
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

905 | P a g e

www.ijacsa.thesai.org

Contrastive Learning and Multi-Choice Negative

Sampling Recommendation

Yun Xue1, Xiaodong Cai2, Sheng Fang3, Li Zhou4

School of Information and Communication, Guilin University of Electronic Technology, Guilin, China1, 2, 3

Nanning West Bank Fenggu Business Data Co., Ltd, Nanning, China4

Abstract—Most existing recommendation models that directly

model user interests on user-item interaction data usually ignore

the natural noise present in the interaction data, leading to bias in

the model's learning of user preferences during data propagation

and aggregation. In addition, the currently adopted negative

sampling strategy does not consider the relationship between the

prediction scores of positive samples and the degree of difficulty of

negative samples, and is unable to adaptively select a suitable

negative sample for each positive sample, leading to a decrease in

the model recommendation performance. In order to solve the

above problems, this paper proposes a Contrastive Learning and

Multi-choice Negative Sampling Recommendation. Firstly, an

improved topology-aware pruning strategy is used to process the

user-item bipartite graph, which uses the topology information of

the graph to remove noise and improve the accuracy of model

prediction. In addition, a new multivariate selective negative

sampling module is designed, which ensures that each positive

sample selects a negative sample of appropriate hardness through

two sampling principles, improving the model embedding space

representation capability, which in turn leads to improved model

recommendation accuracy. Experimental results on the Urban-

Book and Yelp2018 datasets show that the proposed algorithm

significantly improves all the metrics compared to the state-of-the-

art model, which proves the effectiveness and sophistication of the

algorithm in different scenarios.

Keywords—Recommendation algorithms; comparative learning;

negative sampling; pruning strategies

I. INTRODUCTION

Previous research has focused on modelling interest
preferences from users' historical interaction data in order to
obtain better recommendation results and provide personalised
recommendation services to users to solve the problem of
information overload [1]. However, collaborative filtering
algorithms recommend poorly when the data lacks explicit user
feedback, at which point the quality of negative sampling
becomes crucial for improving the performance of
recommendation models. Existing collaborative filtering
algorithm all choose to train models using implicit feedback
(e.g., click, buy, favourite, etc.) by default [2] and set the items
of user interest as positive samples, but how to select high-
quality negative samples is still a major challenge in the
recommendation field. In addition, most models directly take
user-item interaction data as the ideal data of user's preference,
but due to the influence of external factors such as human error
clicks, uncertainty, etc., which results in implicit feedback data
containing a lot of natural noise [3], how to deal with the noise
in the interaction data and to reduce the impact of noise on the

recommendation accuracy is also a worthwhile research
problem in the recommendation field.

Yu et al. [4] proposed the DropEdge mechanism to reduce
the impact of noise on the node classification task by randomly
deleting away the fixed edges in the original graph. However,
random deletion has the potential to discard user preference
information, resulting in lower recommendation accuracy. Thus,
Zhang et al. [5] designed a classification-aware denoising based
self-encoder to remove the noise effect by integrating the
classification information. Fan et al. [6] removed the noisy data
from the user-item interaction matrix by top-K sampling,
balanced the number of interactions of all the users, and
improved the accuracy of the model.

Rendle et al.[7] allowed the model to extract more feature
information from the positive samples by randomly selecting
items that users did not interact with as negative samples, and
then using a loss function to give higher scores to the user-
positive sample pairs while lowering the scores of the user-
negative sample pairs. However, the practice of selecting
negative samples with equal probability ignores the problem that
the items that the user did not interact with are not necessarily
items that the user dislikes, and it is possible that the user just
did not see them. Ultimately, this leads to poor model
predictions. Thus, Chen et al. [8]proposed popularity-based
negative sampling, which takes item exposure as an important
basis, and if a popular item with high enough exposure is still
disliked by users, it means that the item can be used as a negative
sample. Meanwhile, Ying et al. [9] proposed PinSage to
calculate the node importance score, using difficult negative
sample data for training to improve the overall performance of
the model. Yang et al. [10] redesigned the sampling distributions
of positive and negative samples, gave the calculation of
negative sampling probability based on their structural
similarity, and concluded that negative and positive samples are
equally important. Huang in study [11] used user-item
dichotomous graphs and the aggregation process of graph neural
networks (GNN) to study negative sampling, and constructed a
difficult negative sample candidate set by interpolating and
mixing the negative samples to fuse part of the positive sample
information, which improved the model training effect. Chen et
al. [12] proposed the FairStatic dynamic adaptive negative
sampling method, which improves the sampling fairness among
groups while taking into account the sampling efficiency to
ensure that each group of items can obtain equal
recommendation quality. Lai et al. [2] proposed the DENS
method, which firstly uses the hierarchical gating module to
classify the similarity and dissimilarity of information between

Guangxi Driven Development Project (桂科 AA20302001).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

906 | P a g e

www.ijacsa.thesai.org

positive and negative samples and identifies the negative
samples through the factor-aware sampling strategy, so as to
allow the difficult negative samples to provide more informative
training signals and provide better user representation.

Although the above various negative sampling methods have
allowed recommender system models to achieve good results,
there are still some problems. Most of the existing negative
sampling methods improve the model training effect by
constructing difficult negative samples, however, they do not
take into account the degree of matching between negative
samples and positive samples, and negative samples with too
much hardness may lead to the semantic bias between the
samples and are not conducive to the final recommendation
prediction. In addition, most algorithms remove noise by
designing cumbersome components with high model
complexity, and some models even omit the interaction data
denoising step and use it directly as the positive samples for
training, which leads to the model not being able to correctly
model users' interest preferences, and the recommendation
results are biased.

In order to solve the above problems, this paper proposes a
Contrastive Learning and Multi-choice Negative Sampling
Recommendation (CLMRec). The model firstly analyses the
degree of contribution of edges to nodes by Topology-aware
Pruning Strategy (TPS) based on topology, calculates the
probability that each edge can be retained, and then removes the
noisy data according to the probability to reduce the impact of
noise on the node embedding representations in the propagation
process. Finally, in the negative sampling stage, a new Multi-
Choice Negative Sampling (MCNS) strategy is proposed to
adaptively select negative samples of appropriate hardness
through two sampling principles to optimize the model training
effect and obtain more accurate user embeddings and item
embeddings to improve the accuracy of recommendations.

In summary, our contributions are highlighted as follows:

 We propose the TPS denoising framework to remove
noise from user-item interaction data, preventing the

adverse effects of noise during the information
aggregation process.

 We introduce the MCNS negative sampling framework,
which enables adaptive selection of negative samples of
appropriate difficulty, thereby enhancing the quality of
model training.

II. CLMREC MODEL DESIGN

A. Notation Definition and Description

In this paper, the model input is the user-item interaction data,

where 1 2, ,... mU u u u is the set of users, and 1 2, ,... nI i i i

is the set of items, where m is the number of users, and n is the
number of items. R is the user-item interaction matrix, and

 , ,G U I E is the user-item interaction graph, where E is the

set of user-item edges.

B. Overall framework

The overall framework of the CLMRec model is shown in
Fig. 1. Firstly, for the interaction data in the user-item
dichotomous graph G, the TPS is used to calculate the retention
probability of each edge and remove the noise, and then multi-
task joint training is constructed, and comparative learning is
used as a secondary task to construct comparative views on the
interaction data, and potential feature information between
different views is extracted by the Infonce loss function [13] to
enhance the model's representation learning capability.

The main task uses LightGCN [1] to linearly propagate user
embeddings and item embeddings on the interaction graph,
aggregating node information to obtain the final user

embeddings uz and the final item embeddings iz . For item

embeddings, the MCNS component adaptively selects negative
samples of appropriate hardness for each positive sample, and
continuously optimises the positive sample similarity scores and
reduces the negative sample prediction scores through the BPR
loss function [7]. The prediction score, allowing the model to
gradually learn the correct user preferences. Finally, the main
and auxiliary tasks are jointly learnt to update the user
embeddings and item embeddings.

m1 i1

i2

i3
i4

m2

Bipartite Graph after noise

removal

m3

T
P

S

m1 i1

i2
i3 i4

m2 m3

×

GNN

i2

i3

i4 m

i5

i6

user embedded u1

item embedded i1

m

i

M
C

N
S

Lbpr

GNN

i2

i3

i4 m

i5

i6

m'1

i1

Contrastive Learning

i'1

m1

Lcl

···
···

m1 i1

i2
i3 i4

m2

Data augmentations

view G1

m3

×

Data augmentations

view G2
Fig. 1. DFFSM overall framework.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

907 | P a g e

www.ijacsa.thesai.org

C. Topology-aware Pruning Strategy

In order to avoid too much noise accompanying the
interaction data into the model, inspired by the literature [4][14]
and following the idea of model sparsification, the natural noise
present in the interaction data is handled by removing redundant
edges from the graph. In this paper, a topology-aware pruning
strategy (TPS) is designed. Firstly, the user-item data is
processed into a user-item interaction matrix R. The degree of
each node is calculated using R to obtain the degree matrix D.
Next, the retention probability of each edge in the graph is
calculated. Finally, some edges of the user-item dichotomous
graph are removed according to the magnitude of the probability
to complete the denoising of the interaction data.

To make the exposition easier, the TPS process is plotted as
in Fig. 2:

Calculate the

probability of edges

m1 i1

i2

i3
i4

m2

0.40
0.57

0.50

0.40

m3

0.70

0.33

0.40

Denoising

m1 i1

i2

i3
i4

m2 m3

×

Bipartite graph of

user-item

m1 i1

i2

i3
i4

m2 m3

Fig. 2. TPS.

Literature [15] states that the degree of a node is the number
of edges directly connected to that node and can be considered
as a measure of the importance of the node in the network. For
the interaction matrix R, the process of computing the degree
matrix D is as follows:

 1

[][] [][]
n

j

k k k j

 D R

 (1)

 1 1 1

[1][], [2][],...., [][]
n n n

j j j

diag j j n j

 D R R R

 (2)

where, [][]k kD is the element on the kth diagonal of the

degree matrix D and [][]k jR is the element in the kth row and

jth column of the interaction matrix R. Since D is a diagonal
matrix and all the positional elements are 0 except those on the
diagonal, the degree matrix D can be derived from Eq. (2), which

 diag indicates that a diagonal matrix is constructed by using

the elements in parentheses as the elements on the diagonal.

Some papers use randomly discarded edges to reduce the
influence of height nodes and to prevent overfitting phenomena,
but randomly discarded edges have the potential to destroy
important information about the nodes, leading to biased node
semantics. The degree of contribution of an edge to a node
should be calculated and the natural noise should be removed
based on the weights, and the square root of the degree is often
used as a factor to adjust the edge weights.

The idea is that nodes with larger degrees have more
connections in the network and have a higher probability of
noisy data, so the weights of edges connected to them should be
reduced to balance the importance of the node. On the contrary,

nodes with smaller degree have fewer connections in the
network, so the weights of the edges connected to them should
be increased to better reflect the importance of the nodes. In
addition, the effect of edge discarding on the two connected
nodes should be considered, so the degree of both nodes should
be included in the formula as follows:

 ,

1
i j

i j

p
d d

 (3)

where, 1,2,3,..., , 1,2,3,..., ,i n j n i j 且 , i and j

denote the nodes in the bipartite graph of user items, and di and
dj represent the degrees of node i and node j, respectively, as
shown in Fig. 2, the retention probability of each edge is
calculated by using the TPS, and then the edge between i3 and
u1 is removed. While these two nodes are equivalent to popular
nodes for other nodes with more interaction data, discarding the
edges of these two nodes can reduce the influence of popular
nodes on low-degree nodes, and also prevent the model from
overfitting. For the edges of these two nodes, i4 and u3, the
retention probability is high because i4 has only one interaction
data, which should be fully retained to facilitate the model's
learning of i4 commodity embedding.

D. LightGCN

After removing some of the noise from the interaction data,
the model is started to model the user interest. In this paper,
LightGCN [1] is used as an encoder. Firstly, user embeddings
and item embeddings are randomly initialised, and multiple
rounds of embedding propagation are performed through the
graph convolution layer, and the embedding vectors of users and
items are updated through iterations. Since the algorithm is
constructed for joint multi-task learning, divided into main task
and auxiliary task, the differences between the two tasks are
described below.

In each round of the main task, the user and item embeddings
are weighted and summed according to the user-item interaction
matrix R, and the neighbour node information is aggregated.
After multiple propagation and aggregation, the model can
extract the user's higher-order interests, and the specific
aggregation strategy and propagation mechanism are shown in
Eq. (4) and Eq. (5).

0

L
l

u l u

l

z z

 (4)

1

i

l
l u
i

u N u i

z
z

N N

 (5)

where, l represents the number of convolutional layers and
denote the user embedding and item embedding in the lth layer,
respectively.

The pooling of the convolved embeddings is performed to
obtain the final user embeddings and item embeddings.
Considering that the embeddings of different layers have
different semantics, the embeddings of different layers are
weighted and combined, and the embedding combination
strategy is shown in Eq. (6) and Eq. (7).

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

908 | P a g e

www.ijacsa.thesai.org

0

L
l

u l u

l

z z

 (6)

0

L
l

i l i

l

z z

 (7)

where, uz represents the final user embedding, iz represents

the final item embedding, l is the weight of each layer, L is the

number of convolutional layer layers, and in this paper, we

follow the practice of literature [1], and take l as the inverse of

L.

In the auxiliary task, contrast learning is mainly used to
alleviate the data sparsity problem. Firstly, data augmentation is
performed on the denoised interaction data to obtain augmented
view G1 and augmented view G2, followed by constructing
positive sample pairs and negative sample pairs for the vectors
in the two views. Ultimately, the loss function of the model is
used to bring the positive pair embeddings closer together and
push the negative pair embeddings farther apart, so that the
model extracts the unlabelled extra information in the
interaction data, learns high-quality embedded representations
of the users and items, and improves the accuracy of the
recommendations.

E. Multi-Choice Negative Sampling

Positive and negative samples need to be selected after
obtaining the user embedding u and item embedding i. The
positive and negative samples are then passed through the BPR
loss function [7] to give high prediction scores to the user-
positive samples and reduce the prediction scores of the user-
negative samples, which facilitates the model to learn the user
interest preferences correctly.

Since the interaction data have been removed from the noise
before entering the model and the interaction data are the real
interest preferences of users, the items interacted in the
dichotomous graph are directly selected as the corresponding
user-positive samples. However, how to select high-quality
negative samples to train the model is a difficult point, and the
existing models do not select appropriate negative samples
based on the information and prediction scores of the positive
samples. For example, in Fig. 3, when the model selects negative
samples, if an i20 is randomly selected as a negative sample from
the items that the user node u1 has not interacted with, it does
not mean that the user does not like the item, and it is possible
that the item exposure is too low for the user to see. In addition,
some models do not construct difficult negative samples based
on the characteristics of positive samples, which causes the
problem of high model training cost.

In order to solve the above problems, inspired by the
literature [16] [17], multivariate selective negative sampling
(MCNS) is proposed. MCNS constrains the selection range of
negative samples by two principles: suitable negative samples
must be selected based on the characteristics of positive samples;
and the hardness of negative samples must be inversely
proportional to the prediction scores of positive samples. These
two principles ensure that the model adaptively selects negative

samples of appropriate hardness for positive samples during
negative sampling.

i1i5

i3

i4

m1 uninteracccted items

i2

i20

i99

... i50

i87

Negative sample rating mechanism

i1i
+m

i2i
+m

i8i
+m

···

f min(L1,L2, ,L8)
i1i5

i3

i4

Negative candidate set

i2

i6

i8

i7

Fig. 3. MCNS.

Firstly, Principle 1 is set to eliminate the uncertainty of user
preference brought by randomly selecting negative samples. In
the prediction stage, the model calculates the prediction scores
of the positive sample embedding and the user embedding, and
determines whether to recommend or not based on the high or
low prediction scores, inspired by this, this paper decides to take
the prediction scores of the positive samples as an important
factor in selecting the negative samples, and Eq. (8) denotes the
calculation of the prediction scores:

T
u i

score z z

 (8)

T
u i

score z z

 (9)

score+ represents the positive sample prediction score, score-

represents the negative sample prediction score, T
uz represents

the transpose matrix of the user matrix,
i

z and
i

z represents

the positive sample matrix and negative sample matrix
respectively. The higher the prediction score, the closer the two
embeddings are in space, i.e., the more interested the user is in
the item.

The negative sampling process is shown in Fig. 3, where a
specified number of items are randomly selected from all the
data that the user has not interacted with to construct a candidate
set of negative samples, and then, for all the items in the
candidate set, the association level of the items is calculated
using the rating function, and then, the appropriate items are
selected as negative samples. For positive samples with high
prediction scores, it indicates that the model has learnt
sufficiently well for that sample, and picking simple negative
samples can reduce the training cost. Selecting negative samples
with a high degree of difficulty will cause the model's
performance to degrade in the process of classifying positive and
negative samples, affecting the final prediction accuracy.
Conversely, for positive samples with low prediction scores, it
indicates that the model is not yet able to adequately capture
similar user interests, at which point difficult negative samples
should be constructed to allow the model to learn deeper features
and improve the model's representational ability. This
determines principle two, where the difficulty of the negative
sample is inversely proportional to the prediction score of the
positive sample. Eq. (10) is the rating function, which is used to
determine the level of negative samples selected.

1

n

p
T T

n u i u iL z z z z

 (10)

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

909 | P a g e

www.ijacsa.thesai.org

where, Ln is smaller, the greater the probability that the
sample will be a negative sample. p is less than -1, and when

considering nL and are equal, negative sample hardness

 h i is defined as the ratio of positive and negative prediction

scores, as defined in Eq. (11):

T

p
Tu i
u iT

u i

z z
h i z z

z z

 (11)

Negative correlation was verified using Eq. (12). First, the
negative correlation is transformed into a derivation problem by
using the negative sample difficulty level to derive the positive
sample prediction scores.

1p

p

T
u i

scoreh i
p score

z z score

 (12)

where, p is a hyperparameter less than 0. Obviously, the
derivative is negative, indicating that the function is
monotonically decreasing, proving that the difficulty of negative
samples is negatively correlated with the prediction scores of
positive samples.

F. Model prediction and Training

After the message propagation and aggregation mechanism
of the GNN encoder, the final user embedding and item
embedding , and enter the prediction stage to predict the user's
interest in the item according to Eq. (13).

 ,ˆ T
u i u iy z z

 (13)

Then, the main task adaptively selects negative samples of
appropriate hardness for each positive sample through MCNS
and calculates the loss so that the model learns more accurate
user preferences and item characteristics from the training data,
adopting the method of literature [18], and using the BPR loss
as the loss function of the recommendation task to measure the
difference between the prediction results and the real labels as
shown in Eq. (14):

 , ,
ˆ ˆlnbpr u i u i

u U i I j I

L y y

 (14)

In the auxiliary task, Infonce is used as a comparative
learning loss function to maximise the mutual information
between the same sample views and minimise the information
of different sample views, and by comparing the differences
between different views, the model can extract the extra
unlabelled information in the interaction data as a way to
improve the representation of the embedding space and the
model performance. The Infonce loss is as shown in Eq. (15):

1 2

1 2
'

' , '

exp , /

exp , /

n n

cl

n G n n

n G n n

s z z
L

s z z

 (15)

 where, G is a user-item bipartite graph, n and 'n represent

different nodes in G respectively, s is the cosine function,

and τ is the temperature parameter.

Finally, the main task loss and auxiliary task loss are
combined to construct the model multi-task learning framework,
and the total model loss is shown in Eq. (16):

2

1 2 2bpr clL L L
 (16)

where, Lbpr denotes the main task loss, Lcl denotes the
auxiliary task comparison learning loss, and denotes the
regularisation parameters, and denotes the learnable model
parameters.

G. Pseudo-code of the Model

In order to give the reader a clearer understanding of the
execution process of the CLMRec model, the pseudo-code of the
model is given, as shown in Table Ⅰ:

TABLE I. PSEUDO-CODE OF CLMREC

Algorithm: CLMRec

1: Input: User-Item bipartite graph G, training dataset Χ
2: Output: Sst of recommended items
3: While CLMRec Not Convergence do

4: for x in Dataloader(Χ) do
5: Calculate the degree matrix D from the interaction matrix

R;
6: Calculate the retention probability P;
7: Noise removal according to P;
8: Generate user final embedding and item final embedding;
9: Adaptive selection of suitable negative samples

10: Generate comparison views G1 and G2;
11: Calculate BPR loss Lbpr ;
12: Calculate contrastive learning loss LCL;
13: Calculate total loss L;
14: end for
15: end while

III. EXPERIMENTAL RESULTS AND ANALYSIS

A. Experimental Setup

1) Experimental environment: The experimental
environment is set up as follows: the graphics card
configuration is NVIDIA GeForce RTX 2080Ti, the operating
system is Ubuntu 18.04, the programming language Python,
and the deep learning framework is Pytorch.

2) Datasets: In order to verify the effect of the algorithm
proposed in this paper on datasets with different sparsity levels
and its performance in different scenarios, two publicly
available datasets, Douban-Book and Yelp2018, are used for
experiments. The dataset information is shown in Table Ⅱ.

TABLE II. STATISTICS FOR THE DATASETS

Datasets information Douban-book Yelp2018

Number of users 12638 31668

Number of iems 22222 38048

Interactive data 478730 1237259

Data density 0.1704% 0.1026%

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

910 | P a g e

www.ijacsa.thesai.org

3) Evaluation indicators: Following the practice of
literature [18], Recall and Normalised Discount Cumulative
Gain (NDCG), which are commonly used in recommender
systems, are used as the evaluation metrics in this experiment.
The higher the Recall metric, the more items the recommender
system can find that the user is interested in, and the NDCG
measures the accuracy and sorting information of the
recommended items, this paper uses the two metrics to
comprehensively evaluate the recommender system
performance. The number of users, the number of items,
interaction data, and data density vary between two datasets,
resulting in different recommendation accuracies. Higher data
density in a dataset allows the model to learn more accurate user
preferences, leading to higher recommendation accuracy.

4) Baseline modelling and parameter setting: In order to
verify the effectiveness of CLMRec, four representative models
are selected for comparison, the baseline model LightGCN [1]
based on graph neural network, the models SGL [19] and
SimGCL [18] based on comparative learning, and MixGCF [11]
based on hybrid technology to generate negative samples for
comparison. After hyper-parameter tuning, the batch size is set
to 2048, the number of convolutional layers is set to 3, the
temperature parameter is set to 0.2, and the learning rate is set
to 0.001.

 LightGCN is a state-of-the-art GCN-based
recommendation method which simplifies the
convolution operations during the message passing
among users and items.

 SGL introduces self-supervised learning to enhance
recommendation. We focus on exploring self-supervised
learning (SSL) in recommendation, to solve the
foregoing limitations. Though being prevalent in
computer vision (CV) and natural language processing
(NLP).

 MixGCF designs the hop mixing technique to synthesize
hard negatives for graph collaborative filtering by
embedding

 Interpolation and Introduce the idea of synthesizing
negative samples rather than directly sampling negatives
from the data for improving GNN-based recommender
systems.

 SimGCL proposed a simple yet effective graph-
augmentation-free CL method for recommendation that
can regulate the uniformity in a smooth way. It can be an
ideal alternative of cumbersome graph augmentation-
based CL methods.

B. Results of the Experiment

The experimental results of the CLMRec model and each
baseline model in the Recall@20 and NDCG@20 evaluation
metrics are shown in Table III, with the best performance of the
comparison models underlined, and the experimental results of
this paper's model shown in bold font.

All of the above models transform user interaction data into
graph-structured data, and through graph convolutional models,
aggregate neighbour node information to capture the user's
interest preferences. As seen from the data in Table Ⅲ,

LightGCN effectively improves recommendation accuracy by
simply iteratively aggregating neighbour features into target
node embedding representations, removing the redundancy of
feature transformations and non-linear activation components.
Inspired by the natural language and image processing domains,
SGL introduces contrast learning into the recommendation
domain, proposes three methods for constructing a contrasted
view, and achieves better recommendation results than
LightGCN SimGCL, based on SGL, proposes a more concise
and effective data enhancement method to solve the problem of
possibly deleting the important information of nodes in SGL,
and speeds up the process of constructing positive and negative
contrast views, which is a simple and efficient model. MixGCF
Changes the traditional negative sampling strategy by mixing
the positive sample information with the negative sample
information to construct difficult negative samples for training,
which improves the overall performance and proves that high-
quality negative samples allow the model to learn more accurate
user embeddings and item embeddings.

TABLE III. SMODEL PERFORMANCE COMPARISON

Method
Douban-Book Yelp2018

Recall NDCG Recall NDCG

LightGCN 0.1494 0.1217 0.0642 0.0537

SGL 0.1730 0.1549 0.0678 0.0558

MixGCF 0.1732 0.1553 0.0710 0.0588

SimGCL 0.1778 0.1585 0.0721 0.0596

CLMRec 0.1899 0.1706 0.0736 0.0604

The CLMRec model proposed in this paper significantly
improves Recall and NDCG on both datasets compared to all
comparison models. Among them, CLMRec improves 6.80%
and 7.63% on the Urban-Book dataset and 1.34% and 2.14% on
the yelp dataset, respectively, compared to SimGCL, which is
the best performer, demonstrating the validity and sophistication
of this paper's model in different scenarios. Compared with other
models, the advantage of CLMRec is that the removal of noise
is completed when the interaction data enters the model before,
which effectively avoids the negative impact of noise on other
nodes in the graph convolution process. In addition, the
combination of contrast learning and LightGCN's encoder
extracts extra information from the samples, which improves the
model training effect, and finally the MCNS adaptively selects
negative samples with appropriate hardness, which significantly
improves the accuracy of recommendation.

C. Ablation Experiments

1) Verifying the effect of the number of samples on
recommendation accuracy.

In order to verify the impact of the number of samples in the
negative sampling candidate set on the recommendation results,
this paper chooses to conduct experiments on the Urban-Book,
by choosing a different number of samples to construct the
negative sampling candidate set, the specific experimental
results are shown in Table Ⅳ:

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

911 | P a g e

www.ijacsa.thesai.org

TABLE IV. SMODEL PERFORMANCE COMPARISON

Number of samples Recall NDCG

4 0.1856 0.1663

8 0.18569 0.1671

16 0.1877 0.1676

32 0.1889 0.1687

64 0.1895 0.1697

128 0.1899 0.1706

256 0.1900 0.1706

As can be seen from Table Ⅳ, the higher the number of
samples in the candidate set and the higher the number of
negative samples available, the better the recommendation
performance. However, the more the number of samples, the
more time is needed to calculate the rating function Ln, and the
recommendation effect is not obviously improved when the
number of samples is too large. Measuring the efficiency
problem, this paper takes 128 negative samples to construct the
candidate set.

2) Validation of TPS and MCNS component effectiveness:
In order to validate the effectiveness of the method proposed in
this paper, variant models are designed for denoising
experiments. Firstly, in order to demonstrate the denoising
effect of TPS, the variant model CLMRec-TPS is designed to
omit the denoising step by removing the TPS module and taking
the user-item interaction data as input directly. Secondly, the
variant model CLMRec-MCNS is designed, which discards the
strategy of adaptively selecting negative samples of appropriate
hardness by randomly selecting items that the user did not
interact with as negative samples. The performance of these
variant models on the two datasets is shown in Fig. 4.

0.172

0.174

0.176

0.178

0.18

0.182

0.184

0.186

0.188

0.19

SimGCL CLMRec-MCNS CLMRec-TPS CLMRec

Doubnan-book-Recall

0.152

0.154

0.156

0.158

0.16

0.162

0.164

0.166

0.168

0.17

SimGCL CLMRec-MCNS CLMRec-TPS CLMRec

Douhban-book-NDCG

0.071

0.0715

0.072

0.0725

0.073

0.0735

0.074

SimGCL CLMRec-MCNS CLMRec-TPS CLMRec

Yelp2018-Recall

0.0592

0.0594

0.0596

0.0598

0.06

0.0602

0.0604

0.0606

SimGCL CLMRec-MCNS CLMRec-TPS CLMRec

Yelp2018-NDCG

Fig. 4. Effectiveness analysis of TPS and MCNS.

As can be seen from Fig. 4, all the metrics of the CLMRec
model are higher than those of the variant models, proving the
necessity of each component. The metrics of the CLMRec
model are higher than those of the CLMRec-TPS model, which
indicates that the model can effectively remove the noise in the
interaction data, avoiding the noise from affecting the accuracy
of the recommendation in the process of propagation. In addition,
the indicators of CLMRec-MCNS are lower than CLMRec,
which proves the effectiveness of the MCNS component, i.e.,
when negative sampling, it is necessary to choose negative

samples with different hardnesses according to the
characteristics of positive samples.

IV. CONCLUSION

In this paper, a recommendation model CLMRec based on
comparative learning and multivariate selection of negative
sampling is proposed. The pruning strategy component based on
topology perception, with low time complexity and high
compatibility, is suitable for denoising of graph neural networks,
and it can effectively reduce the impact of noise on prediction
accuracy. In addition, the multivariate selection negative
sampling component is proposed to comprehensively consider
the relationship between the prediction scores of the positive
samples and the hardness of the negative samples, adaptively
select the negative samples with appropriate hardness, which
enhances the embedding representation ability of the model and
provides a new research idea for the negative sampling
technique of graphs. Experiments on two publicly available
datasets show that the present model has a significant
improvement in recommendation performance compared with
the current state-of-the-art models, and has good practical
application value.

Considering the differences in users' long and short-term
interests, future work will explore how to capture users' interests
in different periods to improve the recommendation accuracy.

ACKNOWLEDGMENT

We would like to express our deepest gratitude to Guangxi

Driven Development Project (桂科 AA20302001) for their

financial support, without which this research would not have
been possible.

Special thanks are due to Qing Ye and Yanyan Zhang for
their collaboration and assistance in various aspects of this
research project. Their contributions have significantly
contributed to the success of this study.

REFERENCES

[1] He X, Deng K, Wang X, et al. Lightgcn: Simplifying and powering graph
convolution network for recommendation[C]//Proceedings of the 43rd
International ACM SIGIR conference on research and development in
Information Retrieval. 2020: 639-648.

[2] Lai R, Chen L, Zhao Y, et al. Disentangled negative sampling for
collaborative filtering[C]//Proceedings of the Sixteenth ACM
International Conference on Web Search and Data Mining. 2023: 96-104.

[3] Yera R, Castro J, Martínez L. A fuzzy model for managing natural noise
in recommender systems[J]. Applied Soft Computing, 2016, 40: 187-198.

[4] Rong Y, Huang W, Xu T, et al. Dropedge: Towards deep graph
convolutional networks on node classification[J]. arXiv preprint
arXiv:1907.10903, 2019.

[5] Zhang C, Li T, Ren Z, et al. Taxonomy-aware collaborative denoising
autoencoder for personalized recommendation[J]. Applied Intelligence,
2019, 49: 2101-2118.

[6] Fan Z, Xu K, Dong Z, et al. Graph collaborative signals denoising and
augmentation for recommendation[C]//Proceedings of the 46th
International ACM SIGIR Conference on Research and Development in
Information Retrieval. 2023: 2037-2041.

[7] Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personalized
ranking from implicit feedback[J]. arXiv preprint arXiv:1205.2618, 2012.

[8] Chen T, Sun Y, Shi Y, et al. On sampling strategies for neural network-
based collaborative filtering[C]//Proceedings of the 23rd ACM SIGKDD
International Conference on Knowledge Discovery and Data Mining.
2017: 767-776.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 5, 2024

912 | P a g e

www.ijacsa.thesai.org

[9] Ying R, He R, Chen K, et al. Graph convolutional neural networks for
web-scale recommender systems[C]//Proceedings of the 24th ACM
SIGKDD international conference on knowledge discovery & data
mining. 2018: 974-983.

[10] Yang Z, Ding M, Zhou C, et al. Understanding negative sampling in graph
representation learning[C]//Proceedings of the 26th ACM SIGKDD
international conference on knowledge discovery & data mining. 2020:
1666-1676.

[11] Huang T, Dong Y, Ding M, et al. Mixgcf: An improved training method
for graph neural network-based recommender systems[C]//Proceedings of
the 27th ACM SIGKDD Conference on Knowledge Discovery & Data
Mining. 2021: 665-674.

[12] Chen X, Fan W, Chen J, et al. Fairly adaptive negative sampling for
recommendations[C]//Proceedings of the ACM Web Conference 2023.
2023: 3723-3733.

[13] Wu C, Wu F, Huang Y. Rethinking infonce: How many negative samples
do you need?[J]. arXiv preprint arXiv:2105.13003, 2021.

[14] Zhou X, Lin D, Liu Y, et al. Layer-refined graph convolutional networks
for recommendation[C]//2023 IEEE 39th International Conference on
Data Engineering (ICDE). IEEE, 2023: 1247-1259.

[15] Arul S M, Senthil G, Jayasudha S, et al. Graph Theory and Algorithms for
Network Analysis[C]//E3S Web of Conferences. EDP Sciences, 2023,
399: 08002.

[16] Chen J, Lian D, Jin B, et al. Learning recommenders for implicit feedback
with importance resampling[C]//Proceedings of the ACM Web
Conference 2022. 2022: 1997-2005.

[17] Lai R, Chen R, Han Q, et al. Adaptive hardness negative sampling for
collaborative filtering[J]. arXiv preprint arXiv:2401.05191, 2024.

[18] Yu J, Yin H, Xia X, et al. Are graph augmentations necessary? simple
graph contrastive learning for recommendation[C]//Proceedings of the
45th international ACM SIGIR conference on research and development
in information retrieval. 2022: 1294-1303.

[19] Wu J, Wang X, Feng F, et al. Self-supervised graph learning for
recommendation[C]//Proceedings of the 44th international ACM SIGIR
conference on research and development in information retrieval. 2021:
726-735.

