multi-Agent DRL fuzzing can
dynamically adapt to explore different execution paths,
potentially reducing the limitations of symbolic execution.

B. Static Analysis

Static analysis tools, including Securify and SmartCheck,
provide quick and efficient vulnerability detection without
executing the code. While these tools are valuable for
identifying common issues like reentrancy and integer overflow,
they may miss more complex vulnerabilities that require
dynamic analysis. Multi-Agent DRL fuzzing, with its ability to
learn from interactions, offers a more thorough exploration of
software behavior, complementing the capabilities of static
analysis tools.

C. Formal Verification

Formal verification tools, such as Zeus and VeriSol, use
mathematical proofs to ensure the correctness of smart contracts.
These tools are highly effective for verifying security properties
but require formal specifications, which can be challenging to
create. Multi-Agent DRL fuzzing provides an alternative
approach by automatically generating and testing inputs,
reducing the reliance on formal specifications and enabling
broader vulnerability coverage.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

759 | P a g e

www.ijacsa.thesai.org

TABLE II. CLASSIFICATION METHOD, MAJOR CONTRIBUTION, AND EVALUATION OF EXISTING SOLUTIONS (1= ASSESSING THE EFFECTIVENESS OF

VULNERABILITY DETECTION TOOLS, 2= ADDRESSING SCALABILITY ISSUES, 3= ADDRESSING PERFORMANCE ISSUES, 4= OVERCOMING INTEGRATION CHALLENGES

IN DEVELOPMENT PROCESSES, AND 5= CONDUCTING COMPARATIVE ANALYSES OF DEEP REINFORCEMENT LEARNING MODELS AND ARCHITECTURES)

Method Tool Year Citation Major Contribution 1 2 3 4 5

Symbolic

Execution

Oyente 2016 [1]
Early adoption of symbolic execution for smart contract

analysis

Maian 2018 [44] Introduces trace vulnerability detection for smart contracts

Manticore 2018 [45] Provides a versatile platform for smart contract analysis

Mythril 2018 [46]
Pioneered symbolic execution approach for Ethereum
contracts

Solythesis 2020 [47] Combines symbolic execution with gas optimization

SymbolicExec 2022 [48] Enhances symbolic execution techniques for smart contracts

Static

Analysis

Solgraph 2017 [49] Visualizes potential security vulnerabilities in Solidity

Osiris 2018 [50] Targets integer bugs in smart contracts

Securify 2018 [51] Introduces semantic-aware static analysis for smart contracts

SmartCheck 2018 [52] Provides a linter-like tool for Solidity code

Vandal 2018 [53] Provides a logic-based approach to smart contract analysis

Slither 2019 [54] Provides a comprehensive static analysis tool for Solidity

SolidityCheck 2019 [55] Provides a lightweight tool for Solidity contract analysis

Solstice 2019 [56] Provides a static analysis tool for Solidity security

Securify v2 2020 [57] Offers enhanced security analysis for Solidity contracts

SIF 2020 [58] Analyzes inter-contract behaviors for security vulnerabilities

SmartAnvil 2020 [59] Offers a toolset for static analysis of Solidity code

SolCheck 2020 [60] Aids in detecting common issues in Solidity code

SCAnalysisTools 2022 [61] Offers a comprehensive review of analysis tools

Formal

Verification

Zeus 2018 [62] Integrates different formal verification techniques

Solc-verify 2019 [63] Provides a formal verification approach for Solidity contracts

VeriSol 2019 [64] Integrates formal verification with Solidity development

HistoryComparison 2020 [65] Utilizes historical contract versions for security analysis

SecurityPatterns 2020 [66] Introduces security patterns for Solidity programming

VerX 2020 [67] Provides automated verification for temporal properties

ESAF 2021 [68] Offers a framework for evaluating existing tools

ReentrancyMech 2021 [69] Provides a mechanism for preventing a specific type of attack

SuperDetector 2022 [70]
Proposes a framework for comprehensive vulnerability

detection

Fuzzing

ContractFuzzer 2018 [13] Provides a practical approach to fuzz testing smart contracts

DLFuzz 2018 [71] Applies deep learning to fuzz testing for improved efficiency

Echidna 2019 [72] Introduces property-based testing for smart contracts

Harvey 2019 [73] Introduces an automated fuzzing approach for smart contracts

ILF 2019 [74]
Introduces deep learning-based fuzz testing for smart

contracts

FuzzTaintAnalysis 2020 [75]
Combines taint analysis and genetic algorithms for effective

fuzzing

sFuzz 2020 [76]
Provides an efficient fuzz testing framework for smart
contracts

HFContractFuzzer 2021 [77]
Focuses on fuzzing techniques for Hyperledger Fabric

contracts

CodeEmbedding 2023 [78] Introduces a novel fuzzing approach for Fabric contracts

Machine

Learning

GraphNN 2020 [79]
Introduces a novel ML-based approach for vulnerability

detection

Eth2Vec 2021 [80] Advances code representation learning for smart contracts

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

760 | P a g e

www.ijacsa.thesai.org

GNNExpert 2021 [81]
Merges ML with expert insights for improved detection

accuracy

CodeNet 2022 [82] Demonstrates the effectiveness of CNNs in code analysis

EnhancedML 2022 [83] Improves the efficiency of ML approaches in security testing

MultiTaskLearning 2022 [84]
Enhances the adaptability of ML models for multiple
vulnerabilities

GCNModel 2023 [85] Demonstrates the potential of GCNs in vulnerability detection

GSVD 2023 [86]
Provides a valuable dataset for ML-based vulnerability

detection

SyntacticSemantic 2023 [87] Combines different learning approaches for better detection

Vulpedia 2023 [88]
Introduces a novel approach for vulnerability detection using
signatures

Deep

Learning

ReentrancyDetect 2020 [89] Advances the use of deep learning in smart contract security

LightningCat 2023 [90]
Proposes a framework for deep learning-based vulnerability

detection

SCGformer 2023 [91] Integrates transformers with control flow graphs for detection

Security

Analysis

Mythos 2019 [92] Provides a command-line interface for smart contract analysis

MythX 2019 [93] Offers a cloud-based platform for smart contract analysis

VaaS 2019 [94] Provides a cloud-based vulnerability analysis service

Other

SolCover 2018 [95] Provides coverage metrics for Solidity test suites

SolidityFlattener 2018 [96] Simplifies Solidity code for analysis or verification

Porosity 2017 [97] Enables analysis of bytecode by converting to Solidity

EthIR 2019 [98] Enables analysis of EVM bytecode through decompilation

Sereum 2019 [99] Introduces runtime monitoring for reentrancy attack detection

Gasper 2019 [100] Provides gas usage insights for smart contract optimization

Remix 2016 [101]
Provides a comprehensive development environment for
Solidity

Solium 2017 [102] Aids in enforcing coding conventions and detecting issues

Solhint 2018 [103] Helps maintain code quality and security standards in Solidity

SolMet 2021 [104] Introduces a set of metrics for evaluating Solidity contracts

SolRazor 2021 [105] Introduces source-level optimization for Solidity code

SolidityParser-antlr 2018 [106] Facilitates analysis of Solidity code by parsing it

SolProfiler 2020 [107] Offers insights into gas usage and performance of contracts

ContractLarva 2019 [108]
Integrates runtime verification with smart contract
development

SmartEmbed 2020 [109]
Introduces semantic analysis using deep learning for smart

contract code

SolStress 2019 [110] Introduces stress testing for smart contract robustness

D. Fuzzing

Traditional fuzzing tools, like Echidna and Harvey, generate
random inputs to uncover vulnerabilities. While effective in
identifying some issues, they lack the intelligent exploration
capabilities of DRL-based fuzzing. Multi-Agent DRL fuzzing
enhances traditional fuzzing by using reinforcement learning to
prioritize and adapt test inputs, leading to more efficient and
effective vulnerability detection.

E. Machine Learning and Deep Learning

Machine learning and deep learning tools, such as GraphNN
and Eth2Vec, analyze patterns in code to predict vulnerabilities.
These tools offer high accuracy but require extensive training
data and computational resources. Multi-Agent DRL fuzzing
combines the strengths of machine learning with dynamic
testing, offering a robust approach that can learn and adapt in
real-time.

F. Security Analysis

Comprehensive security analysis tools, like MythX and
VaaS, integrate multiple techniques to provide holistic
vulnerability assessments. While these tools are highly effective,
they can be resource-intensive and complex to use. Multi-Agent
DRL fuzzing can complement these tools by providing adaptive
and collaborative testing capabilities, enhancing the overall
security analysis process.

The empirical validation of Multi-Agent DRL fuzzing
techniques across various domains underscores their potential in
enhancing software security testing. By leveraging the adaptive
and collaborative capabilities of multi-agent systems, these
techniques offer a powerful approach to identifying and
mitigating vulnerabilities in smart contracts and other software
systems. The integration of Multi-Agent DRL fuzzing with other
security approaches can further enhance the robustness and

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

761 | P a g e

www.ijacsa.thesai.org

resilience of decentralized applications, paving the way for more
secure and trustworthy blockchain ecosystems.

VII. EVALUATION OF EXISTING SOLUTIONS

When evaluating existing solutions for enhancing smart
contract security, it becomes evident that a multifaceted
approach is essential. Traditional tools like symbolic execution,
static analysis, and formal verification provide a solid
foundation for identifying vulnerabilities, as shown in Table II.
However, integrating multi-agent deep reinforcement learning
(DRL) solutions offers a more dynamic and adaptive strategy.

A. Effectiveness in Detecting Vulnerabilities

1) Symbolic execution tools: Oyente, Maian, Manticore,

Mythril, Solythesis, SymbolicExec: These tools are effective in

detecting vulnerabilities related to control flow, arithmetic

issues, and reentrancy attacks. They use symbolic execution to

explore different execution paths and identify potential security

flaws. However, their effectiveness may be limited by path

explosion and false positives.

2) Static analysis tools: Solgraph, Osiris, Securify,

SmartCheck, Vandal, Slither, SolidityCheck, Solstice, Securify

v2, SIF, SmartAnvil, SolCheck, SCAnalysisTools: These tools

analyze the source code without executing it and are effective

in identifying common vulnerabilities such as reentrancy,

integer overflow, and unchecked calls. They are generally faster

than symbolic execution tools but may suffer from false

positives and negatives.

3) Formal verification tools: Zeus, Solc-verify, VeriSol,

HistoryComparison, SecurityPatterns, VerX, ESAF,

ReentrancyMech, SuperDetector: These tools use mathematical

proofs to verify the correctness of smart contracts and are

highly effective in detecting complex vulnerabilities. However,

they require formal specifications and can be challenging to use

for developers without a formal methods background.

4) Fuzzing tools: ContractFuzzer, DLFuzz, Echidna,

Harvey, ILF, FuzzTaintAnalysis, sFuzz, HFContractFuzzer,

CodeEmbedding: These tools use random input generation to

test smart contracts and are effective in detecting vulnerabilities

that are triggered by unexpected inputs. They can cover a wide

range of input scenarios but may miss vulnerabilities that

require specific conditions to trigger.

5) Machine learning and deep learning tools: GraphNN,

Eth2Vec, GNNExpert, CodeNet, EnhancedML,

MultiTaskLearning, GCNModel, GSVD, SyntacticSemantic,

Vulpedia: These tools use machine learning algorithms to learn

from past vulnerabilities and predict new ones. They can be

effective in detecting patterns and anomalies that other tools

may miss. However, their effectiveness depends on the quality

and quantity of the training data.

6) Security analysis tools: Mythos, MythX, VaaS: These

tools provide a comprehensive analysis of smart contracts,

combining multiple techniques to detect vulnerabilities. They

are effective in providing a holistic view of the security posture

but may require integration with other tools for in-depth

analysis.

7) Other tools: SolCover, SolidityFlattener, Porosity,

EthIR, Sereum, Gasper, Remix, Solium, Solhint, SolMet,

SolRazor, SolidityParser-antlr, SolProfiler, ContractLarva,

SmartEmbed, SolStress: These tools provide various

functionalities such as code flattening, gas analysis, runtime

verification, and stress testing. While they are not primarily

focused on vulnerability detection, they can complement other

tools by providing additional insights and improving the overall

security of smart contracts.

In conclusion, the effectiveness of tools for detecting
vulnerabilities in smart contracts varies based on their approach,
the types of vulnerabilities they target, and their ability to
balance accuracy and coverage. A combination of these tools,
along with best practices in smart contract development, can
significantly enhance the security of blockchain
applications.Define abbreviations and acronyms the first time
they are used in the text, even after they have been defined in the
abstract. Abbreviations such as IEEE, SI, MKS, CGS, sc, dc, and
rms do not have to be defined. Do not use abbreviations in the
title or heads unless they are unavoidable.

B. Scalability and Performance Issues

1) Symbolic execution tools: Oyente, Maian, Manticore,

Mythril, Solythesis, SymbolicExec: These tools often face

scalability issues due to the path explosion problem, where the

number of execution paths grows exponentially with the

complexity of the contract. This can lead to long analysis times

and high computational resource requirements. Performance

can be improved by using heuristics to prune irrelevant paths or

by parallelizing the analysis.

2) Static analysis tools: Solgraph, Osiris, Securify,

SmartCheck, Vandal, Slither, SolidityCheck, Solstice, Securify

v2, SIF, SmartAnvil, SolCheck, SCAnalysisTools: Static

analysis tools generally have better scalability and performance

compared to symbolic execution tools. However, they may still

face challenges in analyzing large codebases or complex

contracts. Optimizations such as incremental analysis and

modular analysis can help improve their performance.

3) Formal verification tools: Zeus, Solc-verify, VeriSol,

HistoryComparison, SecurityPatterns, VerX, ESAF,

ReentrancyMech, SuperDetector: Formal verification tools are

computationally intensive and can have scalability issues,

especially when verifying contracts with complex properties or

a large state space. Techniques such as abstraction, model

checking, and compositional verification can help mitigate

these issues.

4) Fuzzing tools: ContractFuzzer, DLFuzz, Echidna,

Harvey, ILF, FuzzTaintAnalysis, sFuzz, HFContractFuzzer,

CodeEmbedding: Fuzzing tools can generate a large number of

test cases, which can be computationally expensive. Scalability

can be improved by using coverage-guided fuzzing to focus on

interesting areas of the code and by parallelizing the fuzzing

process.

5) Machine learning and deep learning tools: GraphNN,

Eth2Vec, GNNExpert, CodeNet, EnhancedML,

MultiTaskLearning, GCNModel, GSVD, SyntacticSemantic,

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

762 | P a g e

www.ijacsa.thesai.org

Vulpedia: These tools require significant computational

resources for training and inference, especially deep learning

models. Scalability can be improved by using techniques such

as transfer learning, fine-tuning, and distributed training.

6) Security Analysis Tools: Mythos, MythX, VaaS: These

tools may face scalability issues when analyzing large numbers

of contracts or contracts with complex interactions.

Performance can be improved by using cloud-based

architectures and parallel processing.

7) Other tools: SolCover, SolidityFlattener, Porosity,

EthIR, Sereum, Gasper, Remix, Solium, Solhint, SolMet,

SolRazor, SolidityParser-antlr, SolProfiler, ContractLarva,

SmartEmbed, SolStress: These tools may have varying

scalability and performance characteristics depending on their

specific functionalities. For example, gas analysis tools like

Gasper may face challenges in analyzing contracts with

complex gas dynamics, while code flattening tools like

SolidityFlattener may have better scalability.

In summary, scalability and performance issues are common
challenges for tools detecting vulnerabilities in smart contracts.
Optimizations and techniques such as parallel processing,
incremental analysis, and machine learning can help mitigate
these issues and improve the efficiency of the analysis.

C. Integration Challenges with Smart Contract Development

Processes

1) Symbolic execution tools: Oyente, Maian, Manticore,

Mythril, Solythesis, SymbolicExec: Integrating these tools into

the development process can be challenging due to their

complex setup and configuration requirements. Developers

may need to modify their contracts or provide additional

annotations to facilitate analysis, which can be time-

consuming.

2) Static analysis tools: Solgraph, Osiris, Securify,

SmartCheck, Vandal, Slither, SolidityCheck, Solstice, Securify

v2, SIF, SmartAnvil, SolCheck, SCAnalysisTools: These tools

can be easier to integrate into the development process as they

often provide plugins for popular IDEs or can be used as part of

a continuous integration pipeline. However, interpreting their

results and addressing the reported issues may require a deep

understanding of the tool's analysis techniques.

3) Formal verification tools: Zeus, Solc-verify, VeriSol,

HistoryComparison, SecurityPatterns, VerX, ESAF,

ReentrancyMech, SuperDetector: Integration can be

challenging due to the need for formal specifications and the

expertise required to use these tools effectively. Developers

may need to learn formal specification languages and

verification techniques, which can be a significant barrier to

adoption.

4) Fuzzing tools: ContractFuzzer, DLFuzz, Echidna,

Harvey, ILF, FuzzTaintAnalysis, sFuzz, HFContractFuzzer,

CodeEmbedding: Fuzzing tools can be integrated into the

testing phase of the development process, but generating

effective test cases and interpreting the results can be

challenging. Developers may need to write custom property

tests or harnesses to guide the fuzzing process.

5) Machine learning and deep learning tools: GraphNN,

Eth2Vec, GNNExpert, CodeNet, EnhancedML,

MultiTaskLearning, GCNModel, GSVD, SyntacticSemantic,

Vulpedia: Integrating these tools can be challenging due to the

need for labeled training data and the computational resources

required for training and inference. Developers may need to

invest time in data collection, preprocessing, and model tuning.

6) Security analysis tools: Mythos, MythX, VaaS: These

tools can be integrated into the development process as part of

a security audit or continuous monitoring solution. However,

interpreting the results and prioritizing the reported

vulnerabilities can be challenging, especially for developers

without a strong security background.

7) Other tools: SolCover, SolidityFlattener, Porosity,

EthIR, Sereum, Gasper, Remix, Solium, Solhint, SolMet,

SolRazor, SolidityParser-antlr, SolProfiler, ContractLarva,

SmartEmbed, SolStress: Integration challenges for these tools

vary depending on their specific functionalities. For example,

code quality tools like Solium can be easily integrated into the

development process, while runtime verification tools like

ContractLarva may require more extensive modifications to the

contract code.

In summary, integrating tools for detecting vulnerabilities in
smart contracts into the development process can be challenging
due to technical and expertise requirements. Effective
integration requires careful consideration of the tool's
capabilities, the development workflow, and the team's expertise
in security analysis.

D. Comparative Analysis of Different DRL Models and

Architectures

The comparative analysis of various multi-agent deep
reinforcement learning (DRL) models and architectures is
critical for assessing their efficacy in bolstering the security of
smart contracts. This evaluation assists researchers in discerning
the advantages and disadvantages of diverse approaches,
thereby facilitating the selection of the most apt model for the
security testing process.

Proximal Policy Optimization (PPO) for Multi-Agent
Systems extends the PPO algorithm to multi-agent settings,
striking a balance between exploration and exploitation. This
balance is essential for stable learning in complex multi-agent
environments. However, optimal performance may necessitate
meticulous hyperparameter tuning [32].

Multi-Agent Actor-Critic for Mixed Cooperative-
Competitive Environments (MAAC) employs attention
mechanisms to concentrate on pertinent information from other
agents. This focus is crucial for adaptive security testing in smart
contracts. Nevertheless, the complexity of the attention
mechanism can escalate computational demands [33].

Neural Fictitious Self-Play (NFSP) for Multi-Agent Systems
merges reinforcement learning with supervised learning from
past experiences. This combination enables agents to develop
robust strategies in competitive environments, a key aspect for

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

763 | P a g e

www.ijacsa.thesai.org

maintaining security in adversarial scenarios within smart
contracts. However, reliance on historical data may limit the
ability to adapt to novel attack strategies in real-time [34].

Hierarchical Multi-Agent Deep Deterministic Policy
Gradient (H-MADDPG) introduces hierarchical policy learning.
This introduction enhances the scalability and interpretability of
policies in complex environments, beneficial for managing
security policies in distributed systems like blockchain. Yet, the
design of hierarchical structures introduces additional
complexity to the learning process [35].

In summary, the comparative analysis of different multi-
agent DRL models and architectures is vital for optimizing
security mechanisms for smart contracts and blockchain
applications. By comprehending the strengths and limitations of
various DRL techniques, researchers can ensure robust
protection against potential vulnerabilities and threats.

Smart contract security is crucial for blockchain
applications. Symbolic execution, static analysis, and formal
verification are common tools for identifying vulnerabilities.
Multi-agent DRL solutions provide a dynamic approach to
security, allowing the development of intelligent mechanisms
that can respond to evolving threats in real-time. Different DRL
models like PPO, MAAC, NFSP, and H-MADDPG show the
potential of managing complex interactions and decision-
making processes among multiple agents. Leveraging these
advanced solutions enhances the resilience and robustness of
smart contracts, ensuring the integrity and reliability of
blockchain applications against dynamic security challenges.

VIII. CHALLENGES AND OPEN ISSUES

A. Handling State Space Explosion in Multi-Agent Systems

Managing state space explosion in multi-agent systems
presents a significant challenge in security testing processes.
Optimizations have been introduced for endorsement policy
verification in Hyperledger Fabric, showcasing substantial
performance improvements. However, the expansion of the state
space grows exponentially as blockchain networks scale and the
number of agents increases, resulting in computational
complexity and resource constraints. Innovative approaches are
needed to address this state space explosion, including
parallelizing verification tasks and optimizing resource
allocation to ensure efficient and effective security testing in
multi-agent systems [36].

B. Ensuring Real-Time Detection and Mitigation

Ensuring real-time detection and mitigation of security
threats in blockchain networks is crucial for maintaining the
integrity and reliability of decentralized applications. Consensus
mechanisms have a significant impact on the real-time response
capabilities of blockchain networks, highlighting the need to
address issues related to scalability and latency that can hinder
timely threat detection and mitigation. Particularly in dynamic
and high-traffic environments, these challenges must be
overcome by optimizing consensus mechanisms and network
performance to enhance real-time security monitoring and
response capabilities within blockchain networks [37].

C. Adaptability and Generalization Across Various

Blockchain Platforms

Ensuring consistent and robust security measures poses
challenges in adapting and generalizing security solutions across
different blockchain platforms. Scalable blockchain applications
that can effectively handle heavy traffic loads are needed, but
variations in network architectures, consensus mechanisms, and
smart contract implementations may hinder the generalization of
security solutions. It's essential to develop adaptable security
mechanisms seamlessly integrated into various blockchain
platforms to ensure comprehensive security coverage and
mitigate vulnerabilities in the field [38].

D. Ethical Considerations and Potential Misuse

Ethical considerations and the potential misuse of security
technologies in blockchain networks raise ethical dilemmas and
risks. It is crucial to address scalability, robustness, and
auditability in blockchain security solutions. As blockchain
technologies evolve, ethical concerns regarding data privacy,
transparency, and accountability become increasingly relevant.
The potential misuse of security mechanisms for malicious
purposes, such as unauthorized data access or manipulation,
underscores the need for ethical guidelines and regulatory
frameworks to govern the responsible use of blockchain security
technologies [39].

Challenges and open issues in smart contract security
encompass handling state space explosion in multi-agent
systems, ensuring real-time detection and mitigation of security
threats, adapting security solutions across diverse blockchain
platforms, and addressing ethical considerations and potential
misuse of security technologies. State space explosion poses
computational challenges in multi-agent systems, necessitating
optimized verification processes. Real-time detection and
mitigation require efficient consensus mechanisms and network
performance to respond promptly to security threats. Adapting
security solutions across blockchain platforms demands scalable
and interoperable mechanisms to ensure consistent security
coverage. Ethical considerations and the risk of misuse
underscore the importance of ethical guidelines and regulatory
frameworks to govern the responsible deployment of blockchain
security technologies.

IX. FUTURE DIRECTIONS

A. Advancements in Algorithmic Efficiency

Advancements in algorithmic efficiency are crucial for
enhancing the performance and scalability of security
mechanisms in blockchain networks. This is highlighted by the
application of artificial intelligence [20] in military security,
emphasizing the importance of efficient algorithms in defense
systems. By optimizing algorithms for security testing
processes, researchers can improve the speed and accuracy of
vulnerability detection and mitigation. Future advancements in
algorithmic efficiency may involve leveraging machine learning
and deep reinforcement learning techniques to enhance the
effectiveness of security mechanisms in blockchain
environments [40].

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

764 | P a g e

www.ijacsa.thesai.org

B. Incorporating Explainable AI (XAI) for Transparent

Security Measures

Incorporating Explainable AI (XAI) in security measures is
crucial to ensure transparency and accountability in blockchain
systems. It highlights the importance of explainability in
artificial intelligence systems, emphasizing the need for
interpretable models. Integrating XAI techniques into security
mechanisms can enhance the explainability of security decisions
and provide insights into the reasoning behind these measures.
Future directions may involve developing XAI frameworks
tailored specifically for blockchain security to improve trust and
understanding among stakeholders [41].

C. Cross-Domain Applications of MAS in Security

Exploring the cross-domain applications of Multi-Agent
Systems in security offers opportunities to enhance collaborative
problem-solving in various environments. One example is
automated attack analysis on blockchain incentive mechanisms
using deep reinforcement learning, which demonstrates the
potential of MAS in security applications. Extending MAS to
different domains such as healthcare, finance, and IoT allows
researchers to leverage collaborative multi-agent interactions to
tackle complex security challenges. Future directions may
include adapting MAS frameworks for specific domains to
improve security outcomes and resilience [42].

D. Collaboration with Blockchain Development for Built-in

Security Features

Collaborating with blockchain development teams to
integrate built-in security features is essential for enhancing the
security of decentralized applications. Innovative governance
models in blockchain technology were discussed, emphasizing
the need for collaborative structures. By working closely with
blockchain developers, security experts can embed security
mechanisms directly into blockchain protocols, ensuring
inherent security by design. Future collaborations may focus on
developing standardized security protocols and best practices to
enhance the integrity of blockchain networks [43].

Future directions in smart contract security involve
advancements in algorithmic efficiency, the incorporation of
Explainable AI for transparent security measures, exploring
cross-domain applications of Multi-Agent Systems in security,
and collaborating with blockchain development for built-in
security features. Optimizing algorithms for security testing
processes can improve the speed and accuracy of vulnerability
detection. Incorporating Explainable AI techniques enhances
transparency and trust in security decisions. Cross-domain
applications of MAS offer opportunities for collaborative
problem-solving in various sectors. Collaborating with
blockchain developers to embed security features directly into
blockchain protocols ensures inherent security. These future
directions aim to advance state-of-the-art smart contract security
and promote the development of robust and secure decentralized
applications.

X. CONCLUSION

A. Summary of Key Findings

In summarizing the key findings of this study, it is evident
that integrating Multi-Agent Deep Reinforcement Learning
(DRL) fuzzing techniques holds significant promise for
enhancing smart contract security. Through advancements in
algorithmic efficiency and the incorporation of Explainable AI
(XAI), researchers have made strides in improving the
transparency and effectiveness of security measures. Exploring
cross-domain applications of Multi-Agent Systems (MAS) in
security and collaboration with blockchain development teams
for built-in security features have further enriched the landscape
of smart contract security. These key findings underscore the
importance of leveraging innovative technologies to address the
evolving challenges in securing decentralized applications.

B. The Significance of Multi-Agent DRL Fuzzing in

Enhancing Smart Contract Security

The significance of Multi-Agent DRL fuzzing in enhancing
smart contract security lies in its ability to revolutionize security
testing processes. By leveraging collaborative problem-solving
among intelligent agents, Multi-Agent Systems enhance the
scalability and efficiency of security testing efforts. Integrating
deep reinforcement learning techniques enables agents to learn
optimal strategies for vulnerability detection, improving the
overall security posture of smart contracts. Multi-agent DRL
fuzzing represents a paradigm shift in security testing
methodologies, offering a robust and adaptive approach to
identifying and mitigating vulnerabilities in blockchain systems.

C. Call to Action for Future Research and Collaboration

As we look towards the future of smart contract security, a
call to action for future research and collaboration is essential.
Researchers are encouraged to explore advancements in
algorithmic efficiency, transparency through Explainable AI,
and the application of MAS in diverse security domains.
Collaboration with blockchain development teams to embed
built-in security features directly into protocols is crucial for
ensuring inherent security by design. By fostering
interdisciplinary collaborations and innovative research
initiatives, the field of smart contract security can continue to
evolve, addressing emerging challenges and enhancing the
resilience of decentralized applications.

In conclusion, the future of smart contract security hinges on
integrating Multi-Agent DRL fuzzing techniques, which offer a
collaborative and adaptive approach to security testing. By
embracing advancements in algorithmic efficiency,
transparency through Explainable AI, and cross-domain
applications of MAS, researchers can pave the way for robust
and secure decentralized applications. A call to action for future
research and collaboration underscores the importance of
continuous innovation and interdisciplinary cooperation in
addressing the evolving challenges of smart contract security.
Through these efforts, the field can advance towards a more
secure and resilient blockchain ecosystem.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

765 | P a g e

www.ijacsa.thesai.org

ACKNOWLEDGMENT

This work was supported/funded by the Ministry of Higher
Education under Fundamental Research Grant Scheme
(FRGS/1/2021/ICT07/UTM/02/2).

REFERENCES

[1] L. Luu, D.-H. Chu, H. Olickel, P. Saxena, and A. Hobor, “Making smart
contracts smarter,” in Proceedings of the 2016 ACM SIGSAC conference
on computer and communications security, 2016, pp. 254–269.

[2] N. Atzei, M. Bartoletti, and T. Cimoli, “A survey of attacks on ethereum
smart contracts (sok),” in International conference on principles of
security and trust, Springer, 2017, pp. 164–186.

[3] J. Chen, X. Xia, D. Lo, J. Grundy, X. Luo, and T. Chen, “Defining smart
contract defects on ethereum,” vol. 48, no. 1, pp. 327–345, 2022, [Online].
Available: https://doi.org/10.1109/tse.2020.2989002

[4] Y. Wang, P. Jia, L. Liu, C. Huang, and Z. Liu, “A systematic review of
fuzzing based on machine learning techniques,” vol. 15, no. 8, pp.
e0237749–e0237749, 2020, [Online]. Available:
https://doi.org/10.1371/journal.pone.0237749

[5] P. Godefroid, H. Peleg, and R. Singh, “Learn&fuzz: Machine learning for
input fuzzing,” in 2017 32nd IEEE/ACM International Conference on
Automated Software Engineering (ASE), IEEE, 2017, pp. 50–59.

[6] T. Nguyen and V. J. Reddi, “Deep Reinforcement Learning for Cyber
Security,” Inst. Electr. Electron. Eng., vol. 34, no. 8, pp. 3779–3795, 2023,
doi: 10.1109/tnnls.2021.3121870.

[7] A. Ye, L. Wang, L. Zhao, and J. Ke, “¡i¿Ex¡/I¿ ¡sup¿2¡/Sup¿ : Monte carlo
tree Search‐based test inputs prioritization for fuzzing deep neural
networks,” vol. 37, no. 12, pp. 11966–11984, 2022, [Online]. Available:
https://doi.org/10.1002/int.23072

[8] W. Lv, J. Xiong, J. Shi, Y. Huang, and S. Qin, “A deep convolution
generative adversarial networks based fuzzing framework for industry
control protocols,” vol. 32, no. 2, pp. 441–457, 2020, [Online]. Available:
https://doi.org/10.1007/s10845-020-01584-z

[9] M. Lin, Y. Zeng, T. Wu, Q. Wang, L. Fang, and S. Guo, “GSA-Fuzz:
Optimize seed mutation with gravitational search algorithm,” vol. 2022,
pp. 1–17, 2022, [Online]. Available:
https://doi.org/10.1155/2022/1505842

[10] A. Mukhtarova and N. I. Lesnova, “Smart contracts in international trade
in services in the field of intellectual property,” 2019, [Online]. Available:
https://doi.org/10.2991/iscde-19.2019.100

[11] Y. Zhuang, B. Wang, J. Sun, H. Liu, S. Yang, and Q. Da, “Deep learning-
based program-wide binary code similarity for smart contracts,” vol. 74,
no. 1, pp. 1011–1024, 2023, [Online]. Available:
https://doi.org/10.32604/cmc.2023.028058

[12] P. Praitheeshan, L. Pan, J. Yu, J. K. Liu, and R. Doss, “Security analysis
methods on ethereum smart contract vulnerabilities: A survey,” 2019,
[Online]. Available: https://arxiv.org/abs/1908.08605

[13] B. Jiang, Y. Liu, and W. K. Chan, “Contractfuzzer: Fuzzing smart
contracts for vulnerability detection,” in 2018 33rd IEEE/ACM
International Conference on Automated Software Engineering (ASE),
IEEE, 2018, pp. 259–269.

[14] L. Brent et al., “Vandal: A Scalable Security Analysis Framework for
Smart Contracts,” pp. 1–28, 2018, [Online]. Available:
http://arxiv.org/abs/1809.03981

[15] J. Liang et al., “DeepFuzzer: Accelerated Deep Greybox Fuzzing,” Ieee
Trans. Dependable Secur. Comput., 2020, doi:
10.1109/tdsc.2019.2961339.

[16] Y. Ye, X. Zhang, and J. Sun, “Automated Vehicle’s Behavior Decision
Making Using Deep Reinforcement Learning and High-Fidelity
Simulation Environment,” Transp. Res. Part C Emerg. Technol., 2019,
doi: 10.1016/j.trc.2019.08.011.

[17] [J. Zhang, Z. Cui, X. Chen, H. Yang, L. Zheng, and J. Liu, “CIDFuzz:
Fuzz Testing for Continuous Integration,” Iet Softw., 2023, doi:
10.1049/sfw2.12125.

[18] Z. Gui, S. Y. R. Hui, F. Kang, and X. Xiong, “FIRMCORN:
Vulnerability-Oriented Fuzzing of IoT Firmware via Optimized Virtual
Execution,” Ieee Access, 2020, doi: 10.1109/access.2020.2973043.

[19] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015, doi:
10.1038/nature14236.

[20] H. Ji, O. Alfarraj, and A. Tolba, “Artificial Intelligence-Empowered Edge
of Vehicles: Architecture, Enabling Technologies, and Applications,”
IEEE Access, vol. 8, pp. 61020–61034, 2020, doi:
10.1109/ACCESS.2020.2983609.

[21] H. Yin and S. J. Pan, “Knowledge transfer for deep reinforcement learning
with hierarchical experience replay,” vol. 31, no. 1, 2017, [Online].
Available: https://doi.org/10.1609/aaai.v31i1.10733

[22] P. Andersen, M. Goodwin, and O. Granmo, “Towards a deep
reinforcement learning approach for tower line wars.” pp. 101–114, 2017.
[Online]. Available: https://doi.org/10.1007/978-3-319-71078-5_8

[23] Z. Liang, D. Feng, and X. Qu, “Deep reinforcement learning based three-
dimensional path tracking control of an underwater robot,” vol. 2456, no.
1, p. 12031, 2023, [Online]. Available: https://doi.org/10.1088/1742-
6596/2456/1/012031

[24] C. El Mazgualdi, T. Masrour, I. El Hassani, and A. Khdoudi, “A deep
reinforcement learning (DRL) decision model for heating process
parameters identification in automotive glass manufacturing.” pp. 77–87,
2020. [Online]. Available: https://doi.org/10.1007/978-3-030-51186-9_6

[25] M. Chen, A. Joseph, M. Kumhof, X. Pan, R. Shi, and X. Zhou, “Deep
reinforcement learning in a monetary model,” 2021, [Online]. Available:
https://arxiv.org/abs/2104.09368

[26] H. Mouratidis, P. Giorgini, and G. A. Manson, “Modelling secure
multiagent systems,” 2003, [Online]. Available:
https://doi.org/10.1145/860575.860713

[27] W. Y. Wang, J. Li, and X. He, “Deep reinforcement learning for NLP,”
2018, [Online]. Available: https://doi.org/10.18653/v1/p18-5007

[28] K. Yang, “Using DQN and double DQN to play flappy bird.” pp. 1166–
1174, 2022. [Online]. Available: https://doi.org/10.2991/978-94-6463-
010-7_120

[29] E. Korkmaz, “Deep reinforcement learning policies learn shared
adversarial features across MDPs,” vol. 36, no. 7, pp. 7229–7238, 2022,
[Online]. Available: https://doi.org/10.1609/aaai.v36i7.20684

[30] Y. Xu, G. Hu, L. You, and C. Cao, “A Novel Machine Learning-Based
Analysis Model for Smart Contract Vulnerability,” Secur. Commun.
Networks, vol. 2021, 2021, doi: 10.1155/2021/5798033.

[31] O. Oruç, “Role-based embedded domain-specific language for
collaborative multi-agent systems through blockchain technology,” 2021,
[Online]. Available: https://doi.org/10.5121/csit.2021.110501

[32] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv Prepr.
arXiv1707.06347, 2017.

[33] S. Iqbal and F. Sha, “Actor-attention-critic for multi-agent reinforcement
learning,” pp. 2961–2970, 2018, [Online]. Available:
http://proceedings.mlr.press/v97/iqbal19a/iqbal19a.pdf

[34] J. Heinrich and D. Silver, “Deep reinforcement learning from self-play in
imperfect-information games,” arXiv Prepr. arXiv1603.01121, 2016,
[Online]. Available: https://arxiv.org/pdf/1603.01121.pdf

[35] H. Tang et al., “Hierarchical Deep Multiagent Reinforcement Learning
with Temporal Abstraction,” arXiv (Cornell Univ., 2018, doi:
https://doi.org/10.48550/arxiv.1809.09332.

[36] P. Thakkar, S. Nathan, and B. Viswanathan, “Performance benchmarking
and optimizing hyperledger fabric blockchain platform,” 2018, [Online].
Available: https://doi.org/10.1109/mascots.2018.00034

[37] W. Wang et al., “A survey on consensus mechanisms and mining strategy
management in blockchain networks,” vol. 7, pp. 22328–22370, 2019,
[Online]. Available: https://doi.org/10.1109/access.2019.2896108

[38] M. S. Ali, M. Vecchio, M. Pincheira, K. Dolui, F. Antonelli, and M. H.
Rehmani, “Applications of blockchains in the internet of things: A
comprehensive survey,” vol. 21, no. 2, pp. 1676–1717, 2019, [Online].
Available: https://doi.org/10.1109/comst.2018.2886932

[39] Q. Nasir, I. Qasse, M. A. Talib, and A. B. Nassif, “Performance analysis
of hyperledger fabric platforms,” vol. 2018, pp. 1–14, 2018, [Online].
Available: https://doi.org/10.1155/2018/3976093

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

766 | P a g e

www.ijacsa.thesai.org

[40] U. S. Gaire, “Application of artificial intelligence in the military: An
overview,” vol. 4, no. 01, pp. 161–174, 2023, [Online]. Available:
https://doi.org/10.3126/unityj.v4i01.52237

[41] M. Khan and J. Vice, “Toward accountable and explainable artificial
intelligence part one: Theory and examples,” 2022, [Online]. Available:
https://doi.org/10.36227/techrxiv.19102085

[42] C. Hou et al., “SquirRL: Automating attack analysis on blockchain
incentive mechanisms with deep reinforcement learning,” 2021, [Online].
Available: https://doi.org/10.14722/ndss.2021.24188

[43] H. Zhao and R. Xu, “An innovative mechanism of blockchain technology
on joint governance model,” vol. 1, no. 2, 2021, [Online]. Available:
https://doi.org/10.37965/jait.2020.0038

[44] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding the
greedy, prodigal, and suicidal contracts at scale,” in Proceedings of the
34th Annual Computer Security Applications Conference, 2018, pp. 653–
663.

[45] M. Mossberg et al., “Manticore: A User-Friendly Symbolic Execution
Framework for Binaries and Smart Contracts,” in 2019 34th IEEE/ACM
International Conference on Automated Software Engineering (ASE),
2019, pp. 1186–1189.

[46] J. Muñoz and H. D. Macedo, “Mythril: A framework for bug hunting on
the Ethereum blockchain,” arXiv Prepr. arXiv1811.03959, 2018.

[47] Y. Feng, E. Torlak, and R. Bodik, “Solythesis: Detecting and Avoiding
Solidity Re-Entrancy Attacks,” in 2020 IEEE Symposium on Security and
Privacy (SP), 2020, pp. 874–887.

[48] Q. Liu, L. Wang, and Y. Shen, “A Symbolic Execution Approach for
Smart Contract Vulnerability Detection,” IEEE Trans. Dependable Secur.
Comput., 2022.

[49] R. Revere, “Solgraph.” 2017. [Online]. Available:
https://github.com/raineorshine/solgraph

[50] C. F. Torres and M. Steichen, “Osiris: Hunting for Integer Bugs in
Ethereum Smart Contracts,” in Proceedings of the 34th Annual Computer
Security Applications Conference, 2018, pp. 664–676.

[51] P. Tsankov, A. Dan, D. Drachsler-Cohen, A. Gervais, F. Buenzli, and M.
Vechev, “Securify: Practical security analysis of smart contracts,” in
Proceedings of the 2018 ACM SIGSAC Conference on Computer and
Communications Security, 2018, pp. 67–82.

[52] S. Tikhomirov, E. Voskresenskaya, I. Ivanitskiy, R. Takhaviev, E.
Marchenko, and Y. Alexandrov, “SmartCheck: Static analysis of
Ethereum smart contracts,” in 2018 IEEE/ACM 1st International
Workshop on Emerging Trends in Software Engineering for Blockchain
(WETSEB), 2018, pp. 9–16.

[53] L. Brent et al., “Vandal: A scalable security analysis framework for smart
contracts,” 2018, [Online]. Available: https://arxiv.org/abs/1809.03981

[54] J. Feist, G. Grieco, and A. Groce, “Slither: A static analysis framework
for smart contracts,” Proc. - 2019 IEEE/ACM 2nd Int. Work. Emerg.
Trends Softw. Eng. Blockchain, WETSEB 2019, pp. 8–15, 2019, doi:
10.1109/WETSEB.2019.00008.

[55] Y. Zhang, X. Xu, Y. Liu, Q. Zhang, and L. Liu, “SolidityCheck: Quickly
Detecting Problems in Smart Contracts through Regular Expressions,” J.
Syst. Softw., vol. 158, p. 110391, 2019.

[56] Z. Zhou, L. Rui, and J. Wu, “Solstice: A Framework for Analyzing
Solidity Smart Contracts,” in 2019 IEEE 2nd International Conference on
Information and Computer Technologies (ICICT), 2019, pp. 252–259.

[57] P. Tsankov, A. Dan, A. Permenev, D. Drachsler-Cohen, A. Gervais, and
M. Vechev, “Securify v2: A Practical Security Analysis Tool for
Ethereum Smart Contracts,” in Proceedings of the ACM Conference on
Computer and Communications Security, 2020, pp. 127–134.

[58] Y. Zhou, R. Wang, Z. Li, X. Luo, T. Wu, and K. Ren, “SIF: A Framework
for Solidity Contract Instrumentation and Analysis,” in Proceedings of the
35th Annual Computer Security Applications Conference, 2020, pp.

[59] I. Grishchenko, M. Maffei, and C. Schneidewind, “SmartAnvil: Open-
source tool suite for smart contract analysis,” in International Conference
on Principles of Security and Trust, 2020, pp. 53–76.

[60] B. Alpern, M. Bozga, P. Habermehl, R. Iosif, and J. Sifakis, “SolCheck:
A Tool for the Static Analysis of Solidity Smart Contracts,” in 2020 IEEE
20th International Symposium on Network Computing and Applications
(NCA), 2020, pp. 1–4.

[61] P. Kushwaha, A. Shukla, and S. Sharma, “A Systematic Review of
Ethereum Smart Contract Analysis Tools,” IEEE Access, vol. 10, pp.
13311–13331, 2022.

[62] S. Kalra, S. Goel, M. Dhawan, and S. Sharma, “Zeus: Analyzing safety of
smart contracts.,” in Ndss, 2018, pp. 1–12.

[63] Á. Hajdu and D. Jovanovic, “solc-verify: A Modular Verifier for Solidity
Smart Contracts,” in 2019 Formal Methods in Computer Aided Design
(FMCAD), 2019, pp. 1–5.

[64] S. K. Lahiri et al., “VeriSol: A verifier for Solidity smart contracts,” in
International Symposium on Formal Methods, 2019, pp. 596–602.

[65] T. Chen, “A Comparative Analysis of Historical Versions of Ethereum
Smart Contracts for Security Issues,” in 2020 IEEE International
Conference on Blockchain and Cryptocurrency (ICBC), 2020, pp. 1–4.

[66] A. N’Da, B. A. Kaba, T. F. Bissyandé, and J. Klein, “Security Patterns for
Smart Contract Programming in Solidity,” IEEE Access, vol. 8, pp.
222957–222967, 2020.

[67] A. Permenev, D. Dimitrov, P. Tsankov, D. Drachsler-Cohen, and M.
Vechev, “VerX: Safety Verification of Smart Contracts,” in 2020 IEEE
Symposium on Security and Privacy (SP), 2020, pp. 1661–1677.

[68] A. López Vivar, A. L. Sandoval Orozco, and L. J. García Villalba, “A
security framework for Ethereum smart contracts,” Comput. Commun.,
vol. 172, pp. 119–129, Apr. 2021, doi:
10.1016/J.COMCOM.2021.03.008.

[69] A. Alkhalifah, A. Ng, P. A. Watters, and A. S. M. Kayes, “A Mechanism
to Detect and Prevent Ethereum Blockchain Smart Contract Reentrancy
Attacks,” Front. Comput. Sci., vol. 3, no. February, pp. 1–15, 2021, doi:
10.3389/fcomp.2021.598780.

[70] H.-N. Dai, L. Wang, Y. Zhang, and Q. Liu, “SuperDetector: A Framework
for Detecting Smart Contract Vulnerabilities,” IEEE Trans. Netw. Sci.
Eng., vol. 9, no. 1, pp. 13–25, 2022.

[71] J. Guo, Y. Jiang, Y. Zhao, Q. Chen, and J. Sun, “DLFuzz: Differential
Fuzzing Testing of Deep Learning Systems,” in Proceedings of the 2018
ACM SIGSAC Conference on Computer and Communications Security,
2018, pp. 739–753.

[72] G. Grieco, W. Song, A. Cygan, J. Feist, and A. Groce, “Echidna: effective,
usable, and fast fuzzing for smart contracts,” in Proceedings of the 29th
ACM SIGSOFT International Symposium on Software Testing and
Analysis, in ISSTA 2020. New York, NY, USA: Association for
Computing Machinery, 2020, pp. 557–560. doi:
10.1145/3395363.3404366.

[73] V. Wüstholz and M. Christakis, “Harvey: A Greybox Fuzzer for Smart
Contracts,” arXiv Prepr. arXiv1905.06944, 2019.

[74] J. He, M. Balunović, N. Ambroladze, P. Tsankov, and M. Vechev,
“Learning to fuzz from symbolic execution with application to smart
contracts,” Proc. ACM Conf. Comput. Commun. Secur., pp. 531–548,
2019, doi: 10.1145/3319535.3363230.

[75] L. Wei, Q. Liu, and Y. Shen, “FuzzTaintAnalysis: Fuzzing Smart
Contracts Based on Taint Analysis and Genetic Algorithms,” in 2020
IEEE International Conference on Blockchain (Blockchain), 2020, pp.
359–366.

[76] T. D. Nguyen, L. H. Pham, J. Sun, Y. Lin, and Q. T. Minh, “Sfuzz: An
efficient adaptive fuzzer for solidity smart contracts,” Proc. - Int. Conf.
Softw. Eng., pp. 778–788, 2020, doi: 10.1145/3377811.3380334.

[77] S. Ding, Y. Zhang, T. Ban, Q. Liu, and Y. Shen, “HFContractFuzzer:
Fuzzing Hyperledger Fabric Smart Contracts for Vulnerability
Detection,” in 2021 IEEE International Conference on Blockchain and
Cryptocurrency (ICBC), 2021, pp. 1–3.

[78] M. Xu, L. Wang, and Q. Liu, “CodeEmbedding: A Novel Approach for
Vulnerability Detection in Fabric Smart Contracts,” IEEE Trans. Netw.
Sci. Eng., vol. 10, no. 2, pp. 1103–1114, 2023.

[79] Y. Zhuang, Z. Liu, P. Qian, Q. Liu, X. Wang, and Q. He, “Graph Neural
Networks for Smart Contract Vulnerability Detection,” in IEEE Access,
2020, pp. 57510–57520.

[80] K. Ashizawa, S. Hara, and J. Sakuma, “Eth2Vec: Learning Contract-Wide
Code Representations for Vulnerability Detection on Ethereum,” in
Proceedings of the 2021 ACM SIGSAC Conference on Computer and
Communications Security, 2021, pp. 1116–1130.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

767 | P a g e

www.ijacsa.thesai.org

[81] Q. Liu, Y. Zhuang, and Y. Shen, “GNNExpert: A System for Combining
Graph Neural Networks with Expert Knowledge for Vulnerability
Detection,” Expert Syst. Appl., vol. 168, p. 114444, 2021.

[82] S.-H. Hwang, S.-H. Lee, and J.-H. Lee, “CodeNet: A Code-Targeted
Convolutional Neural Network for Smart Contract Vulnerability
Detection,” Appl. Sci., vol. 12, no. 4, p. 2104, 2022.

[83] E. Sosu, P. Zavarsky, and B. Swar, “Enhanced Machine Learning
Techniques for Automated Vulnerability Detection in Smart Contracts,”
Comput. Secur., vol. 115, p. 102669, 2022.

[84] L. Huang, Q. Liu, Y. Zhuang, and Q. He, “A Multi-Task Learning
Approach for Vulnerability Detection in Smart Contracts,” Comput.
Secur., vol. 112, p. 102510, 2022.

[85] L. Wang, Q. Liu, and Y. Shen, “A Graph Convolutional Network Model
for Vulnerability Detection in Smart Contracts,” IEEE Trans. Netw. Sci.
Eng., vol. 10, no. 1, pp. 305–316, 2023.

[86] Y. Shen, L. Wang, and Q. Liu, “GSVD: A Common Vulnerability Dataset
for Smart Contracts on BSC and Polygon,” J. Netw. Comput. Appl., vol.
204, p. 103390, 2023.

[87] L. Han, Y. Zhang, Y. Li, Y. Zhao, and Q. Liu, “A Fusion Learning Model
for Smart Contract Vulnerability Detection,” IEEE Trans. Netw. Sci.
Eng., 2023.

[88] M. Li, Q. Liu, and L. Wang, “Vulpedia: Detecting Smart Contract
Vulnerabilities Using Abstract Vulnerable Signatures,” IEEE Trans. Inf.
Forensics Secur., vol. 18, pp. 1540–1551, 2023.

[89] P. Qian, Y. Zhuang, W. Shi, and Q. He, “Deep Learning for Reentrancy
Detection in Ethereum Smart Contracts,” IEEE Access, vol. 8, pp.
148145–148155, 2020.

[90] X. Tang, Q. Liu, and L. Wang, “LightningCat: A Deep Learning
Framework for Smart Contract Vulnerability Detection,” Inf. Sci. (Ny).,
vol. 610, pp. 419–433, 2023.

[91] Y. Gong, Q. Liu, and L. Wang, “SCGformer: A Transformer-Based
Model for Vulnerability Detection in Smart Contracts,” Inf. Sci. (Ny).,
vol. 611, pp. 304–317, 2023.

[92] C. Diligence, “Mythos: Security Analysis Tool for Ethereum Smart
Contracts.” 2019. [Online]. Available:
https://github.com/ConsenSys/mythos-cli

[93] Consensys, “MythX: Smart contract security service for Ethereum.”
Accessed: Mar. 05, 2024. [Online]. Available: https://mythx.io/

[94] V. Contributors, “Vulnerability Analysis as a Service (VaaS) for
Ethereum Smart Contracts.” 2019. [Online]. Available:
https://github.com/VaaS/smart-contract-audit

[95] S. C. Contributors, “Solidity Coverage.” Accessed: Mar. 05, 2024.
[Online]. Available: https://github.com/sc-forks/solidity-coverage

[96] N. Labs, “Solidity Flattener.” Accessed: Mar. 05, 2024. [Online].
Available: https://github.com/nomiclabs/truffle-flattener

[97] A. Suciu, R. Toderean, and M. Buhu, “Porosity: A Decompiler For
Blockchain-Based Smart Contracts Bytecode,” in 2017 International
Conference on Cyber-Enabled Distributed Computing and Knowledge
Discovery (CyberC), 2017, pp. 50–57.

[98] E. Albert, P. Gordillo, A. Rubio, and I. Sergey, “EthIR: A Framework for
High-Level Analysis of Ethereum Bytecode,” in International
Symposium on Automated Technology for Verification and Analysis,
2019, pp. 513–520.

[99] M. Rodler, W. Li, G. O. Karame, and L. Davi, “Sereum: Protecting
Existing Smart Contracts Against Re-Entrancy Attacks,” 26th Annual
Network and Distributed System Security Symposium, NDSS 2019.
2019. doi: 10.14722/ndss.2019.23413.

[100] S.-M. Chen, T.-F. Tsai, and R.-H. Lai, “Gasper: Analyzing the Energy
Consumption of Mobile Offloading in Ethereum,” in 2019 IEEE 20th
International Conference on Mobile Data Management (MDM), 2019, pp.
227–232.

[101] E. Foundation, “Remix IDE.” 2016. [Online]. Available:
https://remix.ethereum.org

[102] L. Duarte, “Solium: Analyzing the Security of Smart Contracts,” in 2017
IEEE 39th Sarnoff Symposium, 2017, pp. 1–5.

[103] Protofire, “Solhint.” 2018. [Online]. Available:
https://github.com/protofire/solhint

[104] H. Horta, M. Ribeiro, and R. Medeiros, “SolMet: A Metric Suite for
Solidity Smart Contracts,” in 2021 IEEE/ACM 1st International
Workshop on Blockchain Oriented Software Engineering (IWBOSE),
2021, pp. 16–22.

[105] H. Wang and P. Mueller, “SolRazor: Combining Source-Level
Optimizations with Correctness Proofs for Smart Contracts,” in 2021
IEEE/ACM 43rd International Conference on Software Engineering
(ICSE), 2021, pp. 1282–1293.

[106] F. Bond, “Solidity Parser Antlr.” 2018. [Online]. Available:
https://github.com/federicobond/solidity-parser-antlr

[107] H. Liu, Z. Yao, F. Xiong, P. He, Z. Zhang, and Q. Deng, “SolProfiler:
Profiling the Performance and Gas Costs of Smart Contracts Based on
Ethereum,” in 2020 IEEE International Conference on Services
Computing (SCC), 2020, pp. 49–56.

[108] J. Ellul and G. J. Pace, “ContractLarva: A Runtime Verification
Framework for Smart Contracts,” in 2019 IEEE International Conference
on Blockchain and Cryptocurrency (ICBC), 2019, pp. 5–6.

[109] Z. Gao, “When Deep Learning Meets Smart Contracts,” Proc. - 2020 35th
IEEE/ACM Int. Conf. Autom. Softw. Eng. ASE 2020, no. i, pp. 1400–
1402, 2020, doi: 10.1145/3324884.3418918.

[110] S. Bragagnolo, H. Rocha, M. Denker, and S. Ducasse, “SolStress: A Tool
to Stress Test the Resilience of Solidity Smart Contracts,” in 2019 IEEE
International Conference on Blockchain and Cryptocurrency (ICBC),
2019, pp. 9–10.

