
(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

905 | P a g e  

www.ijacsa.thesai.org 

Contrastive Learning and Multi-Choice Negative 

Sampling Recommendation 

Yun Xue1, Xiaodong Cai2, Sheng Fang3, Li Zhou4 

School of Information and Communication, Guilin University of Electronic Technology, Guilin, China1, 2, 3 

Nanning West Bank Fenggu Business Data Co., Ltd, Nanning, China4 

 

 
Abstract—Most existing recommendation models that directly 

model user interests on user-item interaction data usually ignore 

the natural noise present in the interaction data, leading to bias in 

the model's learning of user preferences during data propagation 

and aggregation. In addition, the currently adopted negative 

sampling strategy does not consider the relationship between the 

prediction scores of positive samples and the degree of difficulty of 

negative samples, and is unable to adaptively select a suitable 

negative sample for each positive sample, leading to a decrease in 

the model recommendation performance. In order to solve the 

above problems, this paper proposes a Contrastive Learning and 

Multi-choice Negative Sampling Recommendation. Firstly, an 

improved topology-aware pruning strategy is used to process the 

user-item bipartite graph, which uses the topology information of 

the graph to remove noise and improve the accuracy of model 

prediction. In addition, a new multivariate selective negative 

sampling module is designed, which ensures that each positive 

sample selects a negative sample of appropriate hardness through 

two sampling principles, improving the model embedding space 

representation capability, which in turn leads to improved model 

recommendation accuracy. Experimental results on the Urban-

Book and Yelp2018 datasets show that the proposed algorithm 

significantly improves all the metrics compared to the state-of-the-

art model, which proves the effectiveness and sophistication of the 

algorithm in different scenarios. 

Keywords—Recommendation algorithms; comparative learning; 

negative sampling; pruning strategies 

I. INTRODUCTION 

Previous research has focused on modelling interest 
preferences from users' historical interaction data in order to 
obtain better recommendation results and provide personalised 
recommendation services to users to solve the problem of 
information overload [1]. However, collaborative filtering 
algorithms recommend poorly when the data lacks explicit user 
feedback, at which point the quality of negative sampling 
becomes crucial for improving the performance of 
recommendation models. Existing collaborative filtering 
algorithm all choose to train models using implicit feedback 
(e.g., click, buy, favourite, etc.) by default [2] and set the items 
of user interest as positive samples, but how to select high-
quality negative samples is still a major challenge in the 
recommendation field. In addition, most models directly take 
user-item interaction data as the ideal data of user's preference, 
but due to the influence of external factors such as human error 
clicks, uncertainty, etc., which results in implicit feedback data 
containing a lot of natural noise [3], how to deal with the noise 
in the interaction data and to reduce the impact of noise on the 

recommendation accuracy is also a worthwhile research 
problem in the recommendation field. 

Yu et al. [4] proposed the DropEdge mechanism to reduce 
the impact of noise on the node classification task by randomly 
deleting away the fixed edges in the original graph. However, 
random deletion has the potential to discard user preference 
information, resulting in lower recommendation accuracy. Thus, 
Zhang et al. [5] designed a classification-aware denoising based 
self-encoder to remove the noise effect by integrating the 
classification information. Fan et al. [6] removed the noisy data 
from the user-item interaction matrix by top-K sampling, 
balanced the number of interactions of all the users, and 
improved the accuracy of the model. 

Rendle et al.[7] allowed the model to extract more feature 
information from the positive samples by randomly selecting 
items that users did not interact with as negative samples, and 
then using a loss function to give higher scores to the user-
positive sample pairs while lowering the scores of the user-
negative sample pairs. However, the practice of selecting 
negative samples with equal probability ignores the problem that 
the items that the user did not interact with are not necessarily 
items that the user dislikes, and it is possible that the user just 
did not see them. Ultimately, this leads to poor model 
predictions. Thus, Chen et al. [8]proposed popularity-based 
negative sampling, which takes item exposure as an important 
basis, and if a popular item with high enough exposure is still 
disliked by users, it means that the item can be used as a negative 
sample. Meanwhile, Ying et al. [9] proposed PinSage to 
calculate the node importance score, using difficult negative 
sample data for training to improve the overall performance of 
the model. Yang et al. [10] redesigned the sampling distributions 
of positive and negative samples, gave the calculation of 
negative sampling probability based on their structural 
similarity, and concluded that negative and positive samples are 
equally important. Huang in study [11] used user-item 
dichotomous graphs and the aggregation process of graph neural 
networks (GNN) to study negative sampling, and constructed a 
difficult negative sample candidate set by interpolating and 
mixing the negative samples to fuse part of the positive sample 
information, which improved the model training effect. Chen et 
al. [12] proposed the FairStatic dynamic adaptive negative 
sampling method, which improves the sampling fairness among 
groups while taking into account the sampling efficiency to 
ensure that each group of items can obtain equal 
recommendation quality. Lai et al. [2] proposed the DENS 
method, which firstly uses the hierarchical gating module to 
classify the similarity and dissimilarity of information between 
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positive and negative samples and identifies the negative 
samples through the factor-aware sampling strategy, so as to 
allow the difficult negative samples to provide more informative 
training signals and provide better user representation. 

Although the above various negative sampling methods have 
allowed recommender system models to achieve good results, 
there are still some problems. Most of the existing negative 
sampling methods improve the model training effect by 
constructing difficult negative samples, however, they do not 
take into account the degree of matching between negative 
samples and positive samples, and negative samples with too 
much hardness may lead to the semantic bias between the 
samples and are not conducive to the final recommendation 
prediction. In addition, most algorithms remove noise by 
designing cumbersome components with high model 
complexity, and some models even omit the interaction data 
denoising step and use it directly as the positive samples for 
training, which leads to the model not being able to correctly 
model users' interest preferences, and the recommendation 
results are biased. 

In order to solve the above problems, this paper proposes a 
Contrastive Learning and Multi-choice Negative Sampling 
Recommendation (CLMRec). The model firstly analyses the 
degree of contribution of edges to nodes by Topology-aware 
Pruning Strategy (TPS) based on topology, calculates the 
probability that each edge can be retained, and then removes the 
noisy data according to the probability to reduce the impact of 
noise on the node embedding representations in the propagation 
process. Finally, in the negative sampling stage, a new Multi-
Choice Negative Sampling (MCNS) strategy is proposed to 
adaptively select negative samples of appropriate hardness 
through two sampling principles to optimize the model training 
effect and obtain more accurate user embeddings and item 
embeddings to improve the accuracy of recommendations. 

In summary, our contributions are highlighted as follows: 

 We propose the TPS denoising framework to remove 
noise from user-item interaction data, preventing the 

adverse effects of noise during the information 
aggregation process. 

 We introduce the MCNS negative sampling framework, 
which enables adaptive selection of negative samples of 
appropriate difficulty, thereby enhancing the quality of 
model training. 

II. CLMREC MODEL DESIGN 

A. Notation Definition and Description 

In this paper, the model input is the user-item interaction data, 

where  1 2, ,... mU u u u  is the set of users, and  1 2, ,... nI i i i  

is the set of items, where m is the number of users, and n is the 
number of items. R is the user-item interaction matrix, and 

 , ,G U I E is the user-item interaction graph, where E is the 

set of user-item edges. 

B. Overall framework 

The overall framework of the CLMRec model is shown in 
Fig. 1. Firstly, for the interaction data in the user-item 
dichotomous graph G, the TPS is used to calculate the retention 
probability of each edge and remove the noise, and then multi-
task joint training is constructed, and comparative learning is 
used as a secondary task to construct comparative views on the 
interaction data, and potential feature information between 
different views is extracted by the Infonce loss function [13] to 
enhance the model's representation learning capability. 

The main task uses LightGCN [1] to linearly propagate user 
embeddings and item embeddings on the interaction graph, 
aggregating node information to obtain the final user 

embeddings uz and the final item embeddings iz . For item 

embeddings, the MCNS component adaptively selects negative 
samples of appropriate hardness for each positive sample, and 
continuously optimises the positive sample similarity scores and 
reduces the negative sample prediction scores through the BPR 
loss function [7]. The prediction score, allowing the model to 
gradually learn the correct user preferences. Finally, the main 
and auxiliary tasks are jointly learnt to update the user 
embeddings and item embeddings. 
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Fig. 1. DFFSM overall framework. 
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C. Topology-aware Pruning Strategy 

In order to avoid too much noise accompanying the 
interaction data into the model, inspired by the literature [4][14] 
and following the idea of model sparsification, the natural noise 
present in the interaction data is handled by removing redundant 
edges from the graph. In this paper, a topology-aware pruning 
strategy (TPS) is designed. Firstly, the user-item data is 
processed into a user-item interaction matrix R. The degree of 
each node is calculated using R to obtain the degree matrix D. 
Next, the retention probability of each edge in the graph is 
calculated. Finally, some edges of the user-item dichotomous 
graph are removed according to the magnitude of the probability 
to complete the denoising of the interaction data. 

To make the exposition easier, the TPS process is plotted as 
in Fig. 2: 
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Fig. 2. TPS. 

Literature [15] states that the degree of a node is the number 
of edges directly connected to that node and can be considered 
as a measure of the importance of the node in the network. For 
the interaction matrix R, the process of computing the degree 
matrix D is as follows: 

 1
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where, [ ][ ]k kD  is the element on the kth diagonal of the 

degree matrix D and [ ][ ]k jR is the element in the kth row and 

jth column of the interaction matrix R. Since D is a diagonal 
matrix and all the positional elements are 0 except those on the 
diagonal, the degree matrix D can be derived from Eq. (2), which 

 diag   indicates that a diagonal matrix is constructed by using 

the elements in parentheses as the elements on the diagonal. 

Some papers use randomly discarded edges to reduce the 
influence of height nodes and to prevent overfitting phenomena, 
but randomly discarded edges have the potential to destroy 
important information about the nodes, leading to biased node 
semantics. The degree of contribution of an edge to a node 
should be calculated and the natural noise should be removed 
based on the weights, and the square root of the degree is often 
used as a factor to adjust the edge weights. 

The idea is that nodes with larger degrees have more 
connections in the network and have a higher probability of 
noisy data, so the weights of edges connected to them should be 
reduced to balance the importance of the node. On the contrary, 

nodes with smaller degree have fewer connections in the 
network, so the weights of the edges connected to them should 
be increased to better reflect the importance of the nodes. In 
addition, the effect of edge discarding on the two connected 
nodes should be considered, so the degree of both nodes should 
be included in the formula as follows: 

 

 ,
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i j

i j

p
d d
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   (3) 

where,    1,2,3,..., , 1,2,3,..., ,i n j n i j  且 , i and j 

denote the nodes in the bipartite graph of user items, and di and 
dj represent the degrees of node i and node j, respectively, as 
shown in Fig. 2, the retention probability of each edge is 
calculated by using the TPS, and then the edge between i3 and 
u1 is removed. While these two nodes are equivalent to popular 
nodes for other nodes with more interaction data, discarding the 
edges of these two nodes can reduce the influence of popular 
nodes on low-degree nodes, and also prevent the model from 
overfitting. For the edges of these two nodes, i4 and u3, the 
retention probability is high because i4 has only one interaction 
data, which should be fully retained to facilitate the model's 
learning of i4 commodity embedding. 

D. LightGCN 

After removing some of the noise from the interaction data, 
the model is started to model the user interest. In this paper, 
LightGCN [1] is used as an encoder. Firstly, user embeddings 
and item embeddings are randomly initialised, and multiple 
rounds of embedding propagation are performed through the 
graph convolution layer, and the embedding vectors of users and 
items are updated through iterations. Since the algorithm is 
constructed for joint multi-task learning, divided into main task 
and auxiliary task, the differences between the two tasks are 
described below. 

In each round of the main task, the user and item embeddings 
are weighted and summed according to the user-item interaction 
matrix R, and the neighbour node information is aggregated. 
After multiple propagation and aggregation, the model can 
extract the user's higher-order interests, and the specific 
aggregation strategy and propagation mechanism are shown in 
Eq. (4) and Eq. (5). 
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where, l represents the number of convolutional layers  and   
denote the user embedding and item embedding in the lth layer, 
respectively. 

The pooling of the convolved embeddings is performed to 
obtain the final user embeddings and item embeddings. 
Considering that the embeddings of different layers have 
different semantics, the embeddings of different layers are 
weighted and combined, and the embedding combination 
strategy is shown in Eq. (6) and Eq. (7). 
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where, uz represents the final user embedding, iz represents 

the final item embedding, l is the weight of each layer, L is the 

number of convolutional layer layers, and in this paper, we 

follow the practice of literature [1], and take l  as the inverse of 

L. 

In the auxiliary task, contrast learning is mainly used to 
alleviate the data sparsity problem. Firstly, data augmentation is 
performed on the denoised interaction data to obtain augmented 
view G1 and augmented view G2, followed by constructing 
positive sample pairs and negative sample pairs for the vectors 
in the two views. Ultimately, the loss function of the model is 
used to bring the positive pair embeddings closer together and 
push the negative pair embeddings farther apart, so that the 
model extracts the unlabelled extra information in the 
interaction data, learns high-quality embedded representations 
of the users and items, and improves the accuracy of the 
recommendations. 

E. Multi-Choice Negative Sampling 

Positive and negative samples need to be selected after 
obtaining the user embedding u and item embedding i. The 
positive and negative samples are then passed through the BPR 
loss function [7] to give high prediction scores to the user-
positive samples and reduce the prediction scores of the user-
negative samples, which facilitates the model to learn the user 
interest preferences correctly. 

Since the interaction data have been removed from the noise 
before entering the model and the interaction data are the real 
interest preferences of users, the items interacted in the 
dichotomous graph are directly selected as the corresponding 
user-positive samples. However, how to select high-quality 
negative samples to train the model is a difficult point, and the 
existing models do not select appropriate negative samples 
based on the information and prediction scores of the positive 
samples. For example, in Fig. 3, when the model selects negative 
samples, if an i20 is randomly selected as a negative sample from 
the items that the user node u1 has not interacted with, it does 
not mean that the user does not like the item, and it is possible 
that the item exposure is too low for the user to see. In addition, 
some models do not construct difficult negative samples based 
on the characteristics of positive samples, which causes the 
problem of high model training cost. 

In order to solve the above problems, inspired by the 
literature [16] [17], multivariate selective negative sampling 
(MCNS) is proposed. MCNS constrains the selection range of 
negative samples by two principles: suitable negative samples 
must be selected based on the characteristics of positive samples; 
and the hardness of negative samples must be inversely 
proportional to the prediction scores of positive samples. These 
two principles ensure that the model adaptively selects negative 

samples of appropriate hardness for positive samples during 
negative sampling. 
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Fig. 3. MCNS. 

Firstly, Principle 1 is set to eliminate the uncertainty of user 
preference brought by randomly selecting negative samples. In 
the prediction stage, the model calculates the prediction scores 
of the positive sample embedding and the user embedding, and 
determines whether to recommend or not based on the high or 
low prediction scores, inspired by this, this paper decides to take 
the prediction scores of the positive samples as an important 
factor in selecting the negative samples, and Eq. (8) denotes the 
calculation of the prediction scores: 

 
T
u i

score z z 
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   (8) 

 
T
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score+ represents the positive sample prediction score, score- 

represents the negative sample prediction score, T
uz represents 

the transpose matrix of the user matrix, 
i

z  and 
i

z  represents 

the positive sample matrix and negative sample matrix 
respectively. The higher the prediction score, the closer the two 
embeddings are in space, i.e., the more interested the user is in 
the item. 

The negative sampling process is shown in Fig. 3, where a 
specified number of items are randomly selected from all the 
data that the user has not interacted with to construct a candidate 
set of negative samples, and then, for all the items in the 
candidate set, the association level of the items is calculated 
using the rating function, and then, the appropriate items are 
selected as negative samples. For positive samples with high 
prediction scores, it indicates that the model has learnt 
sufficiently well for that sample, and picking simple negative 
samples can reduce the training cost. Selecting negative samples 
with a high degree of difficulty will cause the model's 
performance to degrade in the process of classifying positive and 
negative samples, affecting the final prediction accuracy. 
Conversely, for positive samples with low prediction scores, it 
indicates that the model is not yet able to adequately capture 
similar user interests, at which point difficult negative samples 
should be constructed to allow the model to learn deeper features 
and improve the model's representational ability. This 
determines principle two, where the difficulty of the negative 
sample is inversely proportional to the prediction score of the 
positive sample. Eq. (10) is the rating function, which is used to 
determine the level of negative samples selected. 

 
 

1

n

p
T T

n u i u iL z z z z 


  
  (10) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

909 | P a g e  

www.ijacsa.thesai.org 

where, Ln is smaller, the greater the probability that the 
sample will be a negative sample. p is less than -1, and when 

considering nL and  are equal, negative sample hardness 

 h i is defined as the ratio of positive and negative prediction 

scores, as defined in Eq. (11): 
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h i z z

z z




   

  (11) 

Negative correlation was verified using Eq. (12). First, the 
negative correlation is transformed into a derivation problem by 
using the negative sample difficulty level to derive the positive 
sample prediction scores. 
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where, p is a hyperparameter less than 0. Obviously, the 
derivative is negative, indicating that the function is 
monotonically decreasing, proving that the difficulty of negative 
samples is negatively correlated with the prediction scores of 
positive samples. 

F. Model prediction and Training 

After the message propagation and aggregation mechanism 
of the GNN encoder, the final user embedding and item 
embedding , and enter the prediction stage to predict the user's 
interest in the item according to Eq. (13). 

 ,ˆ T
u i u iy z z

   (13) 

Then, the main task adaptively selects negative samples of 
appropriate hardness for each positive sample through MCNS 
and calculates the loss so that the model learns more accurate 
user preferences and item characteristics from the training data, 
adopting the method of literature [18], and using the BPR loss 
as the loss function of the recommendation task to measure the 
difference between the prediction results and the real labels as 
shown in Eq. (14): 
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In the auxiliary task, Infonce is used as a comparative 
learning loss function to maximise the mutual information 
between the same sample views and minimise the information 
of different sample views, and by comparing the differences 
between different views, the model can extract the extra 
unlabelled information in the interaction data as a way to 
improve the representation of the embedding space and the 
model performance. The Infonce loss is as shown in Eq. (15): 
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 where, G is a user-item bipartite graph, n and 'n represent 

different nodes in G respectively,  s   is the cosine function, 

and τ is the temperature parameter. 

Finally, the main task loss and auxiliary task loss are 
combined to construct the model multi-task learning framework, 
and the total model loss is shown in Eq. (16): 

 

2

1 2 2bpr clL L L    
  (16) 

where, Lbpr denotes the main task loss, Lcl denotes the 
auxiliary task comparison learning loss, and denotes the 
regularisation parameters, and denotes the learnable model 
parameters. 

G. Pseudo-code of the Model 

In order to give the reader a clearer understanding of the 
execution process of the CLMRec model, the pseudo-code of the 
model is given, as shown in Table Ⅰ: 

TABLE I.  PSEUDO-CODE OF CLMREC 

Algorithm: CLMRec 

1: Input: User-Item bipartite graph G, training dataset Χ  
2: Output: Sst of recommended items 
3:  While CLMRec Not Convergence do 

4:      for x in Dataloader( Χ ) do 
5:            Calculate the degree matrix D from the interaction matrix 

R; 
6:            Calculate the retention probability P; 
7:            Noise removal according to P; 
8:     Generate user final embedding and item final embedding; 
9:            Adaptive selection of suitable negative samples 

10:           Generate comparison views G1 and G2; 
11:           Calculate BPR loss Lbpr ; 
12:           Calculate contrastive learning loss LCL; 
13:           Calculate total loss L; 
14:      end for 
15: end while 

III. EXPERIMENTAL RESULTS AND ANALYSIS 

A. Experimental Setup 

1) Experimental environment: The experimental 
environment is set up as follows: the graphics card 
configuration is NVIDIA GeForce RTX 2080Ti, the operating 
system is Ubuntu 18.04, the programming language Python, 
and the deep learning framework is Pytorch. 

2) Datasets: In order to verify the effect of the algorithm 
proposed in this paper on datasets with different sparsity levels 
and its performance in different scenarios, two publicly 
available datasets, Douban-Book and Yelp2018, are used for 
experiments. The dataset information is shown in Table Ⅱ. 

TABLE II.  STATISTICS FOR THE DATASETS 

Datasets information Douban-book Yelp2018 

Number of users 12638 31668 

Number of iems 22222 38048 

Interactive data 478730 1237259 

Data density 0.1704% 0.1026% 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

910 | P a g e  

www.ijacsa.thesai.org 

3) Evaluation indicators: Following the practice of 
literature [18], Recall and Normalised Discount Cumulative 
Gain (NDCG), which are commonly used in recommender 
systems, are used as the evaluation metrics in this experiment. 
The higher the Recall metric, the more items the recommender 
system can find that the user is interested in, and the NDCG 
measures the accuracy and sorting information of the 
recommended items, this paper uses the two metrics to 
comprehensively evaluate the recommender system 
performance. The number of users, the number of items, 
interaction data, and data density vary between two datasets, 
resulting in different recommendation accuracies. Higher data 
density in a dataset allows the model to learn more accurate user 
preferences, leading to higher recommendation accuracy. 

4) Baseline modelling and parameter setting: In order to 
verify the effectiveness of CLMRec, four representative models 
are selected for comparison, the baseline model LightGCN [1] 
based on graph neural network, the models SGL [19] and 
SimGCL [18] based on comparative learning, and MixGCF [11] 
based on hybrid technology to generate negative samples for 
comparison. After hyper-parameter tuning, the batch size is set 
to 2048, the number of convolutional layers is set to 3, the 
temperature parameter is set to 0.2, and the learning rate is set 
to 0.001. 

 LightGCN is a state-of-the-art GCN-based 
recommendation method which simplifies the 
convolution operations during the message passing 
among users and items. 

 SGL introduces self-supervised learning to enhance 
recommendation. We focus on exploring self-supervised 
learning (SSL) in recommendation, to solve the 
foregoing limitations. Though being prevalent in 
computer vision (CV) and natural language processing 
(NLP). 

 MixGCF designs the hop mixing technique to synthesize 
hard negatives for graph collaborative filtering by 
embedding 

 Interpolation and Introduce the idea of synthesizing 
negative samples rather than directly sampling negatives 
from the data for improving GNN-based recommender 
systems. 

 SimGCL proposed a simple yet effective graph-
augmentation-free CL method for recommendation that 
can regulate the uniformity in a smooth way. It can be an 
ideal alternative of cumbersome graph augmentation-
based CL methods. 

B. Results of the Experiment 

The experimental results of the CLMRec model and each 
baseline model in the Recall@20 and NDCG@20 evaluation 
metrics are shown in Table III, with the best performance of the 
comparison models underlined, and the experimental results of 
this paper's model shown in bold font. 

All of the above models transform user interaction data into 
graph-structured data, and through graph convolutional models, 
aggregate neighbour node information to capture the user's 
interest preferences. As seen from the data in Table Ⅲ, 

LightGCN effectively improves recommendation accuracy by 
simply iteratively aggregating neighbour features into target 
node embedding representations, removing the redundancy of 
feature transformations and non-linear activation components. 
Inspired by the natural language and image processing domains, 
SGL introduces contrast learning into the recommendation 
domain, proposes three methods for constructing a contrasted 
view, and achieves better recommendation results than 
LightGCN SimGCL, based on SGL, proposes a more concise 
and effective data enhancement method to solve the problem of 
possibly deleting the important information of nodes in SGL, 
and speeds up the process of constructing positive and negative 
contrast views, which is a simple and efficient model. MixGCF 
Changes the traditional negative sampling strategy by mixing 
the positive sample information with the negative sample 
information to construct difficult negative samples for training, 
which improves the overall performance and proves that high-
quality negative samples allow the model to learn more accurate 
user embeddings and item embeddings. 

TABLE III.  SMODEL PERFORMANCE COMPARISON 

Method 
Douban-Book Yelp2018 

Recall NDCG Recall NDCG 

LightGCN 0.1494 0.1217 0.0642 0.0537 

SGL 0.1730 0.1549 0.0678 0.0558 

MixGCF 0.1732 0.1553 0.0710 0.0588 

SimGCL 0.1778 0.1585 0.0721 0.0596 

CLMRec 0.1899 0.1706 0.0736 0.0604 

The CLMRec model proposed in this paper significantly 
improves Recall and NDCG on both datasets compared to all 
comparison models. Among them, CLMRec improves 6.80% 
and 7.63% on the Urban-Book dataset and 1.34% and 2.14% on 
the yelp dataset, respectively, compared to SimGCL, which is 
the best performer, demonstrating the validity and sophistication 
of this paper's model in different scenarios. Compared with other 
models, the advantage of CLMRec is that the removal of noise 
is completed when the interaction data enters the model before, 
which effectively avoids the negative impact of noise on other 
nodes in the graph convolution process. In addition, the 
combination of contrast learning and LightGCN's encoder 
extracts extra information from the samples, which improves the 
model training effect, and finally the MCNS adaptively selects 
negative samples with appropriate hardness, which significantly 
improves the accuracy of recommendation. 

C. Ablation Experiments 

1) Verifying the effect of the number of samples on 
recommendation accuracy. 

In order to verify the impact of the number of samples in the 
negative sampling candidate set on the recommendation results, 
this paper chooses to conduct experiments on the Urban-Book, 
by choosing a different number of samples to construct the 
negative sampling candidate set, the specific experimental 
results are shown in Table Ⅳ: 
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TABLE IV.  SMODEL PERFORMANCE COMPARISON 

Number of samples Recall NDCG 

4 0.1856 0.1663 

8 0.18569 0.1671 

16 0.1877 0.1676 

32 0.1889 0.1687 

64 0.1895 0.1697 

128 0.1899 0.1706 

256 0.1900 0.1706 

As can be seen from Table Ⅳ, the higher the number of 
samples in the candidate set and the higher the number of 
negative samples available, the better the recommendation 
performance. However, the more the number of samples, the 
more time is needed to calculate the rating function Ln, and the 
recommendation effect is not obviously improved when the 
number of samples is too large. Measuring the efficiency 
problem, this paper takes 128 negative samples to construct the 
candidate set. 

2) Validation of TPS and MCNS component effectiveness: 
In order to validate the effectiveness of the method proposed in 
this paper, variant models are designed for denoising 
experiments. Firstly, in order to demonstrate the denoising 
effect of TPS, the variant model CLMRec-TPS is designed to 
omit the denoising step by removing the TPS module and taking 
the user-item interaction data as input directly. Secondly, the 
variant model CLMRec-MCNS is designed, which discards the 
strategy of adaptively selecting negative samples of appropriate 
hardness by randomly selecting items that the user did not 
interact with as negative samples. The performance of these 
variant models on the two datasets is shown in Fig. 4. 
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Fig. 4. Effectiveness analysis of TPS and MCNS. 

As can be seen from Fig. 4, all the metrics of the CLMRec 
model are higher than those of the variant models, proving the 
necessity of each component. The metrics of the CLMRec 
model are higher than those of the CLMRec-TPS model, which 
indicates that the model can effectively remove the noise in the 
interaction data, avoiding the noise from affecting the accuracy 
of the recommendation in the process of propagation. In addition, 
the indicators of CLMRec-MCNS are lower than CLMRec, 
which proves the effectiveness of the MCNS component, i.e., 
when negative sampling, it is necessary to choose negative 

samples with different hardnesses according to the 
characteristics of positive samples. 

IV. CONCLUSION 

In this paper, a recommendation model CLMRec based on 
comparative learning and multivariate selection of negative 
sampling is proposed. The pruning strategy component based on 
topology perception, with low time complexity and high 
compatibility, is suitable for denoising of graph neural networks, 
and it can effectively reduce the impact of noise on prediction 
accuracy. In addition, the multivariate selection negative 
sampling component is proposed to comprehensively consider 
the relationship between the prediction scores of the positive 
samples and the hardness of the negative samples, adaptively 
select the negative samples with appropriate hardness, which 
enhances the embedding representation ability of the model and 
provides a new research idea for the negative sampling 
technique of graphs. Experiments on two publicly available 
datasets show that the present model has a significant 
improvement in recommendation performance compared with 
the current state-of-the-art models, and has good practical 
application value. 

Considering the differences in users' long and short-term 
interests, future work will explore how to capture users' interests 
in different periods to improve the recommendation accuracy. 
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