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Abstract—With the rapid development of intelligent 

technology, robotic arms are widely used in different fields. The 

study combines the tendon drive theory and radial basis function 

neural network to construct the robotic arm model, and then 

combines the back-stepping method and non-singular fast 

terminal sliding mode to improve the controller and system 

optimization of the tendon drive robotic arm model. Simulation 

tests on commercial mathematical software platforms yielded 

that joint 2 achieves stable overlap of position trajectory and 

velocity trajectory after 0.2s and 0.5s with errors of 1° and 1°/s, 

respectively. Radial basis function neural network 

approximation of robotic arm error converged to the true value 

at 14s. The optimized joint achieved the accuracy of trajectory 

tracking after 0.2s. Also the control torque of joint 2 changes at 

1.5s, 4.5s and 8s and its change is small. The tendon tension curve 

was smoother and more stable in the range of -0.05N~0.0.5N to 

show that the robotic arm model has superiority after the 

optimization of the controller, and the interference observer had 

accurate estimation of the tracking trajectory of the 

tendon-driven robotic arm. Therefore, the radial basis 

function-based adaptive tracking algorithm had higher accuracy 

for the tendon-driven robotic arm model and provided technical 

reference for the control system of the intelligent robotic arm. 

Keywords—Tendon drive; adaptive neural network; dynamic 

relationship; sliding membrane control; trajectory tracking 

I. INTRODUCTION 

Robot arm (RA) is a device that is programmed to move 
and manipulate a manipulator to perform a grasp-and-place 
operation [1]. With the development of computers, RAs are 
used in engineering fields such as ecosystem monitoring, 
aerospace and medical engineering [2-4]. RA, as an important 
component in robotic systems, can perform working robot 
control such as industrial assembly, safety and explosion 
prevention, and medical assistance [5]. Robot control lies in 
motion and dynamics, and RA, as a nonlinear system, is 
characterized by strong coupling and multivariate variables, 
and is easily affected by multiple uncertainties. The precise 
control of its joint angles and trajectory tracking (TT) requires 
the RA model to address the dynamics modeling errors, 
uncertain external disturbances, and unknown parameters, and 
then design controllers to improve the accuracy, stability, and 
flexibility of RA grasping [6-7]. And for the automation 
application technology of RA, its movement, grasping, 
obstacle avoidance and other aspects of the model 
construction, and according to the industrial needs of different 
forms of RA or robots for the assembly or intelligent 

improvement. Among the RA's TT in mechanical structure, 
controller and other aspects of performance interference, so 
for the intelligent control method of RA, combined with the 
human arm structure of the apparatus to design. However, 
when the environment changes or complex parameters are 
generated, the motion control parameters of the robotic arm 
are limited by many factors, which poses significant 
challenges in automated operations. Control algorithms are 
currently the technological means for intelligent application of 
industrial robotic arms, and the feasibility of their motion 
control performance is ensured through precise parameters of 
robotic arm dynamics modeling. Systematic research and 
optimization are carried out in the areas of RA adaptive 
control and sliding mode control to solve the application 
problems of RA movement, control and grasping. To 
accurately establish the dynamic parameters of the robotic arm, 
the study utilizes tendon drive theory to explain the kinematic 
relationship between joints and displacement, in order to 
enhance the design and use of the controller. Based on this, the 
study combines radial basis function (RBF) neural network 
and controller design to provide an optimization approach for 
Tendon-driven robotic arm (TDRA) trajectory control method, 
which in turn improves the accuracy of TT control. 

The research is carried out in six sections, Section I is an 
expository description of the current research results. Related 
works is given in Section II. Section III is to optimize the 
control performance of RA using back-stepping and 
Non-singular Fast Terminal Sliding Mode (NFTSM). Section 
IV gives detail about the TDRA control combining RBF and 
controller. Discussion is given in Section V. Finally, Section 
VI concluded the paper. 

II. RELATED WORKS 

The manufacturing of industrial automation has made 
extensive use of RA technology. In the realm of intelligent 
control, TT control of RA systems with uncertainty is a 
hotspot for research since many applications need RA to 
follow trajectory motion accurately. Over the last years, 
scholars at home and abroad have explored the application and 
improvement of RA. Zhao proposed a robotic arm control 
system based on multi feature videos regarding the issue of 
robotic arm grasping, and combined it with a laser rangefinder 
to verify the success rate of robotic arm grasping. Finally, the 
accuracy and feasibility of its robotic arm motion control were 
determined [8]. Yang et al. proposed a method for improving 
the effectiveness of robot automatic search tasks based on 
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airborne sensors and wearable embedded systems, combined 
with localization algorithms and motion control algorithms, 
regarding the localization and motion control issues of 
biological robots [9]. For the robot temperature sensing 
problem, He et al. proposed to implant the temperature sensor 
into the robot simulation finger using fiber grating, and 
measured the temperature with the goal to prove the feasibility 
and effectiveness of their approach [10]. For the tendon-driven 
manipulator TT problem, Peng et al. suggested to use a fuzzy 
logic control method and simulation testing of the linearized 
system, which in turn improves the performance of TT control 
[11]. Regarding the control system problem of the target 
grasping robot, Matsuda et al. proposed to use an image 
processing method and autonomous control of a mobile robot 
with a distance sensor and an object grasping arm, which in 
turn improves the accuracy of the robot's object grasping 
system [12]. Regarding the development of the robot's ability 
to move trajectory, motion tracking, and object grasping, a 
number of industrial-type robots have been put into 
application and effective results have been achieved. 

In addition, robots and RA have a wide range of 
applications in medicine and industry, etc. In terms of robot 
motion models and TT, many research scholars have used 
many intelligent means and automation techniques to optimize 
and improve the model construction. Regarding the 
application of three-degree-of-freedom robots in medicine, 
Jiang et al. analyzed surgical robots and proposed using fiber 
optic sensors to optimize their ability to resist electromagnetic 
interference in surgical procedures, thereby demonstrating the 
superiority of surgical robots based on fiber optic and sensing 
technology [13]. For the application development problem of 
rehabilitation robots, Liu Y et al. proposed to use a control 
method based on surface EMG signals and combined with 
principal component analysis to improve the recognition 
accuracy, which in turn improves the effect of skeletal 
rehabilitation training [14]. Linxi et al. proposed a design 
feature space based on sparse point clouds to distinguish target 
characters for the tracking problem of outdoor mobile robots, 
and combined with motion planning algorithms to verify 
target detection and tracking performance, thereby increasing 
the robustness of robots to complex outdoor environments 
[15]. Naya Varela et al. proposed to combine biological 
morphological development and controllers for the bipedal 
robot walking problem, and then use neural evolution 
algorithms to verify the feasibility and practicality of bipedal 
robot walking [16]. Regarding the robot motion model 
construction problem, Fei proposed to use a joint torque 
estimation method based on dynamic characteristics and a 
traceless Kalman filter to simulate and test the flexibility 
model, and then prove the effectiveness and feasibility of his 
method [17]. 

In summary, although domestic and foreign researchers 
and scholars have carried out a number of model construction 
and technology optimization for the application development 
of RA. However, there is a lack of in-depth research on the 
widespread movement trajectory and joint flexibility testing 
for industrial development of robotic applications. At the same 
time, and existing research on the kinematic parameters such 
as joint displacement and torque of robotic arms still lacks 

specific kinematic relationship derivation for their driving 
models, which affects the dynamic analysis of robotic arms. 
Therefore, the study innovatively cites the tendon drive theory 
and its system to enhance the compactness of the robotic arm 
joint structure, provide more accurate parameter relationships 
for dynamic modeling, and reduce the load on the joint drive. 
Afterwards, an RBF-Adaptive neural network (ANN), 
controller design, and disturbance observer were used to 
construct TDRA based on the RBF adaptive tracking 
algorithm, aiming to improve the accuracy of TT control and 
provide technical reference for the intelligent development of 
industrial robots. 

III. CONSTRUCTION OF ROBOT ARM CONTROL SYSTEM 

BASED ON RBF-NN AND TENDON DRIVE 

For the construction of Dynamics modeling (DM) of RA, 
the study combines the tendon drive theory and RBF-NN to 
build the ANN tracking control system [18]. And according to 
the nonlinear system with stronger disturbances and its TT 
problem, the study utilizes back-stepping and fuzzy control to 
globally control the modeling information of the TDRA in 
order to achieve accurate and stable TT. Finally, when the 
external disturbances and errors are large, the disturbance 
observer is introduced to the sliding membrane control (SMC), 
which in turn improves the accuracy of the TT. 

A. TDRA's Dynamics Modeling and its Tracking Controller 

The dynamics of the TDRA includes the analysis of the 
action and dynamics of the joint displacements, angles and 
velocities, while the dynamic structure of the RA is simplified 
to the base, the rear arm linkage and the forearm linkage. 
Among the commonly used modeling approaches are 
Lagrangian and Newtonian Eulerian methods, but the 
dynamics equations are applied consistently in the same 
system [19]. The most widely modeled approach is the 
Euler-Lagrange equation, where the RA is represented as 
shown in Eq. (1). 

     ,P j a C s j s G j       (1) 

In Eq. (1),   n nP j R   denotes the positive definite 

inertia matrix and n  is the joints of the RA, j , s  and a  
are the joint angular displacements, velocities and 

accelerations, respectively, and , , nj s a R .  , n nC s j R   

is the centripetal and Koch force matrix, and  G j  is the 

gravity matrix and   nG j R . The input moment of the 

joints is 
nR   and  1 2 3, ,

T
    . The Lagrange kinetic 

equations are used to derive the DM, which leads to the 
positive definite inertia matrix as shown in Eq. (2). 

 
11 12 13

21 22 23

31 32 33

P P P

P j P P P

P P P

 
 

  
 
 

    (2) 

In Eq. (2),  P j  is the positive definite inertia matrix 

and 12 13 21 31 0P P P P    . While the centripetal force and 
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the Koch matrix are expressed as shown in Eq. (3). 

 
11 12 13

21 22 23

31 32 33

,

C C C

C j s C C C

C C C

 
 

  
 
 

   (3) 

In Eq. (3),  ,C s j  is the centripetal and Koch force 

matrix and 33 0C  . The main motion of TDRA lies in the 
relationship between joint angle and tendon displacement, 
end-effector and joint angle displacement and joint torque and 
tendon tension. Where the mapping matrix of tendon tension 
to joint torque is shown in Eq. (4). 

11 12 13 14

21 22 23 24

33 340 0

r r r r

Rt R r r r r

r r



 
 

    
 
 

  (4) 

In Eq. (4),   and t  are the joint moments and tendon 

tensions, respectively, and t  denotes the column vector 

consisting of four tendon tensions. R  is the mapping matrix 

from t  to  , where the element ijr  is denoted as the radius 

of the circular surface surrounded by the 
j

th tendon on the 

i th joint itself and 
1~ 3, 1~ 4i j 

. And the model results 

of the tendon actuator output to a specific joint are shown in 
Fig. 1. 

Tendon tension Tendon mapping 

matrix 

transformationLinear spring 

modeling 

coefficient

Dynamics of 

robotic arms

Tendon conversion

Input
 

Fig. 1. Schematic diagram of the structure of the tendon actuator output to 

the joint model. 

The input linear spring modeling coefficients can be found 
in Fig. 1, and the tendon conversion is accomplished in the RA 
dynamics through the tendon tension and its mapping 
transformation. The tendon drive combined with RA makes it 
compact and reduces the load on the joint drive. The tendon 
drive facilitates controller design by acting as a flexible drive 
with zero backlash, hence reducing the weight and size of the 
joint working work. As for the RA tracking control problem 
under unknown DM, the study combines adaptive control with 
RBF-NN for modeling and tracking control of TDRA. Among 
them, RBF-NN has a structure primarily made up of an output 
layer, a hidden layer, and a hidden input layer. It is a 
three-layer feed-forward network with a single hidden layer. 
Among them, the input layer contains a number of signal 
source nodes, and the nonlinear radial function in the hidden 
layer, which gradually decreases from the center. RBF is used 
as the activation function in the hidden layer, which in turn 
maps the input vector directly to the hidden layer. And the 
output nodes form the output layer, and then the weight matrix 

is used to calculate the output value. To solve the constraint 
problem of RA tendon rope tension, the study uses RBF-NN 
for the parameters of DM and constructs the tracking control 
of ANN as demonstrated in Fig. 2. 

Controller
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Tendon mapping 
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transformation
Mechanical arm

RBF neural 

network

Tendon tension

Joint parameters

 

Fig. 2. Adaptive RBF neural network tracking control structure diagram. 

From Fig. 2, it is concluded that the DM of TDRA 
introduces an auxiliary system to solve the tendon tension 
constraint problem, and the adaptive controller acts on the 
tendon tension to achieve adaptive control. And through the 
tendon mapping matrix transformation and RA and its joint 
parameters, the model information is input to RBF-NN. The 
RBF-NN controller approaches the unknown dynamic 
parameters of the RA, which in turn facilitates the 
optimization of its tracking control performance. According to 
the RBF-NN's proximity to the unknown dynamical 
parameters, the DM formulation of its RA, as shown in Eq. 
(5). 

     

1 2

1 2

1
2 1 1 2 2 1

,

,

x j x s

x x

x P x C x x x G x

Rt










 

 

      
 

 (5) 

In Eq. (5),  1 2,C x x  is the centripetal and Koch force 

matrix and  1G x  is the gravity force matrix. And to 
minimize the effect of tendon rope constraint, the auxiliary 
system is shown in Eq. (6). 

2

2

0.5
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T Ty f f F
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c




 





  
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 




 (6) 

In Eq. (6),   represents the state of the auxiliary system 

and 
1nR  , and additionally  

0TK K

f S f f

 
  


  , the 
saturation function is modeled as 

 
 max 0sgn ,

,

S x f
S f

f f





 
 

 , where maxS  is the upper 

saturation limit. The sign function is 

 

1, 0

sgn 0, 0

1, 0

x

x x

x




 
  , c  

is a smaller positive constant. The DM of RBF-NN computes 
the adaptive law values of the neural network weights, and the 
model estimates the control law, so improving the robustness 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

69 | P a g e  

www.ijacsa.thesai.org 

of the error control. Finally, based on the function and the 
adaptive law value, it is substituted into the auxiliary system, 
which in turn leads to the DM of the RBF-NN near the TDRA 
to reduce the error and improve the localization and tracking 
design of the control system. 

B. TDRA Sliding Membrane Control and Trajectory Tracking 

It is investigated that the back-stepping approach is 
utilized for the construction of the adaptive control module to 
handle the problem of the nonlinear system of RA and TT. 
This, in turn, solves the problem of uncertain parameters and 
lack of model information of RA [20]. The back-stepping 
method is a systematic design method for parameter uncertain 
systems, which uses a recursive structure to the Lyapunov 
function of the CLS to obtain the feedback controller. Then 
combined with the control law of the CLS function derivation, 
and then make the CLS trajectory and boundedness and 
convergence to achieve equilibrium. Where Lyapunov 
function is used in dynamical systems and control systems to 
analyze the instability and convergence and thus to design 
their systems efficiently. Thus, Fig. 3 depicts the 
back-stepping-based TDRA control system construction. 
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Fig. 3. Structure diagram of control system based on back-stepping method. 

The control design of the back-stepping method for TDRA 
can be seen in Fig. 3. The design effectively approximates the 
unmodeled information of the RA and solves its parameter 
uncertainty through the adaptive fuzzy controller and function 
approximation capability, and then completes the control of 
the modeled information. Eq. (7) demonstrates the design of 
the adaptive fuzzy control law. 

 2 2 1

1 d

f R z

z y y

       


 

   (7) 

In Eq. (7), 1z  is the error, y  and dy  are the actual and 

desired angles, respectively, and   denotes the fuzzy system 
design. As for the two subsystems of the controller, its 
stability analysis is done by using Lyapunov function, as 
shown in Eq. (8). 

1 1
1

2 2
2 1

2

2

T

T

z z
L

z P z
L L







 
 

    (8) 

In Eq. (8), 1L  and 2L  are the function expressions of 

the two subsystems, 2z  is the error and 2 2 1z x   , 1  is 

the estimated value of 2x , and P  is the positive definite 
inertia matrix. The stability analysis of the whole system is 
derived as shown in Eq. (9). 

~ ~~ ~

1 1 2 2
2

2 2 2 2

T TT Tz z z P z
L L

   

 

 
    

  (9) 

In Eq. (9), 
*  of 

~
*     is the optimal 

approximation constant,   and   are constants, and 
0  . This is then subjected to derivation and adaptive law 

substitution into the inequality, as well as boundedness 
considerations of the disturbances, which ultimately leads to 
the bounded inequality for the CLS, as shown in Eq. (10). 

         max max
0 0

0 0

0 exp 1 exp 0L LC C
L t L C t C t L

C C
         (10) 

In Eq. (10),  0L  is the initial value while defining the 

tight set as 

    max
0

0

0 LC
X L X L

C

  
    

    and 
~

1 2 0, ,z z 
 

 
  . Thus it is shown that the system introduced 
into the controller and its CLS signals are bounded. When 
uncontrollable external disturbances and large modeling errors 
occur, it is investigated to design the disturbance observer and 
place it in the SMC of the RA. The specific structure is shown 
in Fig. 4. 
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Fig. 4. Design of terminal sliding mode control with anti-interference 

capability. 

In Fig. 4, the errors in inter-joint displacements, velocities 
and accelerations are used in the equation calculations of the 
Nonlinear Disturbance Observer (NDO) to determine the 
errors in the modeled information. To determine the 
convergence of the errors, the NDO is then constructed along 
with the auxiliary parameter variables and then merged with 
the function derivation. Furthermore, the NFTSM provides 
improved control over the RA motion by compensating for 
errors, controlling them, and utilizing the saturation function 
and double power convergence rule. By deliberately altering 
the switching function, NFTSM, a revolutionary sliding mode 
control technique, resolves the singularity issue with the 
current terminal sliding mode control directly from the 
perspective of sliding mode design and achieves global 
non-singular control of the system. In the meanwhile, it takes 
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on the terminal sliding mode's finite-time convergence 
attribute. When compared to the conventional linear sliding 
mode control, it can achieve high steady-state accuracy and a 
finite time convergence to the intended trajectory, making it 
appropriate for high-speed and high-precision control. Where 
the TDRA power model considering external disturbances and 
uncertain parameters, its equation e is shown in Eq. (11). 

     0 0 0, eP j a C j s s G j          (11) 

In Eq. (11),   represents the model uncertainty 

information and        ,P j a C j s s G j F s      , 

 F s  are the system friction forces.   and e  are joint 
moment vectors and external disturbances, respectively. And 
when the external perturbation and uncertainty information 
exists bounded, the two are combined into a composite 
disturbance, then it is shown in Eq. (12). 

         0 0 0,e L j e e L j P j a C j s s G e e L j e


      

               
   

 (12) 

In Eq. (12), e




 represents the combination of external 
interference and uncertain parameters i.e. composite 

interference and        ,ee P j a C j s s G j F s     , 

e


 are the estimates of NDO for the composite interference 

and  L j  is the gain matrix. This is then combined with the 
auxiliary parameter variables and function vectors to arrive at 
the equation design of the NDO as shown in Eq. (13). 

         

 

0 0,v L j C j s s G j d s L j v

e v d s







       


  

 (13) 

In Eq. (13), v  is an auxiliary parameter variable 

and  v e d s


  ,  d s  denote the function vectors to be 
designed. And the design equation of NFTSM is shown in Eq. 
(14). 

 
2

1 sgn sgn
i

i

i i i i i i i ih g g g g g




 
  

      
 

 (14) 

In Eq. (14), ig  is the joint angular velocity error, in 

addition  1 sgni

i i ig g


   and 

2

sgn
i

i i ig g




  

  
   are the 

convergence velocity states of the system and 

0, 0i i   ,

1 2

21 2

i i

i

 





  . When 1i  and 2i  take the 

appropriate values, the state of the control system is 
non-singular. Then the Gaussian hypergeometric function and 
the convergence time of the error are utilized to simplify the 
equation design of the NFTSM, and finally the system is 
controlled equivalently by combining the double power 
convergence law and the saturation function, which in turn 

reduces the error estimation of the interference observer. This 
is shown in Eq. (15). 
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0 0 0 0 2 1
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e i i

i i
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  



 
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 





     
            
     

      
 

       
   

(15) 

In Eq. (15),   represents the robust term for error 

reduction and  sgne h   , 
 1

iK diag h



 and 

 2

iXdiag h


 are the stability of the system control and 

   1 2 3 1 2 3, , , , ,K diag k k k X diag x x x  . Additionally, e  
is a smaller positive number and is greater than or equal to the 
upper bound of the error estimate of the disturbance observer, 

i.e., e eg  . 

IV. TDRA CONTROL COMBINING RBF AND CONTROLLER 

TDRA in TT control is simulation experiments using 
RBF-ANN and its controller on a commercial mathematical 
software (Matrix Laboratory, MATLAB) platform. The study 
uses triple-joint RA to simulate and test the position, velocity 
and tendon tension curves of each joint, and then combines the 
approximation curves of the auxiliary system and the 
saturation function to compare the tracking error of the 
triple-joint motion. Finally, the tracking trajectories of the 
three joints and the estimation of the interference observations 
are simulatively tested using an interference observer to 
demonstrate the tracking accuracy and error convergence of 
the TDRA. 

A. Trajectory Tracking Test for RBF-ANN Controller 

The study uses a triple-joint RA for tendon drive and 
RBF-ANN for TT, whose three joints have linkage mass m 
specifically 0.02kg, 0.11kg and 0.13kg, and the lengths L are 
0.01m, 0.04m0.05m, respectively. And for the controller the 
parameters include the approximation value of DM 0.3, the 
minimum constant of the auxiliary system 0.02, and the initial 
matrix parameter 0.2 and approximation value matrix 
parameter 1.5. The gain matrix parameter is 30. The tracking 
test of the joint position and velocity of the three-joint RA is 
carried out in the MATLAB platform, in which the results of 
the position tracking are shown in Fig. 5. 

From Fig. 5(a), it can be inferred that joint 1's position 
tracking occurs with a tracking error of 0 to 0.1 degrees during 
the first 0.5 seconds, and joint 2's position tracking in Fig. 5(b) 
occurs with an error of -0.1 to 0 degrees within 0.2 seconds of 
the test starting. And the position tracking of joint 3 is seen in 
Fig. 5(c) to have a deviation of -0.1~0 degrees, occurring 
within 0.3 seconds of the simulation test. All three joints 
experience significant vibration during the initial tracking, 
which in turn leads to the error. However, the position tracking 
of the joints gradually converges to the desired tracking 
trajectory after 1s under the effect of the ANN controller. As 
for the velocity tracking results of the joints, they are shown in 
Fig. 6. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

71 | P a g e  

www.ijacsa.thesai.org 

0.1
0.05

-0.05

0
P

o
si

ti
o
n
 (

ra
d

)

(a) Position tracking results of joint 1

0 1 2 3 4 5
Time (s)

Expected 

trajectory
Tracking 

trajectory

0.5
0.3

-0.1

P
o

si
ti
o

n
 (

ra
d

)

(b) Position tracking results of joint 2

0 1 2 3 4 5
Time (s)

Expected 

trajectory
Tracking 

trajectory
0.1

-0.3
-0.5

0.3

-0.1

P
o

si
ti

o
n

 (
ra

d
)

(c) Position tracking results of joint 3

0 1 2 3 4 5
Time (s)

Expected 

trajectory
Tracking 

trajectory

0.1

-0.3

 

Fig. 5. Three joint position tracking results of the robotic arm. 
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Fig. 6. Three joint velocity tracking results of the robotic arm. 

From Fig. 6(a), the velocity tracking of joint 1 has an error 
of -0.3~0.1°/s within 0.8s and the trajectory converges to the 
desired trajectory after 1s. Joint 2 in Fig. 6(b) has a velocity 
deviation of 0~1°/s within 0.5s, and joint 3 in Fig. 6(c) has a 
velocity trajectory error of 0~0.8°/s within 0.5s, which results 
in 0~0.8°/s. All the three joints achieve a stable tracking of the 
trajectory after 1s, which in turn indicates that the position and 
velocity tracking of the joints, and the actual trajectories are 
able to track the desired trajectories relatively quickly under 
the RBF-ANN controller. Afterwards, the trajectory 
observation of the control moments of the three joints, as well 
as the error approximation test of the RBF-ANN control on 
the DM of the RA, are shown in Fig. 7. 

The control moment curves of the three joints are seen to 
be smoother in Fig. 7(a), which in turn indicates that the 
trajectory jitter of the TDRA is not obvious. The 
approximation of the RA error by the RBF-NN is derived in 
Fig. 7(b), which converges to the true value at 14s. Where the 
maximum error value is 58 at the initial time, but this is due to 
the selection of the initial values of each parameter of the 
neural network, and the curve is gradually approximated with 
the increase of time afterwards. Therefore, it is proved that the 
RBF-NN based TDRA in the auxiliary system and function 
method can improve the tracking effect of tendon tension and 
the mechanical control ability, so as to improve the accurate 
tracking control performance of TDRA. 

B. Robot Arm Trajectory Tracking Test Combined with 

Interference Observer 

The optimized adaptive control module based on 
back-stepping is simulated and experimented with uncertain 
parameters and missing information for TDRA. And the 
function is combined to compare the joint tracking under 
different parameters, and then the disturbance observer is set 
to test the TT of RA. Among them, Fig. 8 displays the results 
of testing joint 1's position tracking under various auxiliary 
and stability coefficients. 
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Fig. 8. Joint 1 position tracking with different parameters. 

In Fig. 8(a), joint 1 achieves TT stabilization after 2s and 
has a maximum error of 1°. It is derived in Fig. 8(b) that the 
coincidence with the desired trajectory is achieved after 1.8s 
and remains stable. Whereas, in Fig. 8(c) the curvilinear case 
of TT occurs when it is close to 0 i.e. 0.2s, which in turn 
indicates that the accuracy of TT of the joints of the RA 
increases with the increase in the parameters. After that, the 
velocity tracking test was performed for joint 2 with different 
parameters and the results are shown in Fig. 9. 
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Fig. 9. Joint 2 velocity tracking with different parameters. 

In Fig. 9(a), the velocity tracking of joint 2 is more 
unstable and the error exists intermittently, in Fig. 9(b). 
Approximate convergence of the velocity trajectory of joint 2 
occurs after 1.5s and remains TT stable. In Fig. 9(c), the 
velocity tracking curve of joint 2 coincides with the desired 
trajectory after 1.2s and the maximum error appears to be 
25°/s, thus demonstrating that the increase in parameters leads 
to an increase in the accuracy of joint velocity tracking for RA. 
Finally, the position and velocity tracking of the three joints of 
the RA are simulated and tested under the design of the 
interference observer, in which the results of joint 3 are shown 
in Fig. 10. 
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Fig. 10. Results of Joint 3 Position and Speed Tracking 

In Fig. 10(a), the position tracking of joint 3 has negligible 
error from the desired curve, and the TT is more stable and 
accurate at 0.2s. In the velocity tracking trajectory in Fig. 
10(b), the trajectory coincides with the desired trajectory after 
0.2s, thus indicating that the interference observer improves 
the accuracy and velocity of the RA joint TT. After that, 
regarding the interference observation results and control 
moments of the joints, the results of joint 2 are shown in Fig. 
11. 
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Fig. 11. Interference observation results of joint 2. 

In Fig. 11(a), the interference observation of joint 2 
basically coincides with the desired trajectory. And the control 
moments of joint 2 in Fig. 11(b) change at 1.5s, 4.5s and 8s 
with small changes. Therefore, the interference observer has 
an accurate estimation of the tracking trajectory of TDRA. 
Finally, the curve comparison of the tendon tension change 
was performed, and the specific results are shown in Fig. 12. 
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Fig. 12. Curve of tendon tension variation. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

73 | P a g e  

www.ijacsa.thesai.org 

In Fig. 12, the convergence time of tendon 1 is faster, and 
the curve is smoother and more stable, while the tension 
changes of the rest of the tendons range from -0.1N to 0.1N. 
The changes in the tension of the remaining tendons are all 
affected by the compound interference, which makes the curve 
change more obvious ups and downs. Based on the estimated 
design of the disturbance observer, it is then shown that the TT 
controlled by the TDRA terminal sliding mode has a better 
performance, and thus the accuracy and convergence speed of 
the TT are improved under the optimization of the controller. 

V. DISCUSSION 

As one of the important research directions of intelligent 
industrial robots, the joint angle tracking and adaptive 
controller design of the robotic arm control system provide 
key dynamic analysis for the flexible operation of the robotic 
arm. The study utilizes the tendon driving theory and its 
tendon tension constraints, and calculates the dynamic model 
through the Euler Lagrange equation. It also combines the 
dynamic relationship of the tendon driven robotic arm to 
clarify the specific parameters of the tendon actuator, thereby 
simplifying the joint activity of the robotic arm. Afterwards, 
using the adaptive control of RBF neural network, the tendon 
driven robotic arm is modeled and tracked. In addition, the 
adaptive law value of RBF neural network weights can reduce 
trajectory tracking errors and improve the accuracy of error 
control and positioning tracking. In order to achieve the 
adaptive control system and trajectory tracking of the robotic 
arm, the research also quotes the backstepping method to 
optimize the robotic arm control system. By calculating the 
Lyapunov function and adaptive fuzzy control law, the 
stability of the control system is increased. Finally, adding a 
nonlinear disturbance observer and NFTSM to compensate for 
and control trajectory errors can enable the control system to 
converge to the desired trajectory in a finite time, with high 
steady-state accuracy. However, compared with existing 
research on robotic arm control systems, the optimization 
improvement of tendon driven and adaptive RBF neural 
networks not only simplifies the dynamic model, but also 
improves the accuracy of trajectory tracking. The calculation 
of adaptive fuzzy control law not only considers trajectory 
tracking problems, but also adds technical means of adaptive 
movement operation to achieve intelligent development and 
application of robotic arms, compared to methods such as 
fuzzy logic control algorithm, self-anti-interference algorithm, 
and sensor control. In summary, the tendon drive theory and 
RBF adaptive neural network used in the study can efficiently 
and accurately improve the trajectory tracking of robotic arms. 
However, there is a lack of experimental platform detection 
and analysis for hardware failures of robotic arms in the study, 
and the optimization of control performance by fuzzy control 
rules has not been included in the analysis. Therefore, future 
research will extensively explore the fault detection and 
system parameter processing of robotic arm control 
performance, and play the industrial and service functions of 
robotic arms in medical, aviation, and military fields, thereby 
promoting intelligent construction and digital development. 
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VI. CONCLUSION 

For the requirements of flexible operation of TDRA, the 
study combines tendon driven DM to construct a simplified 
TDRA model, and then uses RBF-NN for adaptive control of 
RA in order to improve RA control accuracy and stability. 
After that, the RA model information is refined using 
back-stepping method according to the parameter disturbances 
and model information. Finally, the interference observer is 
utilized to linearly estimate the mechanical energy of the 
interference factors, which in turn improves the accuracy and 
speed of joint tracking. Simulation experiments with a 
commercial mathematical software platform yielded that the 
position tracking of the three joints in the TDRA streamlined 
model incurred tracking position errors within 0.5s, 0.2 and 
0.3s, respectively, and velocity deviations within 0.8s, 1s and 
0.5s, respectively. After optimizing the controller, joint 1 
experienced trajectory overlap in tracking position after 2s, 
1.8s and 0.2s while joint 2 experienced trajectory overlap in 
tracking velocity after 1.5s and 1.2s when the parameters kept 
increasing. Thus, it is indicated that the accuracy of RA joint 
tracking gradually increases with the increase of parameters. 
Also under the linear estimation of the disturbance observer, 
the tracking trajectory of joint 3 in TDRA coincided with the 
desired trajectory after 0.2s. The control moments of joint 2 
changed at 1.5s, 4.5s and 8s with smaller changes. And the 
tension curve of tendon 1 was smoother, thus proving the 
higher accuracy of the TDRA trajectory based on RBF-ANN. 
However, the study lacks data support for RA practical 
application experiments, and further in-depth and 
improvement of subsequent studies are needed. 
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