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Abstract—Ozone layer depletion has gained attention as a 

serious environmental issue. Because of its effects on human health 

especially skin cancer. Besides, Ultraviolet (UV) radiation is 

known to be a major risk factor for skin cancer. For instance, it 

can damage the DNA in skin cells leading to mutations that may 

eventually result in cancerous growth. Basal cell carcinoma, 

squamous cell carcinoma, and melanoma are the three primary 

forms of skin cancer linked to UV exposure. Additionally, it 

triggers associated illnesses including nevus, seborrheic keratosis, 

actinic keratosis, dermatofibroma, and vascular lesions. Many 

medical and computer studies were published as a result to 

address these disorders. Especially, using an aspect of deep 

learning that is transfer learning and fine-tuning for the 

classification of skin images. In this research, the 

EffecientSkinCaSV2B3 framework was proposed and applied to 

classify and segment the skin cancer dataset, which were collected 

and validated by The International Skin Imaging Collaboration 

(ISIC). In addition, Gradient-weighted Class Activation Mapping 

(Grad-CAM) is used in skin cancer classification to visually 

explain images, aiding in understanding model decisions and 

highlighting important areas. Based on color and texture, k-means 

clustering was used for the segmentation between portions that 

were healthy and those that were unhealthy. The study reached a 

surprising accuracy of 84.91% in nine classes of classifying skin 

cancer. In other experiments, the customized EfficientNetV2B3 

model achieved 94.00% in classifying malign and benign. 

Moreover, scenarios pointed out that in classifying six classes (i.e., 

between benign skin diseases) and three classes (i.e., between 

malign skin diseases) the model earned a high accuracy of 89.56% 

and 96.74%, respectively. 

Keywords—Skin cancer; Convolutional Neural Network (CNN); 

transfer learning; fine tuning; classification; segmentation; 

EffecientNetB3V2 

I. INTRODUCTION  

The progressive thinning of the ozone layer in the upper 
atmosphere as a result of chemicals released by businesses or 
other human activities is known as ozone layer depletion. 
Nowadays, the depletion of the ozone layer is a serious issue that 
releases various problems such as climate change, melting ice, 
and health issues. In particular, ozone layer depletion creates an 
increase in UV radiation on the surface of the earth. Moreover, 
UV radiation exposure has been the primary reason responsible 
for the development of skin cancer in recent decades [1]. The 
effects of skin cancer on health extend beyond the physical, 
often causing emotional damage. Patients may experience 
heightened anxiety, depression, and a diminished quality of life 

as they navigate the complexities of diagnosis, treatment, and 
potential recurrence. Moreover, the visible nature of skin cancer 
lesions can contribute to feelings of self-consciousness and 
social isolation, exacerbating the emotional damage of the 
disease. 

During the research, 649,2 new melanoma skin cancer cases 
occurred in men, women, and both sexes per 100,000 persons in 
2020 (i.e., the ratios for men, women, and both sexes are 173.8, 
150.8, and 324.6, respectively) [2]. Moreover, according to the 
number of new cases and deaths from skin cancer in the USA 
(excluding dependent countries) and China (excluding the 
province of Taiwan) in 2022. In total, it is anticipated that in 
China and the USA, there will be roughly 8114 and 99.935 
people newly diagnosed with melanoma skin cancer, and 4369 
and 7530 people dying from melanoma skin cancer, respectively 
[3]. According to statistics on skin cancer at the National 
Hospital of Dermatology and Venereology from 2017 to 2021. 
Basal cell carcinoma was the most common type of skin cancer, 
followed by squamous cell carcinoma and melanoma. In 
addition, the majority of patients were over 60 years old, and 
there was an increase in the proportion of patients under 60 years 
old over the years [4]. 

Fortunately, advancements in medical science have led to a 
variety of treatment options for skin cancer, offering hope to 
those affected by this insidious disease. The choice of treatment 
depends on factors such as the type and stage of cancer, as well 
as the overall health and preferences of patients. Surgical 
interventions, such as excisional surgery and Mohs 
micrographic surgery, remain primary options for removing 
cancerous lesions while preserving as much healthy tissue as 
possible. In cases where surgery may not be feasible, other 
modalities such as radiation therapy, chemotherapy, 
immunotherapy, and targeted therapy may be used to combat the 
disease at its source. Additionally, early detection plays an 
important role in improving treatment outcomes and reducing 
the risk of complications. Regular skin examinations by 
dermatologists and self-checks at home can help identify 
suspicious growths or changes in existing moles, prompting 
timely medical intervention. However, with advances in medical 
technology, computer technology, and increased awareness of 
preventive measures, individuals can employ technology to 
minimize their risk of developing this disease and seek prompt 
treatment. Thus, applying artificial intelligence (I.e., AI) has 
become popular in recent years in classifying and detecting 
illnesses [5][6][7]. 
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A subset of machine learning in AI is deep learning, it has 
revolutionized the field of image analysis [8][9][10][11][12]. 
Deep learning models mimic the ability to process and recognize 
patterns of the human brain such as CNN. These models consist 
of multiple layers of interconnected neurons, each layer learning 
increasingly abstract features from the input data. Deep learning 
algorithms examine pictures of skin lesions and extract minute 
details that might not be visible to the human eye to classify skin 
cancer. Through the process of training on large datasets of 
labeled skin images, deep learning models become adept at 
distinguishing between benign and malignant lesions with high 
accuracy, providing valuable support to dermatologists in 
clinical decision-making. One of the leading methodologies 
used in skin cancer classification is transfer learning and fine-
tuning. Transfer learning is the process of applying pre-trained 
neural network models on a large dataset for a different job to a 
particular classification problem [13][14][15], such as 
identifying malignant or benign skin lesions. Contrarily, fine-
tuning is the process of retraining the previously trained model 
on a smaller dataset pertinent to the intended job [16][17][18], 
allowing its parameters to be optimized for optimal 
performance. 

In general, the utilization of AI techniques in the diagnosis 
and treatment of medical become popular around the world. 
Especially, in image classification and segmentation by transfer 
learning combined with fine-tuning which created several 
successful promotions on both sides of computer and medical 
science. EfficientSkinCaSV2B3 framework provided computer 
vision technology for the classification and segmentation of skin 
cancer illnesses by employing transfer learning and fine-tuning 
in a customized CNN model. In addition, Grad-CAM was 
applied for visual explanation that helped create an overall 
vision for the final analysis. Furthermore, k-means clustering is 
a suitable technology used for image segmentation which 
provides extremely good results. 

The contributions of this paper are as follows: 

 In a classification of nine classes of skin cancer (i.e., 
includes actinic keratosis, basal cell carcinoma, 
dermatofibroma, melanoma, nevus, pigmented benign, 
keratosis, seborrheic keratosis, squamous cell 
carcinoma, and vascular lesion), our study demonstrated 
a custom CNN model based on EffecientNetV2B3 with 
successfully effective in multiple classes. Thus, it offers 
a time-saving and easy way for the dermatologist and 
patient when diagnose abnormal positions on the skin 
early.   

 In the scenario of nine classes classification, our model 
reached outstanding validation accuracy, test accuracy, 
and F1 score (i.e., 85.13%, 84.91%, and 84.68%). 
Consequently, tables and confusion matrices were also 
created to show the effectiveness of the training and 
testing duration of the model. 

 Grad-CAM is provided as a tool in skin cancer 
classification by elucidating pertinent features utilized by 
models for decision-making. It enables doctors and 
researchers to understand model predictions with 
increasing diagnostic confidence. By highlighting 
regions. Grad-CAM aids in the interpretation of model 

outputs ultimately facilitating accurate classification of 
skin lesions for improved patient care. 

 In this article, K-means clustering was proposed in skin 
cancer segmentation which supports categorizing lesions 
based on features like color, texture, and size. This 
method assists in identifying distinct regions within an 
image and helps precise delineation of cancerous areas 
for diagnostic purposes, treatment planning, and 
monitoring disease progression. 

 This research gathered a dataset consisting of 2357 
images of malignant and benign oncological diseases, 
which were formed by the ISIC. This dataset is verified 
for the development of automated machine learning and 
deep learning algorithms for the classification and 
segmentation of skin diseases. In addition, it can also be 
used to instruct students studying medical. 

The structure of the research paper is created by six principal 
sections. Firstly, Section I presents an overview providing a 
general introduction to the article. After that, Section II provides 
a comprehensive analysis of the body of literature that serves as 
the foundation for our study and identifies relevant studies. 
Subsequently, Section III illustrates the methodology employed 
which provides detailed insights into the methods used 
throughout the article. Section IV indicates experiments, 
including the procedures for their execution and the evaluation 
of each scenario. Moreover, Section V presents the results of the 
most important experiment and conducts a comparative analysis 
with existing scenarios. Finally, the article summarizes the key 
and analyzes the overview of our research in Section VI. 

II. RELATED WORK 

Recent advancements in classification and segmentation 
research have witnessed a surge in deep learning approaches, 
particularly in the area of computer vision. CNN continues to 
control these fields due to their remarkable ability to extract 
features hierarchically from data. In addition. Techniques such 
as transfer learning and fine-tuned created for specific tasks have 
gained traction enabling effective classification and 
segmentation even with limited data. Moreover, Researchers are 
increasingly focusing on developing more robust architectures 
capable of handling diverse datasets with improved accuracy 
and efficiency. Ahmed Abdelhafeez et al proposed a customized 
CNN model to classify eight classes of skin cancer and reached 
a surprising accuracy of 85.74% when compared with 
GoogleNet and DarkNet[19].  Additionally, Pooja Nadiger et al 
developed a CNN for skin cancer detection and achieved an 
accuracy of 90% in classifying skin lesions as benign or 
malignant [20]. 

Skin cancer is one of those deadly diseases where survival 
depends on early identification. In recent years, a lot of studies 
about deep learning models have been published. Mijwil et al 
selected and trained 24,000 skin cancer images between two 
classes by CNN model applying three architectures (i.e., 
InceptionV3, ResNet, and VGG19). Consequently, the best 
architecture InceptionV3 achieved a diagnostic accuracy of 
86.90% [21]. Furthermore, Karar Ali et al trained and evaluated 
seven classes on EfficientNets B0 to B7 and achieved the best 
result in EfficientNet B4 with an accuracy of 87.91% [22]. 
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Moreover, Solene Bechelli et al used fine-tuning in the VGG16 
model to perform extremely well for skin tumor classification of 
88% in two classes of classification [23]. 

Various techniques have been proposed to improve the 
accuracy of classification. In a comparative analysis, Krishna 
Mridha et al optimized CNN to identify the seven forms of skin 
cancer and reached a high accuracy of 82% [24]. Moreover, 
Duggani Keerthana et al proposed a DenseNet-201 and 
MobileNet model for skin cancer classification using the dataset 
of benign and malignant. The top-performing networks achieved 
accuracies of 88.02% [25]. In addition, Satin Jain et al pointed 
out that the XceptionNet model outperforms the rest of the 
transfer learning nets used for the study, with an accuracy of 
90.48% for the classification of seven classes [26]. Besides, 
Ayesha Atta et al employed a customized CNN model with 3600 
images of malignant and benign for classifying and gained an 
accuracy of 86.23% [27]. 

Advances in science and technology have promoted 
developments in the classification and segmentation of skin 
diseases. According to Vatsala Anand et al, one flattening layer, 
two dense layers with activation functions (LeakyReLU), and 
another dense layer with activation function (sigmoid) are added 
to a pre-trained VGG16 model to increase its performance. This 
model achieves an overall accuracy of 89.09% in identifying 
benign and malignant skin cancer [28]. Md Shahin Ali et al 
propose a deep convolutional neural network (DCNN) model 
based on a deep learning approach and compared it with transfer 
learning models such as AlexNet, ResNet, VGG-16, DenseNet, 
and MobileNet for the accurate classification between benign 
and malignant. Thus, the model obtained the highest 91.93% 
testing accuracy [29]. After several adjustments to the 
parameters and classification functions, Dipu Chandra Malo et 
al proposed VGG-16 model demonstrated a positive 
development and attained an accuracy of 87.6% [30]. 

The modern world is full of terrible diseases. Among them 
is skin cancer. Because skin cancer cells grow and spread like 
tumors in the human body. As a result, Mohammed Rakeibul 
Hasan et al compared several models in CNN and proposed the 
result that VGG16 provided the highest accuracy of 93.18% in 
classifying benign and malignant [31]. Additionally, 
Abdurrahim Yilmaz et al employed transfer learning and fine-
tuning approaches and deep learning models in 3 different 
mobile deep learning models and 3 different batch sizes. 
Consequently, NASNetMobile gained the best outcome with an 
accuracy of 82% [32]. Furthermore, Chandran Kaushik Viknesh 
et al used convolutional neural networks, including AlexNet, 
LeNet, and VGG-16 models to gain a 91% accuracy rate after 
100 compute epochs for classifying benign and malignant in 
ISIC datasets [33]. 

In conclusion, existing research on skin cancer classification 
demonstrates progress but faces challenges. Compared to human 
diagnosis, machine-learning models show lower accuracy, 
indicating the need for further refinement. Despite 
advancements, closing the gap between automated systems and 
human expertise remains a critical objective for enhancing 
diagnostic capabilities. 

III. METHODOLOGY 

A. The Research Implementation Procedure 

12 steps of the pipeline this study suggested are depicted in 
Fig. 1. The following roles of the steps are displayed: 

1) Collecting dataset: Curated meticulously by the 

International Skin Imaging Collaboration (ISIC), the dataset 

comprises 2357 high-resolution images encompassing a 

spectrum of skin cancer types, including Actinic keratosis, 

Basal cell carcinoma, Dermatofibroma, Melanoma, Nevus, 

Pigmented benign keratosis, Seborrheic keratosis, Squamous 

cell carcinoma, and Vascular lesion. Each image has undergone 

rigorous validation procedures to ensure accuracy and 

reliability. This compilation serves as an invaluable asset for 

scholarly investigations, providing comprehensive insights into 

the classification and management of skin cancer. 

2) Pre-processing image and data augmentation: Image 

pre-processing techniques are crucial in refining input data for 

enhanced model performance. Key procedures like resizing and 

normalization are essential for standardizing images, and 

fostering consistency across datasets. Additionally, leveraging 

data augmentation methods such as rotation, flipping, and 

contrast enhancement diversifies the dataset, enriching the 

ability to generalize and learn from various skin lesion 

presentations of the model. These preprocessing steps 

contribute to improved accuracy and aid in the robustness and 

reliability of skin cancer classification models. 

3) Dividing the dataset into three categories train, 

validation, and test:  After being randomly chosen on an 8-1-1 

scale, the datasets are organized into 8 training, 1 validation, 

and 1 testing folder. This ensures a balanced distribution, which 

is necessary for reliable model construction and assessment. 

4) Dividing dataset for scenarios: The dataset was 

partitioned into four scenarios. In the initial scenario, nine 

classes including actinic keratosis, basal cell carcinoma, 

dermatofibroma, melanoma, nevus, pigmented benign 

keratosis, seborrheic keratosis, squamous cell carcinoma, and 

vascular lesion were chosen due to their distinguishability 

through surface observation. Following this, the second 

scenario comprised two classes: benign and malignant, 

focusing on internal characteristics. The third scenario 

encompassed six classes dedicated to the classification of 

benign conditions. Finally, the fourth scenario involved three 

classes specifically targeting malignant cases. 

5) Building the model: The study employed transfer 

learning with the EfficientNetV2B3 model, a pre-trained 

convolutional neural network architecture for conducting 

experiments. During fine-tuning, external layers were utilized 

to adapt the pre-trained model to the specific data of the skin 

cancer classification task. The evaluation of training results 

indicates that the EfficientNetV2B3 model achieved excellent 

performance, particularly in skin cancer classification. 
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Fig. 1. The EfficientSkinCaSV2B3 framework. 

6) Applying transfer learning: Transfer learning in skin 

cancer detection works by utilizing pre-trained models that 

have been trained on large datasets, often of general images. 

These models have already learned features that are useful for 

image recognition tasks. Instead of training a model from 

scratch, transfer learning involves taking these pre-trained 

models and adapting them to the specific task of skin cancer 

detection. 

7) Validating and collecting accuracy score: Once the 

model finished training, its efficacy was evaluated based on its 

training accuracy and other performance metrics. 

Subsequently, the validity of the test was assessed using the 

initially separated testing set. 

8) Applying fine-tuning: Fine-tuning includes taking a 

pre-trained model and adjusting its parameters to specialize in 

a specific task, such as skin cancer detection. This process 

optimizes the model's performance for the new task by adapting 

its learned features and weights. It improves accuracy without 

requiring extensive training on a new dataset.  

9) Validating, collecting, and explaining results with 

Grad-CAM: Validating results with Grad-CAM highlights 

regions important for classification, and researchers gain 

insight into the decision-making process of the model. This 

method helps explain model predictions by visually indicating 

which parts of the image contribute most significantly. By 

validating, collecting, and explaining results with Grad-CAM, 

this research enhances transparency and confidence in the 

model's performance, aiding in the development of more 

accurate and interpretable skin cancer detection systems. 

10) Image segmentation by k-means clustering: By 

iteratively assigning pixels to clusters with similar 

characteristics, k-means effectively separates skin lesions from 

healthy tissue. This method aids in identifying the boundaries 

of lesions, facilitating accurate diagnosis and treatment 

planning. By segmenting skin cancer images with k-means 

clustering, dermatologists can efficiently analyze lesion 

morphology and texture, improving the precision of diagnostic 

assessments and enhancing patient care. 

11) Reconstructing and comparing the cycles with other 

models: To arrive at the final outcome, the process was revised 

and compared with another model, which included 

ResNet50V2, MobileNetV2, MobileNet, EffecientNetB3, and 

ResNet50. 

12) Showing the result: Following established procedures, 

the data will be meticulously organized into tables and graphs, 

allowing for precise and pertinent comparisons to be made with 

ease, thereby enhancing the depth of analysis and 

understanding. 

B. Pre-processing Image and Data Augmentation 

In the region of classifying skin cancer using transfer 
learning and fine-tuning techniques, pre-processing and data 
augmentation play important roles in increasing the 
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effectiveness of the model. Pre-processing means preparing the 
raw data to make it suitable for training, while data 
augmentation aims to increase the diversity of the training data 
to improve the robustness and generalization of the model. 

a) Pre-processing: Pre-processing in this research 

includes two key steps: resizing (1) and normalization (2). 

Resizing (1) is a crucial step to ensure that all input images are 

of the same dimensions, which is necessary for feeding them 

into the neural network. This step is crucial because neural 

networks require fixed-size inputs. Let 𝐼  (1) be the original 

image, 𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑  (1) represents the resized image, and 𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑  

(1) denotes the desired dimensions. The resizing process can be 

represented mathematically as: 

𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑 = 𝑟𝑒𝑠𝑖𝑧𝑒(𝐼, 𝐷𝑑𝑒𝑠𝑖𝑟𝑒𝑑)                    (1) 

Normalization (2) means scaling the pixel values of the 
images to a standard range, often between 0 and 1 or -1 and 1. 
This step helps in stabilizing and speeding up the training 
process by ensuring that all input features have a similar scale. 
Let 𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑  (2) indicates the normalized image, and 𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑  
(2) represents the resized image, 𝑚𝑖𝑛  and 𝑚𝑎𝑥  show the 
minimum and maximum pixel values respectively. The 
normalization process can be expressed mathematically as: 

𝐼𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑−min(𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑)

max(𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑)−min(𝐼𝑟𝑒𝑠𝑖𝑧𝑒𝑑)
#                 (2) 

b) Data augmentation: Data augmentation connects 

creating new training samples by applying various 

transformations to the existing data. This technique helps in 

increasing the variability and diversity of the dataset, thereby 

reducing overfitting and improving the ability to generalize to 

unseen data. Three common augmentation techniques include 

rotation (3), flipping (4), and contrast enhancement (5).  

Rotation involves rotating the images by a certain angle. Let 
𝐼 (3) be the original image, 𝜃 (3) presents the rotation angle, and 
𝐼𝑟𝑜𝑡𝑎𝑡𝑒𝑑  (3) represent the rotated image. The rotation process can 
be mathematically expressed as: 

𝐼𝑟𝑜𝑡𝑎𝑡𝑒𝑑 = 𝑟𝑜𝑡𝑎𝑡𝑒(𝐼, 𝜃)                          (3) 

Flipping horizontally or vertically involves flipping the 
images along the horizontal or vertical axis. Let 𝐼 (4) denote the 
original image, and 𝐼𝑓𝑙𝑖𝑝𝑝𝑒𝑑  (4) represent the flipped image. The 

flipping process can be represented as: 

𝐼𝑓𝑙𝑖𝑝𝑝𝑒𝑑 = 𝑓𝑙𝑖𝑝(𝐼)                                   (4) 

Contrast enhancement involves adjusting the contrast of the 
images to make features more discernible. Let 𝐼 (5) presents the 
original image, and 𝐼𝑒𝑛𝑐ℎ𝑎𝑛𝑐𝑒𝑑  (5) represent the contrast-
enhanced image. The contrast enhancement process can be 
expressed as: 

𝐼𝑒𝑛𝑐ℎ𝑎𝑛𝑐𝑒𝑑 = 𝑒𝑛𝑐ℎ𝑎𝑛𝑐𝑒𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡(𝐼)                      (5) 

In summary, pre-processing and data augmentation are 
important steps in the classification of skin cancer. Pre-
processing ensures that the input data is standardized and ready 
for training, while data augmentation increases the diversity of 
the dataset, leading to more robust and generalized models. By 
carefully applying these techniques, researchers and 

practitioners can improve the performance of skin cancer 
classification models and contribute to more accurate diagnosis 
and treatment decisions. 

C. Transfer Learning and Fine-tuning of EffecientNetV2B3 

Transfer learning means using a pre-trained model that has 
been trained on a large dataset, and applying it to a different but 
related task, such as classifying skin cancer images. Instead of 
training a model from scratch, transfer learning utilizes the 
knowledge gained from solving one problem and applying it to 
a different but related problem [13][14][15]. On the other hand, 
fine-tuning means using a pre-trained model and further training 
it on a new dataset specific to the task [16][17][18]. This allows 
the model to adapt to the nuances of the new dataset while 
retaining the general knowledge learned during pre-training. 

 
Fig. 2. Procedure of transfer learning and fine-tuning in our model with 

custom layers. 
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EfficientNetV2B3 is a convolutional neural network 
architecture known for its efficiency and effectiveness in image 
classification tasks. The additional layers mentioned in Fig. 2, 
such as GlobalMaxPooling2D, Batch Normalization, and 
Dropout (0.15). In addition, hidden layers consisting of Dense 
units with ReLU activation, Batch Normalization, and Dropout 
(0.2), followed by a Dense layer with 9 units and softmax 
activation, are commonly used to enhance the performance of 
the model. 

GlobalMaxPooling2D reduces the spatial dimensions of the 
feature maps, summarizing them into a single vector. Batch 
Normalization normalizes the activations of the previous layer, 
helping to speed up training and improve generalization. 
Dropout randomly drops a fraction of neurons during training, 
reducing overfitting. The hidden layer with Dense units and 
ReLU activation adds non-linearity to the model, while Batch 
Normalization and Dropout further regularize it. Finally, the 
Dense layer with softmax activation produces probabilities for 
each class of skin cancer. 

Combining transfer learning with fine-tuning using 
EfficientNetB3V2 as a base model with additional layers can 
lead to a powerful classifier for skin cancer images, leveraging 
both the general knowledge from pre-training and the specific 
features of the new dataset. 

D. Visual Explanation with Grad-CAM 

Grad-CAM is a technique used for visualizing the regions of 
an image that are key for the prediction of the CNN model. In 
the context of classifying skin cancer, Grad-CAM can help us 
understand which parts of the skin image are being attended to 
by the model when making a classification decision. 

Given an image 𝐼  (6) and a target class 𝑦 , the final 
convolutional layer's feature map 𝐴  (6) is extracted. The 
gradients of the target class score 𝑦𝑐  (6) with respect to the 
feature map activations are computed using backpropagation: 

𝜕𝑦𝑐

𝜕𝐴𝑘                                                  (6) 

Then, these gradients are global average pooled to obtain the 
neuron importance weights: 

𝑎𝑘
𝑐 =

1

𝑍
 ∑𝑖 ∑𝑗  

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘                                     (7) 

Where  𝑍  is the normalization factor to ensure that the 
importance weights sum up to 1. For a particular neuron 𝑘 (7), 
the gradients are summed across all spatial locations (𝑖, 𝑗) (7) 
within the feature map 𝐴(7). Finally, the class-discriminative 
localization map is computed as a weighted combination of the 
feature maps: 

𝐿𝐺𝑟𝑎𝑑−𝐶𝑎𝑚
𝑐 = 𝑅𝑒𝐿𝑈(∑ 𝑎𝑘

𝑐 𝐴𝑘
𝑘 )                            (8) 

For each neuron activation map 𝐴𝑘  (8)in the final 
convolutional layer, it is multiplied element-wise by its 
corresponding importance weight  𝑎𝑘

𝑐  (8). This operation 
amplifies the activations of neurons that are deemed important 
for predicting the target class and suppresses the activations of 
less relevant neurons. Next, these weighted feature maps are 

summed up across all neurons ∑ 𝑎𝑘
𝑐 𝐴𝑘

𝑘  (8). Finally, a ReLU 
(Rectified Linear Unit) (8) activation function is applied to the 

summed feature map to ensure that only positive values are 
retained 

In skin cancer classification, Grad-CAM can provide 
insights into which parts of the skin lesion image the model is 
focusing on to make its decision. For example, if the model 
correctly classifies a malignant lesion, Grad-CAM in Fig. 
3might highlight irregular borders or asymmetric color 
distribution as important features. Conversely, if the model 
misclassifies a benign lesion, Grad-CAM might reveal that it is 
focusing on features that are typically indicative of malignancy, 
leading to further investigation and refinement of the model. 

By visually interpreting the Grad-CAM heatmaps generated 
for different skin lesion images, dermatologists and researchers 
can gain valuable insights into the decision-making process of 
the model and potentially improve the interpretability and 
trustworthiness of the classification system. 

 
Fig. 3. Visual explanation by Grad_CAM of skin cancer. 

E. Image Segmentation by k-means Clustering 

 
Fig. 4. Image segmentation in skin cancer by k-mean clustering. 
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Image segmentation using k-means clustering for classifying 
skin cancer means partitioning the image into different clusters 
based on pixel intensity values. K-means clustering is a popular 
unsupervised learning algorithm used for clustering tasks. In this 
research, it can help identify different regions within an image 
that may correspond to different types of skin lesions or healthy 
skin inFig. 4. 

Given an input image 𝐼  of size  𝑚 ×  𝑛 , the output is to 
partition the image into 𝑘 (9) where each cluster represents a 
distinct region of the image clusters (i.e., 𝑘 = 3 for the normal 
surface, abnormal surface, and background). The algorithm 
iteratively assigns each pixel in the image to the cluster with the 
nearest mean value, minimizing the within-cluster sum of 
squares. The objective function of k-means clustering is defined 
as: 

𝐽 = ∑ ∑ ‖𝑥𝑗 − 𝜇𝑖‖
2

𝑥𝑗∈𝐶𝑖

𝑘=3
𝑖=1                        (9) 

 
Fig. 5. Algorithm of skin cancer segmentation by k-means clustering. 

Let 𝑋 = {𝑥1, 𝑥2, … , 𝑥𝑚𝑛} be the set of pixels in the image, 
where 𝑥𝑖 (9) represents the 𝑖 -th pixel with its corresponding 
feature vector. Each feature vector typically consists of color 
intensity values or texture features. Where 𝐶𝑖 (9) represents the 
𝑖-th cluster, 𝜇𝑖 (9) is the mean (centroid) of cluster 𝐶𝑖 (9), and 

‖𝑥𝑗 − 𝜇𝑖‖  (9) denotes the Euclidean distance. The steps 

involved in image segmentation using k-means clustering for 
skin cancer classification are as follows in Fig. 5. 

By segmenting the skin lesion regions using k-means 
clustering, dermatologists can efficiently analyze and classify 
skin cancer from dermatological images, aiding in early 
detection and diagnosis. 

IV. EXPERIMENTS  

A. Dataset and Performance Metrics 

The dataset comprises 2,357 images sourced from the 
International Skin Imaging Collaboration (ISIC), encompassing 
various oncological conditions, with a focus on melanoma, a 
potentially fatal form of skin cancer constituting 75% of skin 
cancer-related deaths. This dataset is a critical resource for 

developing solutions to automate melanoma detection 
processes, thus aiding dermatologists in early diagnosis. Fig. 
6includes images depicting malignant and benign conditions 
such as actinic keratosis, basal cell carcinoma, dermatofibroma, 
melanoma, nevus, pigmented benign keratosis, seborrheic 
keratosis, squamous cell carcinoma, and vascular lesions which 
were described in Fig. 7. the dataset offers a substantial and 
diverse collection for training machine learning algorithms or 
developing image analysis tools. 

 

Fig. 6. Dataset about the skin diseases. 

 
Fig. 7. The amount of data in nine classes. 

To evaluate the effectiveness of classification models in 
classifying skin illnesses, various performance metrics are 
employed, among which accuracy, recall, precision, and F1 
score stand as fundamental measures. These metrics provide 
quantitative insights into the ability of the model to correctly 
classify instances of malignant and benign skin lesions. 

Accuracy (10) is the most intuitive metric which calculates 
the ratio of correctly predicted cases to the total number of cases 
evaluated. It is represented by the formula: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
                           (10) 

True positives (TP) are instances of correctly classified skin 
disease, true negatives (TN) are correctly classified instances of 
absence of skin disease, false positives (FP) are samples 
incorrectly classified as having skin disease, and false negatives 
(FN) are cases incorrectly classified as not having skin disease 
are all represented by the equation (10). While accuracy 
provides a general overview of the performance, it may not be 
sufficient when dealing with imbalanced datasets, such as in 
skin cancer classification, where benign cases often outnumber 
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malignant ones. Hence, recall (11) and (12) precision metrics 
offer additional insights. 

Recall (11) also known as sensitivity or true positive rate, 
measures the proportion of actual positive cases that are 
correctly identified by the model. It is calculated as: 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                  (11) 

On the other hand, precision (12) quantifies the model's 
ability to correctly identify positive cases among all cases 
predicted as positive. It is expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
                               (12) 

While recall emphasizes minimizing false negatives, 
precision focuses on minimizing false positives. However, these 
metrics alone may not provide a comprehensive assessment of 
the model's performance. Therefore, the F1 score (13), which 
harmonizes precision and recall, is often utilized. The F1 score 
(13) is the harmonic mean of precision and recall and is given 
by the formula: 

𝐹1 =  
2 ×𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛×𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
                           (13) 

In skin cancer classification, where both false positives and 
false negatives can have serious consequences, achieving a 
balance between precision and recall is crucial. Thus, the F1 
score (13) serves as a consolidated measure, incorporating both 
precision and recall, providing a more holistic evaluation of 
efficacy in classifying skin lesions accurately. 

B. Scenario 1: The Result of Classifying Skin Diseases Into 

Nine Classes: Actinic Keratosis, Basal Cell Carcinoma, 

Dermatofibroma, Melanoma, Nevus, Pigmented Benign 

Keratosis, Seborrheic Keratosis, Squamous Cell 

Carcinoma, and Vascular Lesion. 

TABLE I. THE ACCURACY OF CLASSIFYING SKIN DISEASES INTO NINE 

CLASSES IN TRANSFER LEARNING AND FINE TUNING, FOR EACH DEEP 

LEARNING MODEL 

Model 

Transfer learning 

Val acc 
Test 

acc 
Precision Recall F1 

Our Model 63.71% 65.59% 65.73% 65.59% 64.84% 

ResNet50V2 53.39% 55.27% 55.07% 55.27% 54.10% 

MobileNetV2 45.17% 44.06% 44.80% 44.06% 43.77% 

EffecientNetB3 63.26% 61.15% 61.18% 61.15% 60.42% 

ResNet50 72.03% 69.37% 69.25% 69.37% 68.55% 

MobileNet 51.83% 50.72% 50.44% 50.72% 50.06% 

- Fine tuning 

Our Model 85.13% 84.91% 85.62% 84.91% 84.68% 

ResNet50V2 60.49% 57.49% 59.21% 57.49% 57.35% 

MobileNetV2 56.60% 53.50% 54.78% 53.50% 53.39% 

EffecientNetB3 84.91% 83.24% 83.69% 83.24% 82.86% 

ResNet50 80.69% 80.58% 80.74% 80.58% 80.08% 

MobileNet 58.82% 58.49% 58.52% 58.49% 57.19% 

Following Table II, our model achieved an accuracy of 
65.59% in transfer learning for classifying nine classes of skin 
diseases. To clarify, the custom model attained the second 
position after ResNet50, which reached 69.25%. However, our 
model significantly improved and reached 84.91% in test 
accuracy of fine-tuning phase, marking a 19.32% increase and 
placing it first among test models. Additionally, ResNet50 and 
EfficientNetB3 showed moderate improvements at 80.58% and 
83.24%, respectively. Thus, this significant increase in 
performance led to the successful classification of skin diseases 
by our model. 

 
Fig. 8. Training accuracy and validation accuracy by fine tuning of our 

model by classifying nine classes. 

Additionally, Fig. 8 displays the accuracy of a model during 
both the training and validation phases. The validation accuracy 
demonstrates how well the model generalizes to unseen data, 
helping to identify overfitting or underfitting issues. Ideally, 
both training and validation accuracies should increase as 
training progresses. 

 
Fig. 9. Training loss and validation loss by fine tuning of our model by 

classifying nine classes. 
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Besides, Fig. 9 shows the training and validation loss over 
epochs. The loss represents a measure of how well the model is 
performing: lower loss indicates better performance. The 
training loss depicts how well the model fits the training data, 
while the validation loss indicates how well the model 
generalizes to unseen data. 

A confusion matrix in Fig. 10 is a tabular representation of 
predicted classes versus true classes. For classifying skin 
diseases, the confusion matrix can help evaluate the 
performance of a classification model by providing insights into 
the types of errors it makes. From this information, adjustments 
to the model or further data collection efforts can be made to 
improve classification accuracy. 

 
Fig. 10. Confusion matrix in fine tuning for our model by classifying nine 

classes. 

C. Scenario 2: The Result of Classifying Skin Diseases Into 

Two Classes: Benign and Malignant 

Using both transfer learning and fine-tuning strategies, Table 
II presents a comparative examination of different deep-learning 
models in the classification of skin disease photos into two 
classes: benign and malignant. During the transfer learning 
phase, the ResNet50 model hit the top performance with an 
accuracy of 90.00%. Next to that, ResNet50V2, EffecientNetB3, 
and our model reached with test accuracy of 88.28%, 86.60%, 
and 86.20%, respectively. However, During the fine-tuning 
phase, the custom model successfully hit the highest top of the 
test models with a 94.00% accuracy score (i.e., increasing 7.8% 
when compared with transfer learning). As a result, the 
EffecientNetV2B3 model with our extra layer works effectively 
with both nine and two classes classifying when compared with 
other models although it ran unsmooth in transfer learning. 

The utilization of training and validation line graphs in Fig. 
11 and Fig. 12 aid in monitoring the performance of machine 
learning models over training epochs, ensuring optimal accuracy 
and minimal loss. Meanwhile, Fig. 13 facilitates a 
comprehensive assessment of model performance, enabling 
targeted improvements and insights into misclassifications for 
enhanced diagnostic accuracy. 

TABLE II. THE ACCURACY OF CLASSIFYING SKIN DISEASES INTO TWO 

CLASSES IN TRANSFER LEARNING AND FINE TUNING, FOR EACH DEEP 

LEARNING MODEL 

Model 

Transfer learning 

Val acc 
Test 

acc 
Precision Recall F1 

Our Model 85.80% 86.20% 86.23% 86.20% 86.20% 

ResNet50V2 87.03% 88.28% 88.33% 88.28% 88.28% 

MobileNetV2 85.29% 85.54% 85.54% 85.54% 85.54% 

EffecientNetB3 87.80% 86.60% 87.10% 86.60% 86.55% 

ResNet50 89.40% 90.00% 90.06% 90.00% 90.00% 

MobileNet 83.29% 81.30% 81.79% 81.30% 81.22% 

- Fine tuning 

Our Model 95.20% 94.00% 94.01% 94.00% 94.00% 

ResNet50V2 88.53% 91.52% 91.53% 91.52% 91.52% 

MobileNetV2 89.03% 88.78% 88.78% 88.78% 88.78% 

EffecientNetB3 95.40% 92.00% 92.04% 92.00% 92.00% 

ResNet50 94.00% 92.80% 91.53% 91.52% 91.52% 

MobileNet 91.02% 92.02% 92.17% 92.02% 92.01% 

 
Fig. 11. Training accuracy and validation accuracy by fine tuning of our 

model by classifying two classes. 

 
Fig. 12. Training loss and validation loss by fine tuning of our model by 

classifying two classes 
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Fig. 13. Confusion matrix in fine tuning for our model by classifying two 

classes. 

D. Scenario 3: The Result of Classifying Skin Diseases Into 

Six Benign Classes: Actinic Keratosis, Dermatofibroma, 

Nevus, Pigmented Benign Keratosis, Seborrheic Keratosis, 

and Vascular Lesion. 

In classifying six benign classes, Table III indicates our 
model working extremely well at the fine-tuning phase which 
reached an accuracy of 89.56%. But ResNet50 and 
EfficientNetB3 show a little better in performance with an 
accuracy of 90.40% and 91.58%. Thus, this scenario 
demonstrates our model still has a limit and needs to improve in 
the future. 

TABLE III. THE ACCURACY OF CLASSIFYING SKIN DISEASES INTO SIX 

BENIGN CLASSES IN TRANSFER LEARNING AND FINE TUNING, FOR EACH 

DEEP LEARNING MODEL 

Model 

Transfer learning 

Val acc 
Test 

acc 
Precision Recall F1 

Our Model 89.06% 86.70% 87.17% 86.70% 86.53% 

ResNet50V2 79.12% 76.43% 77.56% 76.43% 76.41% 

MobileNetV2 67.68% 61.62% 62.86% 61.62% 61.86% 

EffecientNetB3 87.04% 84.01% 84.74% 84.01% 83.46% 

ResNet50 88.22% 86.36% 86.71% 86.36% 86.32% 

MobileNet 73.06% 69.02% 69.44% 69.02% 68.71% 

- Fine tuning 

Our Model 92.59% 89.56% 90.08% 89.56% 89.55% 

ResNet50V2 79.97% 75.59% 76.31% 75.59% 75.60% 

MobileNetV2 71.38% 64.31% 64.89% 64.31% 64.09% 

EffecientNetB3 93.43% 91.58% 92.08% 91.58% 91.48% 

ResNet50 91.41% 90.40% 90.87% 90.40% 90.39% 

MobileNet 78.28% 76.77% 76.83% 76.77% 76.27% 

Furthermore, Training and validation on both accuracy and 
loss scores are presented in Fig. 14 and Fig. 15. Following the 
figures, the evaluation performance of our model presents the 
balance with validation accuracy achieved of 92,59% and 

validation loss gained of 0.26 when the dataset is changed. 
Moreover, Fig. 16 is provided for evaluating, optimizing, and 
understanding the performance of deep learning models. 

 
Fig. 14. Training accuracy and validation accuracy by fine tuning of our 

model by classifying six classes. 

 
Fig. 15. Training loss and validation loss by fine tuning of our model by 

classifying six classes. 

 
Fig. 16. Confusion matrix in fine tuning for our model by classifying six 

classes. 
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E. Scenario 4: The Result of Classifying Skin Diseases Into 

Three Malignant Classes: Basal Cell Carcinoma, 

Melanoma, and Squamous Cell Carcinoma  

A successful classification is shown in Table IV when our 
model achieves a significant increase in test accuracy of 96.74% 
of fine-tuning or a growth of 13.03%. In addition, some scores 
including f1, recall, and prediction hit a peak. As a result, our 
model effectively proved that it performs better than previous 
models at classifying images into three classes of malignant. 
However, EfficientNetB3 and ResNet50 present a dramatic 
growth in performance (i.e., with an accuracy of 94.79% and 
93.49%, respectively) when working with three classes. Besides 
ResNet50V2, MobileNetV2, and MobileNet rise marginally. 

TABLE IV. THE ACCURACY OF CLASSIFYING SKIN DISEASES INTO THREE 

MALIGNANT CLASSES IN TRANSFER LEARNING AND FINE TUNING, FOR EACH 

DEEP LEARNING MODEL 

Model 

Transfer learning 

Val acc 
Test 

acc 
Precision Recall F1 

Our Model 87.95% 83.71% 83.74% 83.71% 83.71% 

ResNet50V2 79.48% 73.94% 76.16% 73.94% 74.23% 

MobileNetV2 73.29% 70.68% 71.11% 70.68% 70.85% 

EffecientNetB3 89.90% 79.48% 79.67% 79.48% 79.55% 

ResNet50 87.62% 85.02% 85.14% 85.02% 85.04% 

MobileNet 71.66% 68.08% 69.15% 68.08% 68.30% 

- Fine tuning 

Our Model 98.70% 96.74% 96.74% 96.74% 96.74% 

ResNet50V2 78.18% 71.34% 70.61% 71.34% 70.67% 

MobileNetV2 73.94% 72.96% 72.99% 72.96% 72.81% 

EffecientNetB3 97.07% 94.79% 94.84% 94.79% 94.79% 

ResNet50 95.11% 93.49% 93.53% 93.49% 93.50% 

MobileNet 77.52% 75.57% 76.51% 75.57% 75.82% 

Furthermore, Fig. 17 and Fig. 18 illustrate our model's 
development, almost reaching the pinnacle with a surprising 
validation accuracy of 98.70%. Additionally, training and 
validation loss obtained a substantial decrease, reaching 0.06. 
For further information, Fig. 19 provides an overall confusion 
matrix for the research result. 

 
Fig. 17. Training accuracy and validation accuracy by fine tuning of our 

model by classifying three classes. 

 
Fig. 18. Training loss and validation loss by fine tuning of our model by 

classifying three classes. 

 
Fig. 19. Confusion matrix in fine tuning for our model by classifying three 

classes. 
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V. RESULTS AND COMPARISON 

A. Results Explaination 

A quick look at all experiments, all of the results in our 
model reached an impressive performance although it still has a 
limit that needs to be enhanced in the future. Specifically, 
Scenario 1: The Result of Classifying Skin Diseases Into Nine 
Classes: Actinic Keratosis, Basal Cell Carcinoma, 
Dermatofibroma, Melanoma, Nevus, Pigmented Benign 
Keratosis, Seborrheic Keratosis, Squamous Cell Carcinoma, and 
Vascular Lesion. shows that the proposed pipeline doing a good 
job in classifying nine classes with an accuracy of 84.91%. 
However, our ambitions are higher when future research should 
reach a test accuracy larger than 90%. In addition, the model 
illustrates the limit on the performance in Scenario 3: The Result 
of Classifying Skin Diseases Into Six Benign Classes: Actinic 
Keratosis, Dermatofibroma, Nevus, Pigmented Benign 
Keratosis, Seborrheic Keratosis, and Vascular Lesion. when 
classifies six classes. This led to the way for our research to fix 
it in the future. Besides, the performance of our model in 
Scenario 2: The Result of Classifying Skin Diseases Into Two 
Classes: Benign and Malignant and Scenario 4: The Result of 
Classifying Skin Diseases Into Three Malignant Classes: Basal 
Cell Carcinoma, Melanoma, and Squamous Cell Carcinoma 
achieved the highest test accuracy and other scores when 
compared with test models and other state-of-the-art methods. 
This demonstrates the customized EfficientNetV2B3 model 
achieved a success in classifying skin diseases. The summary of 
the outcome of these scenarios is shown in Fig. 20. 

 
Fig. 20. The result of fine-tuning of our model through four scenarios. 

Furthermore, the Grad-Cam was added to visualize areas of 
focus in skin cancer images in Fig. 3. It highlights regions 
contributing to predictions and enhances model transparency for 
medical professionals. Additionally, K-means clustering 
enables detailed analysis of different regions in Fig. 4. 
Integrating Grad-CAM for visualization and K-means clustering 
for feature extraction enhances the interpretability and 
effectiveness of skin cancer classification models, facilitating 
more accurate diagnoses and treatment decisions. 

B. Comparison with others State-of-the-art Methods 

Comparing skin disease classification models with state-of-
the-art methods in CNN is crucial for assessing performance, 

identifying areas for improvement, and validating innovations. 
By benchmarking against existing approaches, researchers gain 
insights into their model's effectiveness and efficiency. Such 
comparisons help highlight strengths and weaknesses, guiding 
further optimizations. Ensuring CNN models perform 
competitively against state-of-the-art methods is essential for 
their practical utility and reliability in real-world scenarios. This 
process fosters the development of robust diagnostic tools, 
potentially enhancing healthcare outcomes. Thus, the result of 
this comparison is presented in Table V. 

TABLE V. COMPARISON WITH OTHERS STATE-OF-THE-ART METHODS IN 

ISIC DATASET 

Ref. Proposed Year Classes Accuracy 

Ahmed 
Abdelhafeez et al 

[19] 

SVNSs, DarkNet, 

and GoogleNet 
2023 

8 

classes 
85.74% 

Maad M. Mijwil 
et al [21] 

InceptionV3 2023 
2 

classes 
86.90% 

Solene Bechelli et 

al [23] 
VGG16 2023 

2 

classes 
88% 

Ayesha Atta et al 

[27] 
Customized CNN 2022 

2 

classes 
86.23% 

Vatsala Anand et 
al [28] 

VGG16 2022 
2 

classes 
89.09% 

Dipu Chandra 

Malo et al [29] 
VGG16 2023 

2 

classes 
87.60% 

Mohammed 

Rakeibul Hasan et 

al [31] 

VGG16 2021 
2 

classes 
93.18% 

Abdurrahim 

Yilmaz et al [32] 
NASNetMobile 2022 

3 

classes 
82% 

Chandran 

Kaushik Viknesh 
et al [33] 

AlexNet, LeNet, 

and VGG-16 
2021 

2 

classes 
91% 

Proposed model 

9 

classes 
84.91% 

2 

classes 
94.00% 

6 

classes 
89.56% 

3 

classes 
96.74% 

C. Limit and Future Work 

While the research has reached promising results, it also 
shows certain limitations. Despite achieving high accuracy rates, 
there may still be instances of misclassification. Additionally, 
the dataset may not encompass all possible variations of skin 
diseases, necessitating ongoing expansion and diversification. 
Looking ahead, the study sets the stage for future endeavors 
aimed at refining the model and methodologies. Plans include 
increasing data preprocessing and incorporating advanced 
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visualization techniques to gain deeper insights into model 
performance and image characteristics. Moreover, expanding 
the dataset to encompass a broader spectrum of skin diseases 
will be a priority ensuring greater robustness and generalization 
of the model. 

VI. CONCLUSION 

The article developed a specialized model tailored to classify 
skin disease images for medical applications. Our custom model 
showcased remarkable accuracy, achieving 84.91% in 
classifying nine different classes of skin cancer. Notably, it also 
demonstrated an impressive 94.00% accuracy in discerning 
between malignant and benign cases. Further experiments 
revealed its proficiency in distinguishing between various types 
of benign and malignant skin diseases, with accuracies of 
89.56% for six benign classes and 96.74% for three malignant 
classes.  

One of the key techniques employed to boost the 
performance was transfer learning and fine-tuning. In this case, 
the EfficientSkinCaSV2B3 framework was proposed by adding 
dense and dropout layers into the EfficientNetV2B3 model 
while fine-tuning its parameters. As a result, this process 
significantly improved accuracy. In addition, Grad-Cam were 
used to provide insights into the model's decision-making 
process. Furthermore, k-means clustering was employed to 
segment images. 

In conclusion, the research contributes to the intersection of 
medicine and computer science by advancing the classification 
and segmentation of skin disease images. Through the judicious 
application of transfer learning, visualization techniques like 
Grad-Cam, and clustering methods such as k-means, the aim is 
to continue improving diagnostic accuracy and ultimately 
enhance patient care in dermatology. 
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