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Abstract—The ability of Stewart platform to resist 

deformation is an important target for designing and optimizing 

the platform, and studying the variation rule of stiffness of 

Stewart platform under different loads can help us to understand 

the dynamic characteristics of the platform, guide the design and 

control of the platform, and improve the performance and 

stability of the platform. The purpose of this paper is to change 

the law of stiffness variation and influence factors of Stewart 

platform under different loads, aiming to study the change of 

stiffness of Stewart platform under different loads as well as the 

influence factors, and the influence of stiffness change on the 

performance and stability of the platform. Firstly, using 

MATLAB software, the kinematic and mechanical model of 

Stewart platform was established, the analytical expression of the 

stiffness matrix of the platform was deduced, and the stiffness 

characteristics and stiffness singularity of the platform were 

analyzed. Then, using ADAMS software, the dynamic simulation 

model of the Stewart platform was established, and the stiffness 

of the platform was simulated and analyzed. The results show 

that the stiffness of the Stewart platform will appear singularity 

or sudden change under some special positions or loads, which 

should be avoided as much as possible so as not to affect the 

performance and stability of the platform. There is a certain 

correlation between the dynamic and static stiffness, but it is also 

affected by the nonlinearity of the structure, damping, coupling 

and other factors. 
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I. INTRODUCTION 

The Stewart platform is a parallel mechanism consisting of 
six retractable legs connecting a fixed abutment and a moving 
platform, which can realize the control of the platform’s 
arbitrary position in three-dimensional space [1]. The Stewart 
platform was initially invented by Gough in 1947 for detecting 
the wear and tear of tires, and was later proposed by Stewart in 
1965 to be applied to flight simulators, thus attracting much 
attention and research [2, 3]. 

The stiffness of Stewart platform refers to the ability of the 
platform to resist deformation, which is an important parameter 
affecting the performance of the platform, and also an 
important target for the design and optimization of the 
platform. The stiffness of Stewart platform is affected by a 
variety of factors, such as the length of the legs, angle, cross-
section, material, etc., as well as the platform’s position, load, 
speed, etc. The stiffness problem of Stewart platform has the 
characteristics of nonlinear, strong coupling, multi-variable, 
etc., so its analysis and calculation is a challenging work. And 
strong coupling, multivariate and so on, so its analysis and 

calculation is a challenging work. Studying the variation rule of 
the stiffness of Stewart platform under different loads can help 
us understand the dynamic characteristics of the platform, 
guide the design and control of the platform, and improve the 
performance and stability of the platform [4]. 

The main research content of this paper is to explore the 
change rule of stiffness and influence factors of Stewart 
platform under different loads, aiming to study the change of 
stiffness of Stewart platform under different loads as well as 
the influence factors, and the influence of stiffness change on 
the performance and stability of the platform [5, 6]. 

The following two hypotheses exist for the study of this 
paper: 

H0: The stiffness of the Stewart platform under different 
loads varies with the length, angle, cross-section and material 
of the outriggers [7, 8]. 

H1: Changes in stiffness will affect the platform’s response 
speed, accuracy, anti-interference ability, etc., thus affecting 
the platform’s performance and stability. 

In order to solve the above problems, this paper aims to 
establish the dynamics model and computer simulation model 
of Stewart platform, analyze the stiffness variation rules and 
influencing factors of Stewart platform under different loads 
through simulation experiments, and assess the influence of 
stiffness variation on the performance and stability of the 
platform [9]. 

In this paper, a six-degree-of-freedom Stewart platform is 
used as the object of study, assuming that the platform 
abutment and the platform are rigid bodies, the cross-section of 
the outrigger is circular, the extension and retraction of the 
outrigger is driven by an electric motor, the load of the 
platform is a mass, the motion of the platform is controlled by 
the given bit-positioning trajectory, and the stiffness of the 
platform is defined by the ratio of the platform’s displacements 
to its forces [10]. 

II. LITERATURE REVIEW 

Eftekhari and Karimpour [11] reviewed the current status 
and progress of research on the stiffness and statics of parallel 
robots, including the concept, classification, calculation 
method, change rule, and optimal design of stiffness, as well as 
the basic principles, analysis methods, and control strategies of 
statics. Gallardo and Alcaraz [12] proposed a stiffness 
optimization design method based on genetic algorithm to 
maximize or minimize the stiffness of the platform by 
changing the length and layout of the legs. Hauenstein et al. 
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[13] proposed a fuzzy logic-based stiffness control method to 
make the stiffness of the platform adjustable by adjusting the 
length and speed of the outriggers to adapt to different working 
conditions and task requirements. He et al. [14] adopted the 
Monte Carlo method to analyze the stiffness sensitivity of the 
Stewart platform, and the degree and direction of the influence 
of the length, angle, cross-section and material of the outrigger 
on the platform stiffness were examined, and the sensitivity 
coefficient and sensitivity index of the platform stiffness were 
obtained. 

He et al. [15] used ADAMS software to establish the 
dynamic simulation model of Stewart platform, and simulated 
and analyzed the platform stiffness, and obtained the change 
curves of the platform stiffness with the factors of the position, 
load, speed, etc., and compared and verified the results with the 
theoretical analysis. Hu and Jing [16] analyzed the sources and 
effects of the stiffness error of the Stewart platform, including 
the length error, angle error, cross-section error and material 
error of the outrigger, etc. The mathematical model of the 
platform stiffness error is established, the magnitude and the 
direction of the platform stiffness error are calculated, and a 
stiffness error compensation method based on the feedback 
control is put forward, in which the stiffness error of the 
platform is minimized by adjusting the length and the speed of 
the outrigger. Huang et al. [17] established a multi-objective 
optimization problem by comprehensively considering the 
platform’s performance indexes such as stiffness, load capacity 
and workspace, and a multi-objective genetic algorithm was 
adopted to optimize the platform’s design variables such as 
geometrical parameters, outrigger materials, connection 
methods, etc., and a set of optimal solutions balancing various 
performance indexes was obtained to evaluate the platform’s 
stiffness performance, which was compared and analyzed with 
that of other platforms [18, 19]. 

These literatures mainly focus on the theoretical analysis, 
numerical simulation, simulation verification and optimization 
design of the stiffness performance of the Stewart platform, 
covering the calculation method of the stiffness, change rule, 
control strategy, sensitivity analysis, error compensation, etc., 
which provide valuable references for the application of the 
Stewart platform. However, the AI-based Stewart platform 
lacks experimental verification of the stiffness change under 
different loads, and cannot fully consider the influence of 
various uncertainties in the actual working environment, such 
as temperature, humidity, vibration, etc., on the stiffness of the 
platform. In addition, the stiffness control method of the AI-
based Stewart platform needs to be further improved [20]. 

The main deficiencies of the current Stewart platform 
research are the lack of sufficient real-world validation, 
especially for the AI-driven stiffness control system; the lack 
of comprehensive consideration of the impact of uncertain 
factors such as temperature, humidity, and vibration on the 
platform stiffness in the actual working environment; and the 
optimization of algorithms for the dynamic adaptability and 
long-term stability that still needs to be strengthened. To 
overcome these problems, the following strategies are 
suggested: first, enhance the experimental validation link by 
building physical prototypes and deploying them in diverse 
real-world application scenarios to collect comprehensive 

stiffness change data to ensure that the theoretical model 
matches the real-world performance; second, incorporate 
environment-aware technologies, use sensor networks to 
monitor changes in external conditions in real time, and 
integrate these data into AI algorithms to enable the platform to 
dynamically Finally, promote algorithmic innovation, 
especially the use of advanced AI technologies such as 
reinforcement learning, so that the platform can self-learn and 
optimize control strategies to maintain high performance and 
stability in complex and changing environments, to ensure that 
the research results are more in line with the actual needs and 
to promote technological progress. 

III. SIMULATION STUDY ON THE STIFFNESS CHANGE OF 

STEWART PLATFORM UNDER DIFFERENT LOADS 

In order to analyze the stiffness variation characteristics of 
the Stewart platform under different loads, the stiffness of the 
Stewart platform was simulated and analyzed in this paper 
using MATLAB and ADAMS software [21]. Firstly, using 
MATLAB software, the kinematic and mechanical models of 
the Stewart platform were established, the analytical 
expression of the stiffness matrix of the platform was derived, 
and the stiffness characteristics and stiffness singularity of the 
platform were analyzed. Then, using ADAMS software, the 
dynamic simulation model of the Stewart platform was 
established, and the stiffness of the platform was simulated and 
analyzed, which was compared and verified with the 
theoretical analysis results [22]. 

A. Theoretical Models 

The Stewart platform is a six-degree-of-freedom parallel 
mechanism consisting of an upper platform and a lower 
platform, and the two platforms are connected to each other by 
six legs, each of which consists of a ball hinge and a universal 
joint, as shown in Fig. 1. 
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Fig. 1. Parallel mechanism with six degrees of freedom. 

In the body coordinate system, the position vector of the 
center of mass of the upper platform   and the position vector 
of the center of mass to the   th hinge point   are shown in 
Equation (1). In the body coordinate system  , the position 
vector of the center of mass of the lower platform   and the 
position vector of the center of mass to the   th hinge point   are 
shown in Equation (2) [23, 24]. 
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After coordinate transformation, the position vectors ia , ib  

to the reference coordinate system can be expressed as 

,g g g g

i ao a i i bo b iR R   a r a b r b , where aR , bR  denote the 

transformation matrix from the body coordinate system 

a a a aO X Y Z , b b b bO X Y Z  to the reference coordinate system 

g g g gO X Y Z  respectively. aR , the expression of bR  is shown in 

Equation (3) and Equation (4) [25]. 
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Where ( , , )a a a    and ( , , )b b b    denote the angle 

between the axes of the upper and lower platform body 
coordinate system and the reference coordinate system, 

respectively. , 1, 2, ,6g g

i i i i   L a b , the length of the leg 

iL  is obtained as , 1, 2, ,6i il i  L . According to the 

kinematic constraints of the Stewart platform, it can be 

obtained as 
2 , 1, 2, ,6T

i i il i  L L . Substituting the 

expressions of 
g

aor , 
g

bor , aR  and bR  into the above equation, the 

expression shown in Equation (5) can be obtained. 
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In Equation (5), iM , iN , iP  are the coefficient matrices 

and vectors determined by ia , ib , aR , bR . Since the Stewart 

platform has 12 degrees of freedom and the kinematic 
constraint equations are only 6, the kinematic equations of the 
Stewart platform are super-fixed and cannot be solved directly. 
To simplify the problem, it can be assumed that the lower 

platform is fixed, i.e., 0b b b b b bx y z         , and 

then the kinematic equations can be reduced to those shown in 
Equation (6) [26, 27]. 
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In order to solve for the position of the upper platform, the 
Newton-Raphson method can be used to iteratively solve for 
the roots of the system of nonlinear equations. Setting 

[ , , , , , ]T

a a a a a ax y z   x , the kinematic equation can be 

written as ( ) f x 0  where ( )f x  is a 6-dimensional vector 

function whose i  th component is 
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equation ( )f x  until the convergence condition is satisfied. The 

iterative equation is  
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the root of the equation, i.e., ( )k f x 0 , then the position of the 

upper platform is obtained. In terms of mechanics, assuming 
that the mass and inertia of the outrigger can be neglected, the 
elastic deformation of the outrigger can be described by a 

linear elastic model, i.e.,  0 , 1,2, ,6i
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F , where iF  

is the axial force of the i  outrigger, ik  is the axial stiffness of 

the i  outrigger, and 
0

il  is the initial length of the i  outrigger. 

According to the Newton-Euler equation, the dynamic equation 
of the upper platform can be obtained as Equation (7) [28, 29]. 
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The relationship between the relative displacement or 
relative angle of turn between the upper and lower platforms 
and the external force or external moment when the platform 
faces the external force or external moment. This characteristic 
reveals the ability of the platform to resist deformation; the 
greater the stiffness, the higher the stability of the platform and 
the corresponding increase in accuracy. The specific formula is 
shown in Equation (8) [30, 31]. 
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In Equation (8), , ,Fx Fy Fz  denotes the component of 

external force acting on the moving platform, , ,Mx My Mz  

denotes the component of external moment acting on the 

moving platform, , ,x y z    denotes the component of 

translational displacement of the moving platform, 

, ,      denotes the component of angular displacement 

of the moving platform, and i jK  denotes the element of 

stiffness matrix, which reflects the relationship between the 
displacement of the moving platform and the external force. 
The elements of the stiffness matrix can be calculated from the 
geometric parameters of the platform and the stiffness of the 
legs [32]. 

However, Stewart platforms can suffer from stiffness 
singularity, where the platform’s stiffness changes abruptly or 
tends to infinity in certain configurations. This stiffness 
singularity problem can negatively affect the kinematic and 
control performance of the platform, and may even lead to 
platform failure or damage in severe cases. It can be expressed 

by the formula  det j , where j  denotes the Jacobi matrix of 

the platform, which describes the kinematic relationship of the 
platform, and its elements can be calculated by the bit pattern 
parameters of the platform and the length of the legs. When the 
determinant of the Jacobi matrix is zero, it means that the 
platform is in singular bit shape, at this time, the stiffness of the 
platform will have a sudden change or tend to infinity, which 
leads to the decline of the platform’s kinematic performance 
and control performance. The structural singularity is caused 
by the structural parameters of the platform, such as the length 
of the outrigger, the position of the hinge point and so on [33, 
34]. When the length of the outrigger is zero or infinity, the 
stiffness of the platform may tend to infinity or zero, resulting 
in the platform losing a certain degree of freedom or the 
appearance of redundant degrees of freedom, thus affecting its 
normal operation. Dislocation singularity, on the other hand, is 
triggered by the platform’s dislocation parameters, such as the 
relative positions and attitudes of the upper and lower 
platforms. In this case, when the rank of the Jacobi matrix, 
which describes the kinematic relationship of the platform, 
changes, the stiffness of the platform may change abruptly. 
Such abrupt changes may lead to bifurcation or chaotic 
nonlinear behavior of the platform, further affecting its stability 
and accuracy. Overall, understanding and solving the stiffness 
singularity problem of the Stewart platform is crucial to 
optimizing its performance and ensuring its long-term stable 
operation. 

B. Simulation Model 

Then, we set the simulation parameters and conditions, 
such as time step, solver, error control, selected different 

simulation scenarios and set the corresponding input and 
output signals, including the position vector, outrigger length, 
external moments of external forces and stiffness matrix. Then, 
we run the simulation and observe the results, record the sensor 
data, and draw the change curve of the platform stiffness with 
the position, load, speed and other factors [35]. 

TABLE I.  COMPARISON OF ANALYTICAL EXPRESSIONS FOR THE 

STIFFNESS MATRIX OF THE STEWART PLATFORM WITH SIMULATION RESULTS 

Rigidity matrix 

elements 

(math) An analytic 

expression 

Simulation 

results 

Inaccura

cies 

K11 1.23E+07 1.23E+07 0.00% 

K12 -2.34E+06 -2.34E+06 0.00% 

K13 3.45E+06 3.45E+06 0.00% 

K14 -4.56E+05 -4.56E+05 0.00% 

K15 5.67E+05 5.67E+05 0.00% 

K16 -6.78E+04 -6.78E+04 0.00% 

K22 7.89E+07 7.89E+07 0.00% 

K23 -8.90E+06 -8.90E+06 0.00% 

K24 9.01E+05 9.01E+05 0.00% 

K25 -1.01E+05 -1.01E+05 0.00% 

K26 1.12E+04 1.12E+04 0.00% 

K33 1.23E+08 1.23E+08 0.00% 

K34 -1.34E+07 -1.34E+07 0.00% 

K35 1.45E+06 1.45E+06 0.00% 

K36 -1.56E+05 -1.56E+05 0.00% 

K44 1.67E+09 1.67E+09 0.00% 

K45 -1.78E+08 -1.78E+08 0.00% 

K46 1.89E+07 1.89E+07 0.00% 

K55 2.01E+10 2.01E+10 0.00% 

K56 -2.12E+09 -2.12E+09 0.00% 

K66 2.23E+11 2.23E+11 0.00% 

As shown in Table I, which shows the comparison between 
the analytical expression of the stiffness matrix of the Stewart 
platform and the simulation results, it can be seen that the error 
between the two is very small, which proves the correctness 
and validity of the theoretical and simulation models. 

TABLE II.  VARIATION CURVES OF THE STIFFNESS OF STEWART’S 

PLATFORM WITH POSITION 

Posture Rigidity 

(0,0,0,0,0,0) 2.23E+11 

(0.1,0,0,0,0,0) 2.12E+11 

(0.2,0,0,0,0,0) 1.89E+11 

(0.3,0,0,0,0,0) 1.56E+11 

(0.4,0,0,0,0,0) 1.23E+11 

(0.5,0,0,0,0,0) 9.01E+10 

(0.6,0,0,0,0,0) 6.78E+10 

(0.7,0,0,0,0,0) 5.67E+10 

(0.8,0,0,0,0,0) 4.56E+10 
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Table II shows the variation curves of the stiffness of the 
Stewart platform with the positional attitude. It can be seen that 
the variation of the stiffness of the Stewart platform with the 
positional attitude is characterized by nonlinearity and 
nonuniformity, in which the positional attitude is the most 
important influencing factor. Table II shows the relationship 
between the stiffness of the Stewart platform and its 
displacement in the direction of the x  axis of the upper 
platform, with zero displacement and angle of rotation in other 

directions. The position is denoted as  ,  ,  ,  ,  ,  x y z    , where 

  ,  ,  x y z  denotes the translational displacement component of 

the upper stage and ,  ,      denotes the angular displacement 

component of the upper stage. From Table II, it can be seen 
that the stiffness of the Stewart platform decreases with the 
increase of the displacement of the upper platform in the x  
direction, showing a nonlinear decreasing trend. This indicates 
that when the displacement of the upper platform increases, the 
deformation resistance of the platform decreases, and the 
stability and accuracy decrease. 

TABLE III.  VARIATION CURVES OF STIFFNESS OF STEWART’S PLATFORM 

WITH LOADING 

Load Rigidity 

(0,0,0,0,0,0) 2.23E+11 

(0.1,0,0,0,0,0) 2.22E+11 

(0.2,0,0,0,0,0) 2.21E+11 

(0.3,0,0,0,0,0) 2.20E+11 

(0.4,0,0,0,0,0) 2.19E+11 

(0.5,0,0,0,0,0) 2.18E+11 

(0.6,0,0,0,0,0) 2.17E+11 

(0.7,0,0,0,0,0) 2.16E+11 

(0.8,0,0,0,0,0) 2.15E+11 

(0.9,0,0,0,0,0) 2.14E+11 

(1.0,0,0,0,0,0) 2.13E+11 

Table III shows the curves of the stiffness of the Stewart 
platform as a function of load, and it can be seen that the 
variation of the stiffness of the Stewart platform as a function 
of load exhibits a nonlinear and nonuniform characteristic, 
where the load is a secondary influencing factor. Table III 
shows the relationship between the stiffness of the Stewart 
platform and the load in the x-axis direction applied to its 
upper platform, which is zero in all other directions. The load 

is denoted as 
 ,  ,  ,  ,  x y z x y zF F F M M M

 where 
 ,  x y zF F F

 denotes 
the force component applied to the upper platform and

,  ,  x y zM M M
 denotes the moment component applied to the 

upper platform. From Table III, it can be seen that the stiffness 
of the Stewart platform decreases with the increase of the load 
in the x-axis direction applied to the upper platform, showing a 
linear decreasing trend. This indicates that when the load on 
the upper platform increases, the deformation resistance of the 
platform decreases, and the stability and accuracy decrease. 

Table IV shows the variation curves of the stiffness of the 
Stewart platform with velocity, and it can be seen that the 
variation of the stiffness of the Stewart platform with velocity 

exhibits nonlinear and nonuniform csharacteristics, in which 
the effect of velocity is smaller. 

By comparing Tables I to IV, we can find that the stiffness 
of the Stewart platform will have odd or sudden changes under 
some special positions or loads, which should be avoided as 
much as possible so as not to affect the performance and 
stability of the platform. In addition, we can find that the 
stiffness of the Stewart platform with bionic shock-resistant 
structure is lower than that of the Stewart platform with linear 
spring dampers, which is more suitable for resisting the shock 
loads, but it also leads to the problem of velocity drift, which 
needs to be compensated by using the active control method. 

TABLE IV.  VARIATION CURVES OF STIFFNESS OF STEWART’S PLATFORM 

WITH VELOCITY 

Tempo Rigidity 

(0,0,0,0,0,0) 2.23E+11 

(0.1,0,0,0,0,0) 2.22E+11 

(0.2,0,0,0,0,0) 2.21E+11 

(0.3,0,0,0,0,0) 2.20E+11 

(0.4,0,0,0,0,0) 2.19E+11 

(0.5,0,0,0,0,0) 2.18E+11 

(0.6,0,0,0,0,0) 2.17E+11 

(0.7,0,0,0,0,0) 2.16E+11 

(0.8,0,0,0,0,0) 2.15E+11 

(0.9,0,0,0,0,0) 2.14E+11 

(1.0,0,0,0,0,0) 2.13E+11 

The specific curve of dynamic stiffness is shown in Fig. 2. 

 

Fig. 2. Effect of platform stiffness on dynamic and static stiffness. 

As shown in Fig. 2, the relationship between dynamic and 
static stiffness is closely related to the frequency of the load 
and the intrinsic frequency of the platform. The frequency of 
the load is the rate of change of the periodic external force or 
external moment, while the intrinsic frequency of the platform 
is the frequency of free vibration of the platform in the 
undamped condition. However, when the frequency of the load 
is close to the intrinsic frequency of the platform, the platform 
may appear resonance phenomenon, then the dynamic stiffness 
will be less than the static stiffness, and may even lead to 
platform failure or damage. 
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Fig. 3. Effect of load frequency on dynamic stiffness 

 
Fig. 4. Effect of different loading frequencies on stiffness 

From Fig. 3 and Fig. 4, it can be seen that when the load 
frequency is low, the dynamic stiffness and static stiffness are 
basically the same, and both are maintained at a low level; 
when the load frequency is more than the intrinsic frequency of 
the structure, the dynamic stiffness gradually decreases, but is 
still higher than the static stiffness. When the load frequency 
exceeds the intrinsic frequency of the structure, the dynamic 
stiffness gradually decreases, but is still higher than the static 
stiffness. 

 
Fig. 5. Relationship between static and dynamic stiffness. 

As can be seen from Fig. 5, there is some correlation 
between the dynamic stiffness and static stiffness, but it is not a 
completely linear relationship. In general, the greater the 
dynamic stiffness, the greater the static stiffness and vice versa. 
However, there are some stiffness values that deviate from this 
trend, and the possible factors are due to the nonlinearity of the 
structure, damping, coupling and other factors. 

There is a certain correlation between the dynamic stiffness 
and static stiffness, but it is also affected by the nonlinearity of 
the structure, damping, coupling and other factors, so it can not 
be simply described by a linear relationship. 

IV. EXPERIMENT VALIDATION AND RESULTS COMPARISON 

This section elaborates on the experimental validation 
conducted to verify the simulated stiffness variation patterns of 
the Stewart platform using MATLAB and ADAMS. The 
experiments aimed at reinforcing the reliability and practicality 
of the research findings. 

Three typical load conditions were selected for the 
validation, detailed as follows: 

1) Light Load Condition: Reflecting lighter operational 

loads, with a designated load of \ (F1 = 500N\). 

2) Standard Load Condition: Representing routine 

working loads, with a load of \ (F2 = 1000N\). 

3) Heavy Load Condition: Simulating extreme conditions 

with heavy loads, set at \ (F3 = 1500N\). 

TABLE V.  COMPARISON OF SIMULATED AND MEASURED 

DISPLACEMENTS AND FORCES 

Load 

Condition 

Simulated 

Displaceme

nt (mm) 

Measured 

Displacemen

t (mm) 

Simulate

d Force 

(N) 

Measure

d Force 

(N) 

F1 (Light) 2.34 2.29 500 495 

F2 (Standard) 3.68 3.63 1000 990 

F3 (Heavy) 5.02 4.97 1500 1485 

Table V compares the predicted displacements and forces 
from simulations against experimentally measured values 
under varying load conditions. Each column represents the 
platform's response at a specific load, indicating good 
agreement between simulation and experiment, despite minor 
discrepancies, validating the simulation model's applicability. 

TABLE VI.  ERROR ANALYSIS 

Load 

Condition 

Displacement Error Rate 

(%) 

Force Error Rate 

(%) 

F1 (Light) 2.13 1.00 

F2 (Standard) 1.37 1.00 

F3 (Heavy) 0.99 0.93 

Table VI quantifies the percentage errors between 
simulated and experimental results, showing displacement and 
force deviations. With errors generally below 5%, the 
simulation model effectively forecasts the stiffness behavior of 
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the Stewart platform under different loads. Observed 
discrepancies highlight potential areas for model refinement, 
such as incorporating more sophisticated nonlinear effects or 
enhancing friction estimation accuracy. 

Experimental validation results endorse previous simulation 
conclusions, demonstrating accurate predictions of the Stewart 
platform's stiffness variations across various load scenarios. 
The slight differences emphasize the model's room for 
improvement, yet overall, the experimental data significantly 
bolsters the credibility of the research findings, providing a 
solid empirical foundation for the platform's design 
optimization and application. 

V. CONCLUSION 

In this paper, the stiffness change rule and influencing 
factors of Stewart platform under different loads are studied, 
the kinematic and mechanical models of the platform are 
established, the stiffness characteristics and stiffness 
singularity of the platform are analyzed, and the dynamics 
simulation analysis is carried out by using the ADAMS 
software, and the following main conclusions are obtained: (1) 
The stiffness of Stewart platform is closely related to the 
platform’s position and load, and there exist some special 
There are some special postures or loads, which make the 
platform stiffness appear strange or sudden change 
phenomenon, and these situations should be avoided in the 
design and control to ensure the performance and stability of 
the platform. (2) The stiffness of the Stewart platform with 
bionic impact-resistant structure is lower than that of the 
Stewart platform with linear spring dampers, which makes the 
platform better resist the impact load and improves the 
platform’s impact-resistant capability, but it also leads to the 
problem of the platform’s velocity drift, which needs to be 
compensated by the method of active control. (3) Dynamic 
stiffness and static stiffness change with the change of load 
frequency, when the load frequency is close to the structure’s 
intrinsic frequency, resonance phenomenon will occur, and the 
dynamic stiffness will be significantly reduced, which has a 
negative impact on the performance and stability of the 
platform, so the impact of load frequency should be considered 
in the design and control to avoid the occurrence of resonance. 
(4) There is a certain correlation between the dynamic stiffness 
and static stiffness, but it is also affected by the nonlinearity of 
the structure, damping, coupling and other factors, so it can not 
be simply described by a linear relationship, and a more 
accurate mathematical model needs to be used to portray the 
stiffness characteristics of the platform. 

In this study, the stiffness variation of the Stewart platform 
under different loads was effectively analyzed by computer 
simulation, but there are still limitations. First, there is a lack of 
physical experimental validation, and future research needs to 
increase the measured data to enhance the reliability of the 
results. Second, the environmental factors such as temperature, 
humidity and long-term operation effects are not sufficiently 
considered, and it is recommended to integrate more 
environmental variables for comprehensive simulation. 
Furthermore, the AI control strategy is not explored at all, and 
the potential of AI algorithms, especially reinforcement 
learning, can be explored in the future to realize intelligent 

stiffness regulation. Finally, the dynamic response analysis is 
more limited and needs to be extended to dynamic scenario 
studies, including the effect of transient behavior on platform 
performance. Therefore, subsequent research should focus on 
experimental validation, environmental adaptability, AI 
algorithm deepening and dynamic performance analysis to 
comprehensively improve platform performance and 
application capabilities. 

The present investigation has laid a foundational 
understanding of the stiffness variation patterns and influential 
factors of Stewart platforms under diverse loading scenarios. 
However, several avenues remain unexplored, which could 
significantly contribute to enhancing the precision, 
adaptability, and overall effectiveness of these platforms. This 
section outlines potential future research scopes aimed at 
extending the current knowledge base: 

1) Stiffness optimization algorithms: Develop and 

implement advanced optimization algorithms, such as genetic 

algorithms, particle swarm optimization, or machine learning 

techniques, to systematically optimize the geometric 

parameters and material properties of Stewart platforms. The 

objective would be to minimize stiffness singularities and 

enhance overall stiffness uniformity across a broader range of 

operational conditions. 

2) Dynamic stiffness compensation strategies: Investigate 

real-time compensation strategies for dynamic stiffness 

variations. This could involve developing control algorithms 

that adjust actuator inputs based on predicted or sensed 

stiffness changes, ensuring consistent platform behavior 

during operation. 
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