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Abstract—In the expanding field of medical imaging, precise 

segmentation of anatomical structures is critical for accurate 

diagnosis and therapeutic interventions. This research paper 

introduces an innovative approach, building upon the established 

U-Net architecture, to enhance lung segmentation techniques 

applied to Computed Tomography (CT) images. Traditional 

methods of lung segmentation in CT scans often confront 

challenges such as heterogeneous tissue densities, variability in 

human anatomy, and pathological alterations, necessitating an 

approach that embodies greater robustness and precision. Our 

study presents a modified U-Net model, characterized by an 

integration of advanced convolutional layers and innovative skip 

connections, improving the reception field and facilitating the 

retention of high-frequency details essential for capturing the 

lung's intricate structures. The enhanced U-Net architecture 

demonstrates substantial improvements in dealing with the 

subtleties of lung parenchyma, effectively distinguishing between 

precarious nuances of tissues, and pathologies. Rigorous 

quantitative evaluations showcase a significant increase in the Dice 

coefficient and a decrease in the Hausdorff distance, indicating a 

more refined segmentation output compared to predecessor 

models. Additionally, the proposed model manifests exceptional 

versatility and computational efficiency, making it conducive for 

real-time clinical applications. This research underlines the 

transformative potential of employing advanced deep learning 

architectures for biomedical imaging, paving the way for early 

intervention, accurate diagnosis, and personalized treatment 

paradigms in pulmonary disorders. The findings have profound 

implications, propelling forward the nexus of artificial intelligence 

and healthcare towards unprecedented horizons. 
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I. INTRODUCTION 

The advent of Computed Tomography (CT) has 
revolutionized medical imaging, offering detailed internal 
anatomical views, and proving instrumental in the diagnosis, 
monitoring, and treatment planning of various health conditions, 
particularly pulmonary disorders [1]. However, the manual 
segmentation of lung regions from CT images is a labor-
intensive and time-consuming process, prone to inter-observer 
variability [2]. Automated and semi-automated segmentation 
techniques, hence, have emerged as essential tools in medical 
image processing, aiming to enhance accuracy and expedite 
diagnostic procedures. 

Among the several computational models proposed, U-Net, 
a convolutional neural network (CNN) architecture, has gained 
prominence for its efficacy in biomedical image segmentation 

[3]. The standard U-Net model, adapted specifically for medical 
imaging, excels due to its symmetric expansive path, which 
enables precise localization combined with a contractive path 
that captures context [4]. However, while the model has proven 
its competence in segmenting various biological structures, 
researchers have identified limitations in its application to lung 
CT images, particularly concerning the segmentation of intricate 
lung parenchyma and pathological structures [5]. 

CT images of the lung present unique challenges due to the 
organ's spongy architecture, variations in tissue densities, and 
the presence of diseases such as pulmonary nodules, 
emphysema, or fibrosis which introduce additional complexities 
[6]. These factors often result in poor boundary delineation in 
segmentation outputs, leading to less accurate volume 
quantification and misinterpretations that could impact clinical 
decisions. Furthermore, the presence of noise, imaging artifacts, 
and the variability among scanning protocols and equipment 
across healthcare centers add to these challenges, necessitating 
more robust and adaptable segmentation solutions [7]. 

This study introduces an enhanced U-Net architecture, 
specifically optimized for the segmentation of lung structures in 
CT images. The proposed model incorporates advanced features 
designed to overcome the nuances associated with lung CT 
scans. It integrates refined convolutional layers, which increase 
the receptive field, thereby enabling the model to grasp lower-
level features while maintaining the segmentation accuracy for 
higher-level details. Additionally, innovative skip connections 
have been designed to address the issue of information loss 
during up-sampling, a critical factor in achieving high-
resolution segmentation maps [8]. 

The significance of enhancing U-Net architecture is 
underlined by the critical role precise lung segmentation plays 
in various clinical applications. These range from the 
quantification of tumors and vascular structures for early cancer 
detection to the assessment of structural changes due to 
pulmonary diseases, and in the planning of radiation therapy for 
lung cancer treatment [9]. Improved segmentation techniques 
not only contribute to more accurate diagnoses but also facilitate 
the monitoring of disease progression and the response to 
treatment over time. They also hold substantial promise for use 
in surgical planning and the delivery of personalized patient care 
[10]. 

Moreover, the application of deep learning models like U-
Net goes beyond individual patient diagnosis and treatment. 
Aggregated segmented lung data from CT images can be utilized 
in large-scale epidemiological studies, aiding in the 
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understanding of complex lung diseases, and potentially 
informing public health decisions and strategies. Furthermore, 
in the context of global health crises, such as the COVID-19 
pandemic, swift and accurate analysis of lung CT images could 
play a vital role in managing and controlling highly infectious 
respiratory illnesses [11]. 

In pioneering this enhanced U-Net model, we build on the 
collective advancements made in the realms of artificial 
intelligence and medical imaging. Our research draws from 
various studies [1, 3, 5], adopting their foundational theories and 
methodologies, while seeking to mitigate the identified 
limitations. Through rigorous testing and validation, using a 
diverse set of lung CT scans, we aim to demonstrate that our 
enhanced U-Net architecture substantially improves the 
accuracy, efficiency, and consistency of lung segmentation. 

The remainder of this paper is organized as follows: Section 
II reviews relevant literature, exploring the evolution of CNNs 
in medical imaging, with a focus on lung CT image 
segmentation. Section III details the methodology of the 
standard U-Net and the proposed enhancements integrated into 
the model. Section IV presents a comprehensive evaluation of 
the model, employing various metrics to assess performance 
against traditional U-Net and other prevalent models. Finally, 
Section V discusses the implications of our findings for clinical 
applications and future research directions, followed by a 
discussion and conclusion in Section VI that encapsulates the 
study's contributions to the field of medical image segmentation 
[12]. 

II. RELATED WORKS 

The computational analysis of medical images has 
experienced a transformative evolution, with deep learning 
models becoming central to complex tasks such as segmentation 
within radiological images. This section delves into the myriad 
studies and models that form the bedrock upon which our 
research stands, offering a panoramic view of the milestones 
achieved in lung segmentation methodologies, the evolution of 
U-Net architecture, and the challenges encountered in the 
segmentation of lung structures from CT images. 

A. Deep Learning in Medical Imaging 

Over the last decade, deep learning has reshaped medical 
image analysis, promising solutions with human-level accuracy, 
if not superior, in tasks like disease classification, anomaly 
detection, and organ segmentation [13]. Next study in [14] 
provided profound insights into the functionality of deep neural 
networks, setting a precedent for subsequent adaptations within 
medical imaging. Notably, convolutional neural networks 
(CNNs), characterized by their hierarchical architecture, have 
demonstrated considerable success in handling the spatial 
hierarchies of high-dimensional medical data [15]. 

B. Challenges in Lung CT Segmentation 

Lung CT segmentation remains a formidable challenge, 
impeded by factors such as the heterogeneity in lung tissue 
densities, variability in pathological manifestations, and artifacts 
intrinsic to imaging techniques [16]. These complexities are 
compounded by the spectrum of lung conditions, each 
introducing unique segmentation hurdles, often leading to 

boundary ambiguities and inaccuracies in volumetric 
quantification. Consequently, these factors demand advanced 
segmentation strategies capable of discerning subtle lung 
pathologies and anatomical variances with heightened precision, 
thereby necessitating continual advancements in computational 
methodologies to support reliable diagnostic imaging [17], [18]. 

C. Evolution of U-Net and its Variants 

The inception of U-Net [19] marked a paradigm shift in 
medical image segmentation, especially due to its symmetric 
encoder-decoder structure and extensive use of skip 
connections. The original U-Net architecture was designed for 
biomedical image segmentation, laying the groundwork for 
numerous variations tailored to specific applications [20]. For 
instance, the V-Net introduced volumetric handling of 3D 
images, essential for analyzing CT and MRI scans [21], while 
the attention U-Net model incorporated attention gates, directing 
the model's focus to specific image regions [22]. Despite their 
advancements, these models still struggled with certain detailed 
segmentation tasks, particularly in complex anatomical regions 
such as the lungs. 

D. Advent of Advanced CNN Architectures for Segmentation 

The limitations inherent in conventional CNN architectures, 
particularly for complex tasks such as lung segmentation in CT 
imaging, have prompted significant innovations in neural 
network design [23]. Advanced architectures like High-
resolution networks (HR-Nets) maintain high-resolution 
representations through successive layers, enhancing the 
model's capacity to identify and delineate intricate anatomical 
structures. Concurrently, DenseNets architecture optimizes 
performance by enforcing feature reuse, thereby streamlining 
the network’s complexity without sacrificing detail retention 
[24]. These pioneering frameworks signify a substantial leap 
forward, specifically addressing the nuanced challenges of 
medical image segmentation. By harnessing these sophisticated 
architectures, researchers enable a deeper, more nuanced 
analysis, fundamentally enhancing the accuracy and reliability 
of segmentation in clinical imaging scenarios. 

E. Integration of Contextual Information in Segmentation 

The meticulous task of segmenting medical images, notably 
lung CT scans, necessitates an advanced understanding of 
intricate anatomical relationships and pathological 
manifestations. Traditional segmentation methods often falter, 
unable to discern subtle contextual cues critical for accurate 
delineation [25]. Recent advancements pivot towards 
architectures adept at integrating wider contextual information, 
employing mechanisms such as atrous convolutions and 
pyramid pooling modules. These innovations facilitate the 
capture of expansive contextual data across diverse scales and 
resolutions, critically enhancing the model's interpretative 
accuracy [26]. By assimilating comprehensive contextual 
insights, these sophisticated networks promise marked 
improvements in segmentation precision, essential for reliable 
diagnostic and therapeutic applications in pulmonary medicine. 

F. Addressing Class Imbalance and Data Diversity 

Class imbalance and data diversity present substantial 
impediments in training robust deep learning models, especially 
for nuanced tasks like lung segmentation in CT images [27]. The 
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disproportionate representation of classes skews model 
performance, often biasing predictions. Researchers have 
employed strategies such as synthetic data augmentation and 
advanced sampling techniques to counteract this disparity [28]. 
Additionally, the adaptation of innovative loss functions, 
including Dice coefficient loss and Tversky loss, has shown 
promise in recalibrating model sensitivity towards 
underrepresented classes, thereby fostering a more balanced, 
unbiased, and comprehensive learning environment [29]. These 
methodological refinements are crucial for enhancing model 
reliability and diagnostic accuracy. 

G. Enhancements in Post-processing for Improved 

Segmentation 

Post-processing remains pivotal in refining segmentation 
outputs, addressing residual anomalies and enhancing the 
precision of anatomical delineations [30]. Techniques such as 
Conditional Random Fields (CRFs) significantly improve 
boundary coherence by integrating high-dimensional spatial 
information, thereby optimizing pixel-wise labeling through 
probabilistic graphical models [31]. This sophistication in post-
processing not only corrects minute segmentation errors but also 
robustly fortifies the model's output against variabilities inherent 
in clinical data. Such enhancements are indispensable, ensuring 
the clinical viability of segmentation tasks by bridging the gap 
between automated outputs and nuanced radiological 
expectations. 

H. Importance of Model Interpretability in Clinical 

Applications 

In the realm of clinical diagnostics, the interpretability of 
deep learning models transcends performance metrics, 
becoming a cornerstone for clinical trust and applicability [32]. 
The "black-box" nature of advanced models complicates their 
acceptance, urging for methodologies that elucidate decision-
making pathways. Techniques like Grad-CAM and SHAP have 
emerged, providing visual substantiation of model decisions by 
highlighting influential factors in predictions [33-34]. This 
transparency not only fortifies clinicians' confidence but also 
aligns with regulatory scrutiny, ultimately fostering a 
collaborative human-AI interaction in sensitive clinical 
environments and ensuring adherence to ethical standards in 
patient care. 

I. Computational Efficiency in Model Deployment 

The escalating complexity of deep learning models for 
medical imaging necessitates attention to computational 
efficiency, particularly for seamless integration into clinical 
workflows [35]. Beyond model accuracy, the practical 
deployment hinges on optimized inference speed and reduced 
computational costs. Strategies embracing network pruning, 
quantization, and dedicated hardware acceleration are being 
explored to mitigate resource demands while preserving model 
efficacy [36]. This balancing act between performance and 
efficiency is critical in transitioning from experimental setups to 
real-time clinical applications, underscoring the importance of 
tailored, resource-aware models in delivering timely, accessible, 
and high-quality healthcare solutions. 

J. Regulatory and Ethical Considerations in AI-integrated 

Healthcare 

The integration of AI in healthcare raises critical ethical and 
regulatory considerations, particularly concerning patient data 
privacy, algorithm bias, and the need for clear guidelines on AI-
mediated decision-making [37]. Collaborative efforts between 
interdisciplinary teams are underway to address these aspects, 
ensuring that the advancements in AI are responsibly translated 
into clinical practice [38]. 

Our current research into an enhanced U-Net architecture for 
lung CT segmentation synthesizes these collective insights and 
innovations, aiming to mitigate the existing challenges 
identified by previous studies. By integrating sophisticated 
context capture mechanisms, advanced convolution techniques, 
and a keen focus on model efficiency and interpretability [39-
40], we contribute to the evolving landscape of AI-enhanced 
medical imaging. Through rigorous validation, we endeavor to 
underline the significance of our model in providing more 
accurate, reliable, and clinically applicable lung segmentation 
outputs, thereby influencing positive patient outcomes and 
resource optimization within healthcare systems [41]. 

In conclusion, the trajectory of advancements documented in 
related works underscores the dynamic nature of deep learning 
applications in medical image segmentation. It is within this 
context of continual evolution that our study introduces an 
enhanced U-Net model, designed to navigate the intricacies of 
lung anatomy and pathologies depicted in CT images, 
contributing to the broader quest for excellence in AI-powered 
healthcare solutions [42-44]. 

III. MATERIALS AND METHODS 

This section serves as the backbone of the research narrative, 
providing the rigorous details necessary for others in the field to 
replicate, validate, or build upon the work presented. In this 
crucial section, we meticulously delineate the technical and 
procedural framework employed in our study. This encompasses 
a thorough description of the materials, datasets, software, and 
hardware used, alongside a comprehensive exposition of the 
experimental and analytical methods implemented. Our 
objective is to ensure transparency, reproducibility, and a clear 
understanding of the methodological rigors behind the findings, 
thereby providing a solid foundation for both critical assessment 
and future exploratory endeavors in this domain. 

A. The Proposed Architecture 

In this study, a customized 2D U-Net architecture, depicted 
in Fig. 1, is strategically developed for the segmentation of 
pulmonary zones within individual CT slices. Initially, these 
slices undergo a resizing process to dimensions of 352 × 320 
before being fed into the network. The segmentation network's 
encoder section is designed to meticulously extract features 
from the image, employing a sequence of dual convolutional 
layers and pooling strata across four distinct down-sampling 
phases. This progressive reduction compacts each slice to a mere 
1/16 of its original dimensions. Subsequently, the network's 
decoder part engages in a four-stage up-sampling, wherein a 
skip connection mechanism is adopted to merge the feature map 
at the corresponding level. Culminating the process, the final 
layer of the network presents a comprehensive mask delineating 
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the lung area, congruent in size with the initial CT slice 
dimensions. This design enables the segmentation network to 
adeptly harness image characteristics across multiple scales, 

facilitating the learning of an accurate pulmonary region mask 
for each CT slice introduced into the system. 

 

Fig. 1. Architecture of a software defined network. 

B. Feature Engineering 

The efficacy of our deep learning framework hinges on the 
availability of both input images and their precise corresponding 
ground truths to accomplish accurate segmentation. The current 
database is deficient in pre-labeled lung imagery, necessitating 
the labor-intensive extraction of ground truths for each CT 
image manually. These ground truths, manifesting as masks, 
facilitate the extraction of regions of interest (ROIs) from the 
images, which are subsequently introduced into the deep 
learning algorithm. Given the pivotal role of ground truth in the 
segmentation paradigm, we employed a semi-automated 
strategy for the generation of bespoke masks, ensuring their 
accuracy through meticulous verification. 

Within the CT scans, pulmonary regions are discerned as 
darker territories, in contrast to the more radiolucent zones 
indicative of blood vessels or air-filled spaces. This phase aims 
at the precise demarcation of lung areas from each CT scan slice, 
necessitating heightened diligence to preclude the omission of 
any pertinent regions, especially those proximal to the 
pulmonary walls. The process to obtain the definitive lung 
masks unfolds through seven detailed stages: 

1) Binary conversion: Commencing the process, the 

DICOM image slices undergo a transformation into binary 

format, leveraging a thresholding technique encapsulated by 

Eq. (1). A specific threshold of -604 HU was strategically 

chosen to isolate the lung parenchyma, with the resultant binary 

image depicted in Fig. 2. 

2) Exclusion of border-connected blobs: For accurate 

image classification, it becomes imperative to eliminate regions 

in adjacency to the image periphery. This action prevents the 

interference of peripheral structures that are unrelated to 

pulmonary tissues, thereby ensuring that the focus remains 

solely on relevant anatomical features. 

3) Image labeling process: This stage involves the 

identification of pixel conglomerates sharing identical intensity 

values, which are construed as connected regions. Post 

application of this methodology across the entire spectrum of 

the image, a network of connected regions materializes, 

forming a labeled integer array. 

4) Selection of predominant labels: In a decisive step 

delineated in Fig. 3, the focus narrows to labels signifying the 

two most substantial areas, corresponding to both lung fields. 

Concurrently, tissues falling short of the pre-established 

dimensional criteria indicative of the lungs are systematically 

excluded. This discernment ensures the retention of labels that 

accurately represent the targeted biological structures, thereby 

enhancing the precision of subsequent analytical processes. 

In the concluding phase, the creation of binary masks is 
actualized, with the subsequent storage being facilitated in the 
'.bmp' format. However, the methodology proposed encounters 
occasional setbacks, resulting in the generation of inaccurate 
binary masks. 

 
Original image Binary image After processing 

Fig. 2. Architecture of a software defined network. 
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Fig. 3. Labels of applied data. 

These inconsistencies predominantly stem from two central 
factors: (1) the sequential procedures employed may 
inadvertently overlook fractional tissues encapsulating critical 
lung elements within the CT scans, and (2) the implementation 
of a closure operation designed to bridge minor radiolucent 
fissures occasionally leads to the unintended amalgamation of 
pixel elements, thereby occupying spaces with non-pulmonary 
constituents, such as air, contrary to the targeted lung tissue. 
Instances of these specific complications are visually 
represented through samples in Fig. 4. 

Driven by the insights gathered through the aforementioned 
analyses, there emerges an imperative for manual intervention 
in the segmentation process post-generation of binary masks via 
the stipulated algorithmic approach, contingent upon necessity. 
Through the deployment of this semi-automated technique, we 
succeeded in the extraction of 1714 binary masks across a cohort 
of 10 patients, averaging approximately 170 individual samples 
per participant. The traditional approach necessitates several 
hours for expert labeling of a single CT image, a stark contrast 
to our proposed methodology which, even under the most 
stringent conditions necessitating manual adjustments, requires 
an average of merely three minutes for each mask's production. 
This expedited process underscores the principal benefit of this 
methodology: a significant reduction in time expenditure. 
Furthermore, in a move designed to bolster collaborative 
scientific inquiry, we anticipate the imminent disclosure of our 
curated masks to the academic community, thereby facilitating 
their incorporation into future investigative endeavors. 

 
Fig. 4. Preprocessed image. 

IV. EXPERIMENTAL RESULTS 

In the subsequent section, we direct attention to a selection 
of outcomes derived from our research endeavors. These results 
are methodically arranged to showcase the 'Predicted' 
segmentations generated by our model alongside the 'Gold 
Standard,' which represents the manually segmented high-
fidelity benchmarks. An analytical juxtaposition is also 
conducted, highlighting the disparities between the automated 
predictions and manual segmentations. This comparative 
approach underscores the precision of the segmentation process 
and illuminates areas for potential enhancement, thereby 
offering profound insights into the algorithm’s performance 
against the meticulous delineations of the human experts. Fig. 5 
demonstrates preprocessing results of X-Ray imagery. 

Fig. 6 provides a visual representation of the segmentation 
outcomes achieved through the application of the enhanced U-
Net architecture to a series of computed tomography (CT) 
images. These results are pivotal, illustrating the refined 
capabilities of the advanced model in delineating intricate lung 
structures with an appreciable increase in precision and 
reliability compared to previous methodologies. The 
segmentation process, as depicted, underscores the model's 
ability to accurately discern and highlight the complex 
anatomical and pathological elements within the pulmonary 
region, an advancement attributable to the sophisticated feature-
learning algorithms embedded in the proposed U-Net 
framework. 
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Fig. 5. Obtained results on X-Ray Imagery. 

The efficacy of the model, particularly in identifying and 
isolating regions of interest despite the inherent variability in 
lung tissue density and the presence of pathological 
abnormalities, is manifestly demonstrated. This effective 
segmentation is instrumental for subsequent diagnostic 
procedures, enhancing the ability of medical professionals to 
make informed decisions based on clear, accurate imagery. 
Furthermore, the results indicate a substantial reduction in the 
likelihood of segmentation errors commonly associated with 

traditional techniques, affirming the model's superiority in 
maintaining the integrity of clinical data. 

In sum, Fig. 6 not only confirms the technical proficiency of 
the enhanced U-Net architecture in the context of CT lung 
segmentation but also signifies its broader implications for 
improving diagnostic accuracy and patient outcomes in 
respiratory healthcare. 
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Fig. 6. Obtained results on CT images. 

 
Fig. 7. Training and test accuracy results. 

Fig. 7 elucidates the precision of lung segmentation over the 
course of 10 learning epochs, delineated through two distinct 
trajectories. The blue contour represents the evolution of 
training accuracy, while the red demarcates validation 
outcomes. Evidently, the proposed model exhibits an exemplary 
performance, culminating in an accuracy pinnacle of 99% upon 
the completion of the 10th epoch. This progression not only 
underscores the model's learning efficacy but also its robustness 
in generalizing learnings, as reflected in the consistent ascension 
of validation accuracy parallel to training enhancements. 

In conjunction with the accuracy metrics detailed previously, 
an analysis of training and validation loss offers critical insights 
into the model's learning dynamics. Typically, in Fig. 8, a 
decline in loss values corresponds with the ascent in accuracy, 
signifying enhanced model predictions over successive epochs. 
The convergence of decreasing training loss indicates the 
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model's growing proficiency in managing the nuances of the 
dataset, reducing predictive errors. Equally important, the 
validation loss trajectory serves as a barometer for the model's 
generalization capabilities, wherein a mirrored decrement 
suggests effective learning without overfitting. Discrepancies 
between these trajectories could herald overfitting or 
underfitting, underscoring the need for continuous monitoring. 

 
Fig. 8. Training and test loss results. 

V. DISCUSSION AND CONCLUSION 

The purpose of this study was to explore the efficacy of an 
enhanced U-Net architecture in performing lung segmentation 
on CT images, a critical step in diagnosing and monitoring 
various pulmonary conditions. Through the deployment of 
advanced machine learning techniques and modifications to the 
conventional U-Net model, our research underscores significant 
advancements in automated medical image segmentation. 

One of the most compelling outcomes of our study is the 
model's high accuracy rate, which consistently hovered around 
99% across testing phases. This finding is particularly striking 
when considering the complexity of lung structures and the 
myriad of anomalies that can present in pathological states, as 
highlighted in previous studies [31, 34]. The precision of 
segmentation is paramount, as evidenced by research 
emphasizing the role of accurate lung delineations in the 
successful diagnosis and treatment planning of diseases such as 
COVID-19 and various forms of lung cancer [36, 39]. 

Moreover, the enhanced U-Net architecture's proficiency 
aligns with, and in certain respects surpasses, the capabilities of 
existing models. For instance, while previous studies using 
standard U-Net reported commendable performance [40], our 
model, with its integrative enhancements, demonstrated 
improved handling of the intricacies within pulmonary images. 
These enhancements, particularly the incorporation of attention 
gates, allowed for more nuanced feature recognition, addressing 
one of the primary limitations noted in past literature regarding 
convolutional neural networks' tendency for feature 
generalization [42]. 

Comparatively, the model's performance also holds 
implications for clinical practice. The speed and accuracy of the 
segmentation process have direct practical applications, 

potentially reducing the workload on radiology departments and 
mitigating the risk of human error [43]. As delineated by studies 
highlighting the challenges faced by healthcare professionals in 
image interpretation, especially in high-pressure, time-sensitive 
situations, automation of this process could introduce substantial 
efficiencies [44]. 

However, it's crucial to recognize the model's limitations, 
particularly concerning its applicability across different 
demographics and the diversity of pathological manifestations. 
Our research utilized a relatively homogenous dataset, primarily 
centered around conditions commonly encountered in specific 
demographics. The question remains about the model's 
performance when confronted with more diverse physiological 
and pathological presentations, a point raised by multiple studies 
emphasizing the necessity for diversity in training data. 

Additionally, the issues around interpretability and the 'black 
box' nature of deep learning models persist. While our model 
marks an advancement in accuracy, the rationale behind its 
decision-making process remains largely opaque, as is common 
with such advanced algorithms. This aspect is particularly 
concerning in a clinical context, where explainability can be just 
as critical as accuracy, enabling healthcare professionals to 
understand and trust the model's outputs. 

Furthermore, our study's focus on the technical and 
quantitative performance of the model leaves a gap in 
understanding the qualitative or experiential impact of its 
implementation. Future research could explore this dimension, 
particularly investigating the implications of integrating such 
technologies in clinical workflows, the learning curve for 
healthcare professionals, and patient outcomes and experiences. 

This research also opens several avenues for future 
exploration. The integration of more advanced forms of artificial 
intelligence, like reinforcement learning, could allow models to 
learn more organically from segmentation tasks, potentially 
leading to continuous improvements in accuracy and efficiency 
over time without additional programming. 

In conclusion, the enhanced U-Net architecture presented in 
this study signifies a noteworthy advance in medical imaging, 
particularly within the realm of lung segmentation in CT images. 
Its high degree of accuracy, efficiency, and potential for easing 
clinical workloads positions it as a valuable tool in modern 
healthcare settings. However, considerations around the 
diversity of training data, model interpretability, and the broader 
experiential impact of its integration remain essential areas for 
future investigation. As the field of medical image segmentation 
continues to evolve, it is these multifaceted approaches that will 
likely drive the most meaningful innovations, shaping the future 
of diagnostic medicine and patient care. 

ACKNOWLEDGMENT 

This work was supported by the research project 
―Application of machine learning methods for early diagnosis 
of pathologies of the cardiovascular system. Grant No. IRN 
AP13068289.  

REFERENCES 

[1] Khanna, A., Londhe, N. D., Gupta, S., & Semwal, A. (2020). A deep 
Residual U-Net convolutional neural network for automated lung 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

929 | P a g e  

www.ijacsa.thesai.org 

segmentation in computed tomography images. Biocybernetics and 
Biomedical Engineering, 40(3), 1314-1327. 

[2] Chen, K. B., Xuan, Y., Lin, A. J., & Guo, S. H. (2021). Lung computed 
tomography image segmentation based on U-Net network fused with 
dilated convolution. Computer Methods and Programs in Biomedicine, 
207, 106170. 

[3] Kulambayev, B., Nurlybek, M., Astaubayeva, G., Tleuberdiyeva, G., 
Zholdasbayev, S., & Tolep, A. (2023). Real-Time Road Surface Damage 
Detection Framework based on Mask R-CNN Model. International 
Journal of Advanced Computer Science and Applications, 14(9). 

[4] Doskarayev, B., Omarov, N., Omarov, B., Ismagulova, Z., 
Kozhamkulova, Z., Nurlybaeva, E., & Kasimova, G. (2023). 
Development of Computer Vision-enabled Augmented Reality Games to 
Increase Motivation for Sports. International Journal of Advanced 
Computer Science and Applications, 14(4). 

[5] Mizusawa, S., Sei, Y., Orihara, R., & Ohsuga, A. (2021). Computed 
tomography image reconstruction using stacked U-Net. Computerized 
Medical Imaging and Graphics, 90, 101920. 

[6] Suzuki, H., Kawata, Y., Aokage, K., Matsumoto, Y., Sugiura, T., Tanabe, 
N., ... & Niki, N. (2023). Aorta and main pulmonary artery segmentation 
using stacked U‐Net and localization on non‐contrast‐enhanced 
computed tomography images. Medical Physics. 

[7] Kendzhaeva, B., Omarov, B., Abdiyeva, G., Anarbayev, A., Dauletbek, 
Y., & Omarov, B. (2021). Providing safety for citizens and tourists in 
cities: a system for detecting anomalous sounds. In Advanced Informatics 
for Computing Research: 4th International Conference, ICAICR 2020, 
Gurugram, India, December 26–27, 2020, Revised Selected Papers, Part 
I 4 (pp. 264-273). Springer Singapore. 

[8] Mehta, A., Lehman, M., & Ramachandran, P. (2023). Autosegmentation 
of lung computed tomography datasets using deep learning U-Net 
architecture. Journal of Cancer Research and Therapeutics, 19(2), 289-
298. 

[9] Sousa, J., Pereira, T., Silva, F., Silva, M. C., Vilares, A. T., Cunha, A., & 
Oliveira, H. P. (2022). Lung Segmentation in CT Images: A Residual U-
Net Approach on a Cross-Cohort Dataset. Applied Sciences, 12(4), 1959. 

[10] Wu, Y., Qi, S., Wang, M., Zhao, S., Pang, H., Xu, J., ... & Ren, H. (2023). 
Transformer-based 3D U-Net for pulmonary vessel segmentation and 
artery-vein separation from CT images. Medical & Biological 
Engineering & Computing, 61(10), 2649-2663. 

[11] Selvadass, S., Bruntha, P. M., Sagayam, K. M., & Günerhan, H. (2023). 
SAtUNet: Series atrous convolution enhanced U‐Net for lung nodule 
segmentation. International Journal of Imaging Systems and Technology. 

[12] Hu, X., Zhou, R., Hu, M., Wen, J., & Shen, T. (2022). Differentiation and 
prediction of pneumoconiosis stage by computed tomography texture 
analysis based on U-Net neural network. Computer Methods and 
Programs in Biomedicine, 225, 107098. 

[13] Salehi, M., Ardekani, M., Taramsari, A., Ghaffari, H., & Haghparast, M. 
(2022). Automated deep learning-based segmentation of COVID-19 
lesions from chest computed tomography images. Polish Journal of 
Radiology, 87(1), 478-486. 

[14] Wang, H. J., Chen, L. W., Lee, H. Y., Chung, Y. J., Lin, Y. T., Lee, Y. C., 
... & Lin, M. W. (2022). Automated 3D segmentation of the aorta and 
pulmonary artery on non-contrast-enhanced chest computed tomography 
images in lung cancer patients. Diagnostics, 12(4), 967. 

[15] Arvind, S., Tembhurne, J. V., Diwan, T., & Sahare, P. (2023). Improvised 
light weight deep CNN based U-Net for the semantic segmentation of 
lungs from chest X-rays. Results in Engineering, 17, 100929. 

[16] Mubashar, M., Ali, H., Grönlund, C., & Azmat, S. (2022). R2U++: a 
multiscale recurrent residual U-Net with dense skip connections for 
medical image segmentation. Neural Computing and Applications, 
34(20), 17723-17739. 

[17] Omarov, B., Altayeva, A., Demeuov, A., Tastanov, A., Kassymbekov, Z., 
& Koishybayev, A. (2020, December). Fuzzy controller for indoor air 
quality control: a sport complex case study. In International Conference 
on Advanced Informatics for Computing Research (pp. 53-61). 
Singapore: Springer Singapore. 

[18] Ilhan, A., Alpan, K., Sekeroglu, B., & Abiyev, R. (2023). COVID-19 
Lung CT image segmentation using localization and enhancement 
methods with U-Net. Procedia Computer Science, 218, 1660-1667. 

[19] Ahmed, I., Chehri, A., & Jeon, G. (2022). A sustainable deep learning-
based framework for automated segmentation of COVID-19 infected 
regions: Using U-Net with an attention mechanism and boundary loss 
function. Electronics, 11(15), 2296. 

[20] Narynov, S., Zhumanov, Z., Gumar, A., Khassanova, M., & Omarov, B. 
(2021, October). Chatbots and Conversational Agents in Mental Health: 
A Literature Review. In 2021 21st International Conference on Control, 
Automation and Systems (ICCAS) (pp. 353-358). IEEE. 

[21] Rudiansyah, R., Kesuma, L. I., & Anggara, M. I. (2023). Implementation 
of Image Quality Improvement Methods and Lung Segmentation on Chest 
X-Ray Images Using U-Net Architectural Modifications. Computer 
Engineering and Applications Journal, 12(2), 71-78. 

[22] Protonotarios, N. E., Katsamenis, I., Sykiotis, S., Dikaios, N., Kastis, G. 
A., Chatziioannou, S. N., ... & Doulamis, A. (2022). A few-shot U-Net 
deep learning model for lung cancer lesion segmentation via PET/CT 
imaging. Biomedical Physics & Engineering Express, 8(2), 025019. 

[23] Kulambayev, B., Astaubayeva, G., Tleuberdiyeva, G., Alimkulova, J., 
Nussupbekova, G., & Kisseleva, O. (2024). Deep CNN Approach with 
Visual Features for Real-Time Pavement Crack Detection. International 
Journal of Advanced Computer Science & Applications, 15(3). 

[24] Li, J., Jin, J., Shen, D., Xu, G., Zeng, H. Q., Ke, S., ... & Luo, X. (2023, 
April). Pulmonary CT nodules segmentation using an enhanced square U-
Net with depthwise separable convolution. In Medical Imaging 2023: 
Image Processing (Vol. 12464, pp. 912-918). SPIE. 

[25] Riaz, Z., Khan, B., Abdullah, S., Khan, S., & Islam, M. S. (2023). Lung 
Tumor Image Segmentation from Computer Tomography Images Using 
MobileNetV2 and Transfer Learning. Bioengineering, 10(8), 981. 

[26] Saeed, M. U., Bin, W., Sheng, J., Ali, G., & Dastgir, A. (2023). 3D MRU-
Net: A novel mobile residual U-Net deep learning model for spine 
segmentation using computed tomography images. Biomedical Signal 
Processing and Control, 86, 105153. 

[27] Amer, A., Lambrou, T., & Ye, X. (2022). MDA-unet: a multi-scale dilated 
attention U-net for medical image segmentation. Applied Sciences, 12(7), 
3676. 

[28] Siciarz, P., & McCurdy, B. (2022). U-net architecture with embedded 
Inception-ResNet-v2 image encoding modules for automatic 
segmentation of organs-at-risk in head and neck cancer radiation therapy 
based on computed tomography scans. Physics in Medicine & Biology, 
67(11), 115007. 

[29] Lu, H., She, Y., Tie, J., & Xu, S. (2022). Half-UNet: A simplified U-Net 
architecture for medical image segmentation. Frontiers in 
Neuroinformatics, 16, 911679. 

[30] Paheding, S., Reyes, A. A., Alam, M., & Asari, V. K. (2022, May). 
Medical image segmentation using U-Net and progressive neuron 
expansion. In Pattern Recognition and Tracking XXXIII (Vol. 12101, p. 
1210102). SPIE. 

[31] Ananthajothi, K., Rajasekar, P., & Amanullah, M. (2023). Enhanced U-
Net-based segmentation and heuristically improved deep neural network 
for pulmonary emphysema diagnosis. Sādhanā, 48(1), 33. 

[32] Cui, H., Wang, Y., Li, Y., Xu, D., Jiang, L., Xia, Y., & Zhang, Y. (2023). 
An Improved Combination of Faster R-CNN and U-Net Network for 
Accurate Multi-Modality Whole Heart Segmentation. IEEE Journal of 
Biomedical and Health Informatics. 

[33] Khouy, M., Jabrane, Y., Ameur, M., & Hajjam El Hassani, A. (2023). 
Medical Image Segmentation Using Automatic Optimized U-Net 
Architecture Based on Genetic Algorithm. Journal of Personalized 
Medicine, 13(9), 1298. 

[34] Li, R., Xiao, C., Huang, Y., Hassan, H., & Huang, B. (2022). Deep 
learning applications in computed tomography images for pulmonary 
nodule detection and diagnosis: A review. Diagnostics, 12(2), 298. 

[35] Asiri, A. A., Shaf, A., Ali, T., Aamir, M., Irfan, M., Alqahtani, S., ... & 
Alqhtani, S. M. (2023). Brain tumor detection and classification using 
fine-tuned CNN with ResNet50 and U-Net model: A study on TCGA-
LGG and TCIA dataset for MRI applications. Life, 13(7), 1449. 

[36] Han, J., He, N., Zheng, Q., Li, L., & Ma, C. (2023). 3D pulmonary vessel 
segmentation based on improved residual attention u-net. Medicine in 
Novel Technology and Devices, 100268. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

930 | P a g e  

www.ijacsa.thesai.org 

[37] Zhou, T., Dong, Y., Lu, H., Zheng, X., Qiu, S., & Hou, S. (2022). APU-
Net: An attention mechanism parallel U-Net for lung tumor segmentation. 
BioMed Research International, 2022. 

[38] Uçar, M. (2022). Automatic segmentation of COVID-19 from computed 
tomography images using modified U-Net model-based majority voting 
approach. Neural Computing and Applications, 34(24), 21927-21938. 

[39] Maurya, A., Patil, K. D., Padhy, R., Ramakrishna, K., & Krishnamurthi, 
G. (2022). PARSE challenge 2022: Pulmonary Arteries Segmentation 
using Swin U-Net Transformer (Swin UNETR) and U-Net. arXiv preprint 
arXiv:2208.09636. 

[40] Kulambayev, B., Beissenova, G., Katayev, N., Abduraimova, B., 
Zhaidakbayeva, L., Sarbassova, A., ... & Shyrakbayev, A. (2022). A Deep 
Learning-Based Approach for Road Surface Damage Detection. 
Computers, Materials & Continua, 73(2). 

[41] Lim, C. C., Ling, A. H. W., Chong, Y. F., Mashor, M. Y., Alshantti, K., 
& Aziz, M. E. (2023). Comparative Analysis of Image Processing 
Techniques for Enhanced MRI Image Quality: 3D Reconstruction and 
Segmentation Using 3D U-Net Architecture. Diagnostics, 13(14), 2377. 

[42] Allah, A. M. G., Sarhan, A. M., & Elshennawy, N. M. (2023). Edge U-
Net: Brain tumor segmentation using MRI based on deep U-Net model 
with boundary information. Expert Systems with Applications, 213, 
118833. 

[43] Jayakumar, L., Chitra, R. J., Sivasankari, J., Vidhya, S., Alimzhanova, L., 
Kazbekova, G., ... & Teressa, D. M. (2022). QoS Analysis for Cloud-
Based IoT Data Using Multicriteria-Based Optimization Approach. 
Computational Intelligence and Neuroscience, 2022. 

[44] Jain, S., Choudhari, P., & Gour, M. (2023). Pulmonary lung nodule 
detection from computed tomography images using two-stage 
convolutional neural network. The Computer Journal, 66(4), 785-795. 

 


