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Abstract—We propose an innovative technique for image 

compression based on the 3-dimensional Integer Discrete Cosine 

Transform (3D-Integer DCT), which will serve as an alternative 

to the existing DCT-based compression technique. If an image is 

encoded as cubes [row × column × temporal length] instead of 

blocks [row × column], higher compression can be achieved. 

Here, the number of blocks is represented as the temporal length. 

To construct cubes, we use highly correlated blocks, and the 

correlation level is determined using the mean absolute 

difference (MAD). The suggested 3D-Integer DCT-based coder 

can achieve a higher compression ratio while maintaining the 

required image quality. It also needs fewer coefficients to encode 

an image than the usual Joint Photographic Expert Group 

(JPEG) coder. Adopting integer DCT further reduces the 

computational complexity of the proposed algorithm, given the 

abundance of methods available in the literature to determine 

equivalent integers for DCT. We choose an optimum integer 

group that minimizes mean squared error (MSE) and improves 

coding efficiency for computing 3D-Integer DCT. We also 

conducted a detailed analysis to examine the impact of 

implementing integer DCT in image compression. When we look 

at peak signal-to-noise noise ratio (PSNR), bits per pixel, and 

structural similarity index (SSIM), we see that the proposed 

algorithm does a better job than the standard real-value DCT-

based compression algorithm like JPEG. 

Keywords—Discrete cosine transform; 3D integer DCT; Image 

compression; JPEG algorithm 

I. INTRODUCTION 

The image compression algorithm finds its place almost 
everywhere where storage, retrieval, and image file transfer are 
required. People widely use the standards developed by the 
Joint Photographic Experts Group (JPEG) [1] to compress 
images [2] and [3]. In the earlier release of JPEG, they adopted 
DCT to achieve energy compaction [4]. Later, they started to 
adopt the discrete wavelet transform (DWT) [5] because of its 
higher compression efficiency compared to DCT. While DWT 
outperforms DCT in hardware implementation, JPEG prefers 
DCT. This is because DCT specifies faster computation 
structures [6] to [12]. 

Almost all video compression standards adopt DCT for the 
same reason [13] and [14]. If we replace the real values in the 
basic functions with their equivalent integer values, we can 
further improve the computational efficiency of DCT. In study 
[15] and [16], we state a few approximation methods to find 
the equivalent integer values, preserving the properties of the 

basis function. Therefore, integer DCT greatly improves the 
computational efficiency for image compression. A standard 
DCT-based image compression technique computes the image 
block by block, with block sizes ranging from 8 x 8 to 32 x 32. 
We propose a new method based on 3D-IDCT, which promises 
a higher compression ratio than the current DCT-based 
compression technique. The proposed algorithm computes 
DCT using integers, thereby reducing computational 
complexity during implementation. 

II. RELATED WORKS 

Multi-carrier communication systems use the Discrete 
Cosine Transform Matrices [21], which contain the submatrix 
generated by the highest spark with mathematical concepts. 
Researchers have used the reconstruction of compressed 
functions to address compression-based sensing issues. This 
technique will solve the channel estimation-related issues, and 
it will be applied in both noise-based environments. The 
innovative image watermarking technique according to the 2-
dimensional discrete cosine transform [22] has been 
implemented to recognize the copyright safety of the images. It 
has been implemented into the particular image blocks with a 
fixed coefficient to produce the watermark position by 
embedding and extracting functions within the frequency 
coefficients. The iterative sampling technique with the discrete 
cosine transform [23] has been constructed to minimize the 
dimensionality issue and also minimize the computational 
complexity. When applied to the amplitude-related angle, the 
Bayesian technique uses a set of coefficients with basic 
functions to quantify the trade-off within posterior uncertainty 
components. The Differential Evolution Markov Chain 
technique regenerates a similar level of coefficients with a 
reduced number of parameters. 

The Quantum Discrete Cosine Transform model [24] 
demonstrates the capability of representing signals and images 
with a reduced number of coefficients. By developing the 
quantum compression methodology, we have reduced the 
computational complexity to allow for real-time applications. 
The complex, unstructured issue has been reduced to the 
identification of significant coefficients in an effective manner. 
The ant colony optimization algorithm utilizes the 2D-DCT 
[25] technique to minimize Gaussian noise and discover the 
useful frequency coefficient. The hybrid technique [26] has 
been constructed to implement the digital watermarking that is 
applied to images. The technique not only achieves robustness 
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but also eliminates noise during the compression process. 
Robotic applications implement the multi-variant adaptive 
regression technique [27] to construct a group of videos and 
images and identify the image quality during compression. The 
machine learning technique eliminates image distortion by 
evaluating the image quality. The digital image forgery has 
been identified using the cellular automata technique [28] to 
identify the feature vectors with the nearest neighbor 
identification technique by discovering the duplicated regions 
in the image. For the prevention of misinterpretation of the 
image content, the discrete cosine transform has been 
implemented for feature extraction in every block. 

The steganography technique [29] has been utilized to 
implement the protection while converting the JPEG image 
into a similar lossy channel that has the capability of anti-
compression to perform the extraction more accurately. When 
producing the code, the compressing channels have a high 
detection conflict, which shows the relationship within the 
minimal distortion technique through the coefficient values. 
The quantum cosine transforms [30] has been implemented to 
obtain the highest efficiency while computing the encryption 
and compression of quantum images. The 5-dimensional 
hyper-chaotic system is used to compress the input image by 
providing the Zigzag coding technique with the highest amount 
of key space and providing enhanced security. The dynamic 
behavior technique enables security in a hyper-chaotic system. 
The asymmetric multi-image encryption method with the 
conditional decomposition technique [31] has been utilized to 
provide synthesized spectral image classification from the 
original image. The transformation has been done using DCT 
within the spatial region to complete the pixel-scrambling 
process. The multi-valued Fourier transformation was used for 
phase-only masks. 

Multi-focus images have been identified using the spatial 
frequency technique [32], which combines with the discrete 
cosine transform method to identify the fusion values from the 
original images. The mean value of every original image has 
been computed using the Min-Max normalization and DCT 
coefficients. The principal component analysis has been 
computed to provide a better output compared with the other 
methods. The 16-point discrete Cosine Transform framework 
[33] has been utilized to provide VLSI hardware applications 
for processing video and image-based systems. The detection 
of digital image forgery has been implemented using the 
discrete cosine transform [34] technique by applying the 
concept of image splicing and including the regions of the 
images. The technique employs the dimensional-based 
decomposition process and the enhanced transformation 
process to identify the forgery regions. Every block computes 
the coefficient values, and the SVD algorithm extracts the 
features. The measurement of roughness has been used to 
identify the skewness with the feature vector; the feature 
reduction is used to construct the kernel-based principal 
component analysis. The hybrid methodology [35] has been 
utilized to employ the smoothing of the histogram peaks with 
an adaptive geometric filter used to measure the enhancement. 

To improve the visual quality of decompressed images, a 
frequency-domain filter [36] is used to eliminate the blocking 
artifacts adaptively. 

III. PROPOSED TECHNIQUES 

There are four modes of operation in JPEG to compress an 
image, namely sequential, progressive, hierarchical, and 
lossless coding. The lossless mode does not use the DCT for 
energy compaction; rather, it uses predictive coding. The 
remaining three modes fall under the lossy compression 
technique. While the sequential mode encodes and decodes the 
image block by block in a raster scan order, the progressive 
and hierarchical modes incrementally improve the quality of 
the compressed image. Fig. 1 displays the block diagram of the 
base-line JPEG encoder and decoder. The encoding starts with 
level shifting, 2D-DCT, quantization, zigzag scanning, and 
finally entropy coding. The decoder side reverses the same 
process. 

 

Fig. 1. Block diagram of JPEG encoder. 

A. Discrete Cosine Transform 

DCT is commonly used in digital signal processing 
applications; in particular, it finds its space in image and video 
compression algorithms. There are several forms of DCT 
transformation, and they are implemented as type I, type II, 
type III, and type IV. DCT-II is mostly used for compression 
algorithms. The Eq. (1) and Eq. (2) define the 2-D DCT and 
inverse DCT within signal f of length Nr × Nc as, 

F(R, C) =  √
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In spite of calculating the DCT for a three-dimensional 
block of size N×N×N, the 2D-DCT is extended to one more 
dimension to get the 3D-DCT because it possesses separability 
and orthogonality. Eq. (3) and Eq. (4) provide the equation for 
calculating the 3D-DCT. 
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Where fr,  fc, fd =  {

1

√2
 ,     for  d, c, r = 0                          

1,          others                                

 

where, F(R,C,D) denotes the frequency domain intensity 
value and f(r,c,d) demonstrates the time domain intensity 
value. The inverse 3D-DCT value is computed in Eq. (4) 

f(r, c, d) =  √
8
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3D-DCT based encoder for image compression 

The proposed technique for image compression follows the 
principles of 3D-DCT. Fig. 2 displays the encoder block 
diagram. The spatial domain represents images as rows and 
columns of pixels. In order to apply 3D-DCT to the images, 
highly correlated blocks of size N×N are used to construct the 
cube. We use Eq. (5), mean absolute difference (MAD), to 
determine the level of correlation between the blocks. We 
construct cubes by finding the MAD between the seed block, 
which is the first block in the cube, and the remaining blocks. 

8
),(
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),(

11
  

cN x r
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



      (5) 

where, Nr and NC denote the total number of pixels in rows 
and columns, 

After building the cube, use DCT in both the time and 
space domains to get 3D-DCT. This should come after 3D-
Quantization, 3D-zigzag scanning, and finally coding with 
inconsistent extent coding. 

 
Fig. 2. Encoder block diagram of 3D-integer DCT based encoder. 

B. 3D Quantization 

3D quantization plays a significant role in image 
compression. This stage is where the actual compression 
occurs. DCT, which solely compacts energy and is reversible, 
renders the quantization process non-reversible due to the 
truncation or rounding off of the coefficients. Unlike 3D-DCT-
based compression techniques, is not applicable. Since DC and 
AC coefficient ranges are different, in the case of 3D-DCT, the 

DC coefficient ranges between 300 and 4000, whereas the AC 
coefficient ranges between ±1000 [17]. Fig. 3 illustrates that 
the major axis accumulates more than 80% of the cube's total 
energy. 

 

Fig. 3. Distribution of significant coefficients of image cube. 

Using the goodness of fit test to analyze the allocation of 
3D-DCT coefficients [18], we found that the Gaussian 
distribution identifies DC coefficients and the Gamma 
distribution computes AC coefficients. The quantization 
process assigns due importance to significant coefficients. The 
research in [11] conducted a detailed analysis, selecting the DC 
coefficients in the range of 8 to 16, and the AC coefficients in 
the range of 45 to 250. 

C. 3D Zigzag Scanning 

Each stage of the encoding process can achieve a 
significant amount of compression. After performing 3D-
Quantization, the majority of AC coefficients become zero. We 
can achieve higher compression by effectively ordering the 
coefficients. We order the coefficients concentrated around the 
major axis first, followed by the remaining 3D-DCT 
coefficients. The vital thought is that significant coefficients 
(coefficients around the major axis) are framed according to 

the summation of the indices given as (r + c + d ≤ k). The 

smaller the sum, the lower the frequency. The insignificant 
coefficients are then ordered based on the sum of their indices, 

given as (r + c + d ≥ k). Fig. 4 shows the 3D-zigzag ordering 

of 3D-DCT coefficients, where r, c, and d are the integers with 
the values of 1 to 8 or 16, k = 3, 4,... (r + c + d). 

 
Fig. 4. 3D-zigzag ordering of 3D-DCT coefficients. 
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D. Integer Discerte Cosine Transform 

The implementation of DCT has undergone numerous 
enhancements, all aimed at reducing complexity by reducing 
the number of multiplications and additions. When computing 
DCT with real values, floating-point multiplication and 
additions become inevitable. The computational complexity 
and resource utilization rise in the case of floating-point 
manipulation, computational complexity and resource 
utilization increase. Integer DCT is regarded as an alternative 
that will reduce the complexity of the existing DCT-based 
computational structures. The literature states two different 
methods to determine the equivalent integer set for the 
corresponding real value transform: the C-matrix transform 
[15], an indirect method of computing integer values, and the 
direct method [16]. 

E. Effectiveness of Approximated Integer DCT 

We evaluate the approximated integer DCT values, 
determined by the C-matrix method and the direct method, 
based on the mean square error and transform or coding 
efficiency. The Markov procedure computes the mean square 
error and transform efficiency of the 3D-integer DCT based on 
the mean and unit conflict. The Markov procedure identifies 
the inter-element correlation coefficients between 0 and 1. The 
inter-element correlation will be uniform in both the spatial and 
temporal domains. The direct method [10, 9, 6, 2, 3, 1, 1] 
generates an optimized integer set with maximum transform 
efficiency and a relatively low mean squared error, as 
determined in [19]. Generally, people do not prefer higher 
integer values, despite their lower mean squared error 
compared to the optimized integer set. As the number of bits 
used to represent the integer value improves, the bit length of 
the multiplier and adder increases, resulting in higher 
consumption of hardware resources. Generally, we express the 
computational complexity in terms of multiplications and 
additions. To compute 3D-Integer DCT, the optimized integer 
set needs 48 multiplications and 78 additions. 

We calculate the positions of these pixel values based on 
their edges. We divide the areas into different colors based on 
the edges, and it's important to steer clear of pixel values that 
directly align with the edges. We emphasize that we should 
extract values from both sides in the order they occur. We also 
extract the pixel values located on the image's boundary, which 
yields favorable outcomes for reconstructing lost pixels during 
decoding. These techniques yield a one-dimensional signal 
holding the required pixel values, with which it is possible to 
build a plan p with all its pixels, which are neighbors to the 
edges and also the boundary pixels of the image. We visit these 
pixels row-to-row until we reach the end, and then apply the 
following algorithm to each pixel y: 

F. Algorithm – Interger DCT 

Begin Procedure 

  For a pixel y in plan p it is placed into the line L1 

     If L1 is not found empty, then 

         Obtain the pixel y from L1 

         Remove the value from L1 

     End if 

     If y is present inside L1, then proceed with Step 2 

          Place y on L2 and take it out from p  

          Append the pixel value of y to one dimensional signal 

          Set its last to y 

     End if 

     If L2 is not found empty, then 

          Obtain the pixel y from L2 and take it out from L2 

              For each and every adjacent pixel Ya  

                 Assumed to be in Pa adjacency positions of y 

                 Compute the value of p  

                 Compute the distance within Pa and last of y  

              End For 

      End if 

      If the values are found to be >sci, then 

           Place Pa into line L1  

      Else 

           Place Pa into line L2 and take it out from p 

      End if 

           Append the pixel value of pa to one dimensional signal  

           and set to y last to y 

  End For 

End Procedure 

While we have identified the pixels in line L1, we have not 
yet added the value for the one-dimensional signal. On the 
other hand, the pixels in line L2 already have their values added 
to the one-dimensional signal, but the adjacent areas remain 
unidentified. We guarantee that we won't overlook the row-to-
row traversal across all pixels. Once we eliminate pixels that 
are part of a one-dimensional signal, we ensure termination. 
This technique aims to gather the pixel values at the edges 
directly, but it also focuses on sd since pixel values can also be 
found at a reasonable distance from the edges. We can view 
this as an advantage, as edges that are sufficiently close to each 
other have the potential to contribute to the pixel values. 

We must reduce the gathered pixel values by sub-dividing 
the data and applying small input values to large sets. This 
leads to a decrease in pixel values near the edges, scattering the 
values there to lower the resolution in the region. One-
dimensional signals allow for identical sub-sectioning. A 

parameter sd is used for sectioning sd∈ {1,...,255} where sd is 

utilized over a multiple channel and it stores each and every 
value obtained. We previously discussed the marginal change 
of pixel values over the edges, which also impacts the one-
dimensional signal. Linear polynomials can reconstruct the lost 
pixels, but they don't work between pixels with different edges. 
As a result, the values of pixels can differ considerably. It is 
essential to subdivide the pixel values of these different edges 
alone. It is to be noted that the method for collecting the pixel 
values has been studied. Imagining that the already-gathered 
pixels belong to the same section is crucial when using 
repetitive search. For each and every edge section, it is possible 
to obtain a different one-dimensional signal. This technique 
does not require any additional information about the image to 
be stored. 
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By flattening the obtained original signal, the sectioning 
hypothesis can analyze the quality of the created signal for 
improvement. The proposed technique enables the flattening of 
an individual one-dimensional signal using filters with a 
standard deviation of 1, assuming that the pixels have a size of 
1 x 1. This technique is expected to eliminate minor gaps in 
order to improve the compression rate. The sectioned pixels 
also include some adjacent information. The next stage of data 
reduction involves applying algebraic functions to the pixel 
values. Initially, the image will contain 256 distinct pixel 
values, one for each channel, from which the reduction in areas 
occurs to L distinct pixel values. The technique, known as 
tread of a stairway quantization, is an identical quantization 
technique that allows the construction of both small and large 
values for the original image. 

Let if  ∈  {0,…,255} is the value of a pixel for a one 

dimensional signal and let x = 255/((L-1)). The value after 
quantization in Eq. (6) is: 

𝑖𝑔 =  ⌊
𝑖𝑓

𝑥
+  

1

2
⌋       (6) 

Here ig∈{0,…,L-1}, for constructing the image again it is 

necessary to calculate in Eq. (7). 

𝑖𝑓~ 𝑋 𝑖𝑔      (7) 

The processing divides the image into L intervals of size x, 
but does not include the initial and last intervals, which have a 
size of x/2. After constructing the images again, we set the 
pixel values of the initial one to 0 and the pixels of the last one 
to 255. The technique sets the other pixel values to their middle 
values. In the case of color images, the technique permits 
storing the quantization of each channel individually. The main 
focus is to adjust the size to match the possible values of pixels 
in the one-dimensional signal. Rotate these steps repeatedly 
until the borders reach a point where they no longer undergo 
transformation. The points for constructing the images are 
noted, and good reconstructions of the images are obtained. We 
need to add these points to reconstruct the pixel values during 
the decoding process. 

G. Image Quality Measurement  

Objective measures are generally used to assess the 
effectiveness of compression algorithms. The luminance 
component (Y) has been considered for analysis. We provide 
the PSNR and MSE measurement formulas in Eq. (8) and Eq. 
(9). 

𝑃𝑆𝑁𝑅 = 10 log [
2552

𝑀𝑆𝐸
] 𝑑𝑏           (8) 

𝑀𝑆𝐸 =  
1

𝑁𝑟𝑁𝑐
 ∑ ∑ [𝑓(𝑟, 𝑐) − 𝑓(̅𝑟, 𝑐)]

2𝑁𝑐
𝑐=0

𝑁𝑟
𝑟=0            (9) 

The variables 𝑓(𝑟, 𝑐)  and 𝑓̅(𝑟, 𝑐)  represent the original 
frame and the recreated image, respectively, while Nr and Nc 
signify the image size. Finding the Mean Squared Error (MSE) 
alone won't accurately reflect the quality of the image, as 
images with similar MSE tend to have different overall image 
quality. The structural similarity index is a measure of the 
perceived image quality between an original and reconstructed 
image. The study in [20] asserts that, in comparison to PSNR, 
SSIM provides a significantly superior measure of image 

quality. In an image, the dependency between the pixels carries 
information regarding the structure of the object. Therefore, we 
can calculate the SSIM using Eq. (10) by determining the 
mean, variance, and covariance of the original and 
reconstructed images. The SSIM value ranges from 0 to 1. The 
higher the similarity, the greater the value. 

SSIM (m, n) =
(2μmμn+ Co1)(2σmn+ Co2)

(μm
2 + μn

2 + Co1)(σm
2 + σn

2 + Co2)
      (10) 

where, μm is the mean value of the original sequence and μn 
is the mean value of the recreated sequence. σm

2 is the variance 
of the original sequence, and σn

2 is the variance of the 
reconstructed sequence; it is given in Eq. (11) to Eq. (15). 

μm =  m̅ =  
1

N
∑ mi 

N
i=1   (11) 

μn =  n̅ =  
1

N
∑  ni

N
i=1    (12) 

σm
2 =

1

N−1
∑  (N

i=1 mi − m̅)2          (13) 

σn
2 =

1

N−1
∑  (N

i=1 ni − n̅)2         (14) 

σmn =
1

N−1
∑  (N

i=1 mi − m̅)(ni − n̅)    (15) 

and Co1 and Co2 are arbitrary constants given in Eq. (16) 
and Eq. (17). 

Co1 = (Ko1Le)2    (16) 

Co2 = (Ko2Le)2    (17) 

where, Le = 255 denotes the dynamic assortment of the 
signals, N represents the window dimension, and Ko1=0.01, 
Ko2=0.03. Typically, an [8×8] size is chosen for measuring the 
SSIM. Since it is merely a measure of similarity, one can 
choose any size. 

IV. EXPERIMENTAL RESULTS 

Before stating the efficiency of the proposed technique, it is 
necessary to analyze the impact of using integer DCT for 
image compression, taking into account various sample 
images. We conducted the entire simulation using the 
luminance component and a 4:2:0 sampling format. We chose 
PSNR, bits per pixel, and SSIM as measures to verify the 
quality of the compressed image. 

In order to analyze the effect of adopting integer DCT to 
compress image MSE, transform efficiency is considered [19]. 
It is determined that for the correlation coefficient of ρ = 0.95, 
the transform efficiency of the real value DCT is 93.99, and for 
the integer set [10, 9, 6, 2, 3, 1, 1], the transform efficiency is 
94 with a mean square error of 0.0002. The quality of the 
compressed image reflects the minor deviations in transform 
efficiency and MSE. We determine this by comparing the 
compressed image of real and integer DCT with reference to 
PSNR, bits per pixel, and SSIM, as presented in Table I. 

Tables I and II clearly show that the PSNR degradation 
between real and integer DCT is not significant. We found the 
degradation in PSNR of integer DCT to be between 0.01db and 
0.11db when compared to real-valued DCT. Table I represents 
the minor increase in bits per pixel, which corresponds to the 
PSNR degradation. In addition, the majority of PSNR and bits 
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per pixel values maintain the SSIM of integer DCT at the same 
level, and in some cases, there is an improvement in the range 
between 0.0001 and 0.0013. Since there has been no significant 
change in PSNR, bits per pixel, or SSIM between real and 
integer DCT, we can collectively state the compression ratio, 
which falls between 83:1 and 6:1. 

The proposed 3D-DCT-based real and integer image coders 
compress the sample images. Table II compares the results 
against the standard JPEG coder (real value DCT) and integer 
value DCT, using a similar quality metric for measuring image 
quality. When comparing the transform efficiency of 3D-
integer DCT to the 3D-DCT algorithm, there will be a slight 
degradation in the PSNR value. The cause of the degradation is 
that the transform efficiency of 3D-DCT [19] was 74.88%, 
whereas in the case of 3D-integer DCT, the transform 
efficiency was 74.81%. Table II values revealed the 

degradation in PSNR for 3D-integer DCT. Fig. 5 illustrates 
how the proposed method generates the SSIM value for various 
image types and compares it with related methods. 

 
Fig. 5. Comparison of Structural Similarity Index with existing methods. 

TABLE I.  COMPARISON OF JPEG CODER CONSTRUCTED USING REAL VALUE AND INTEGER DCT 

Sample images 
JPEG coder constructed using real value DCT 

JPEG coder constructed using 

integer DCT 

PSNR [db] Bits per pixel. SSIM PSNR [db] Bits per pixel. SSIM 

Water 

27.56 0.1429 0.5753 27.55 0.1424 0.5740 

29.83 0.2040 0.7022 29.82 0.2039 0.7021 

31.53 0.2985 0.7916 31.52 0.2982 0.7913 

33.67 0.4909 0.8772 33.65 0.4902 0.8764 

37 0.9658 0.9403 36.96 0.9672 0.9395 

Lighthouse 

27.39 0.1488 0.6176 27.39 0.1492 0.6178 

29.94 0.2148 0.7228 29.93 0.2147 0.7223 

31.73 0.3147 0.8110 31.70 0.3136 0.8102 

33.13 0.4577 0.8662 33.10 0.4570 0.8651 

36.86 0.9345 0.9337 36.83 0.9366 0.9334 

TABLE II.  COMPARISON OF PSNR, BIT RATE AND SSIM VALUES OF REAL AND INTEGER 3D-DCT WITH JPEG 

Sample image 
Real DCT [JPEG] Real 3D-DCT Integer 3D-DCT 

PSNR 

[db] 
Bits per pixel SSIM 

PSNR 

[db] 
Bits per pixel SSIM 

PSNR 

[db] 
Bits per pixel SSIM 

Lena 

26.43 0.1950 0.6665 26.78 0.1066 0.6692 26.78 0.1066 0.6692 

29.62 0.3043 0.8004 28.80 0.2834 0.7643 28.81 0.2897 0.7648 

31.84 0.4305 0.8687 33.47 0.5219 0.8990 33.45 0.5219 0.8986 

33.57 0.5893 0.9089 37.18 0.5312 0.9372 37.13 0.5310 0.9368 

37.79 1.1073 0.9586 39.14 0.5321 0.9463 39.12 0.5318 0.9464 

Pepper 

26.78 0.1988 0.6949 26.74 0.1217 0.6513 26.73 0.1214 0.6534 

29.69 0.2856 0.8025 29.07 0.2512 0.7582 29.04 0.2532 0.7573 

31.85 0.3894 0.8601 34.27 0.5760 0.8988 34.25 0.5770 0.8978 

34.50 0.5894 0.9170 37.80 0.5833 0.9358 37.76 0.5842 0.9355 

38.43 1.1152 0.9594 38.83 0.5835 0.9407 38.82 0.5844 0.9406 

Mandril 

23.73 0.1906 0.4943 23.95 0.1052 0.5201 23.95 0.1053 0.5221 

25.97 0.4164 0.7044 25.32 0.4160 0.6340 25.32 0.4101 0.6345 

27.77 0.7125 0.8067 28.71 0.6059 0.8275 28.70 0.6064 0.8270 

29.71 1.1541 0.8781 32.41 0.6170 0.9183 32.38 0.6173 0.9177 

32.46 1.7863 0.9311 37.06 0.6190 0.9631 37.05 0.6195 0.9406 
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Table II shows that the 3D-DCT-based algorithm 
significantly improves the PSNR at higher [db] values in all the 
sample images, based on the bit rate, or bits per pixel. Consider 
the sample image of "Lena" For a given bit rate of 0.53, the 
proposed algorithm's PSNR improved by more than 5 db. 
Similarly, for the given bit rate of 0.58 in the "Pepper" image 
and 0.61 in the "Mandril" image, the proposed algorithm 
improved PSNR by 4db and 10db, respectively. The proposed 
3D-Integer DCT-based compression algorithm has a 
compression ratio ranging from 110:1 to 20:1, and it 
outperforms the JPEG coder. Fig. 6 illustrates the 
computational time required to produce the compression for 
both the proposed method and its related methods. 

 
Fig. 6. Comparison of computational time with existing methods. 

The primary reason for the proposed algorithm's 
improvement in PSNR was a reduction in the number of DC 
coefficients. A normal JPEG encoder encodes images block by 
block, ranging in dimensions from 8x8 to 32x32. For an image 
of dimension 512×512, if it is encoded with a block of 
dimension 8×8, then there are 4096 DC coefficients. The 
differential encoding method further codes these coefficients. 
In the proposed 3D-DCT-based algorithm, images are encoded 
as cubes of dimension 8×8×8 instead of blocks. For the same 
image size, the 3D-DCT-based compression algorithm requires 
only 512 DC coefficients. The differential encoding of DC 
coefficients achieves further rate reduction. The proposed 
algorithm, as shown in Fig. 7, achieves a greater rate reduction. 

 
Fig. 7. Mean square error. 

The proposed 3D-Integer DCT based algorithm 
outperforms the standard JPEG based image coder in terms of 
PSNR and bit rate, however the difference in SSIM of JPEG 
and the proposed algorithm is very minimum. It is found to be 

in the range between 0.001 and 0.02. The result holds true not 
only for the sample images considered for analysis, for any 
arbitrary image similar improvement can be achieved if it is 
compressed with proposed 3D-Integer DCT algorithm. 

V. CONCLUSION 

This paper proposes an innovative method for image 
compression based on 3D-Integer DCT. Instead of encoding an 
image as blocks, the proposed algorithm encodes an image as 
cubes rather than blocks. The construction of cubes involves 
the use of highly correlated blocks, with the mean absolute 
difference determining the correlation between them. The 
proposed algorithm achieves a higher compression ratio 
between 120:1 and 20:1, significantly reducing the number of 
DC coefficients compared to the standard JPEG algorithm, 
which ranges between 83:1 and 6:1. We observed a difference 
between real and integer value DCT in terms of PSNR, bit rate, 
and SSIM, as the coding efficiency and MSE of the 
approximated integer DCT were very close to the original 
value DCT. It holds true for higher-order real and integer 
DCTs. Experimental results reveal that at higher bit rates, the 
proposed algorithm outperforms the standard JPEG algorithm 
with a significant PSNR value and comparable SSIM value. 
We found the maximum PSNR improvement to be between 4 
db and 10 db. There is a greater possibility of implementing the 
proposed algorithm in hardware due to its reduced 
computational complexity compared to implementing integer 
DCT. The proposed algorithm is suitable for applications that 
require a high compression ratio without compromising image 
quality. The future scope of the work can be used to extract 
features while using machine learning algorithms. 
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