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Abstract—The popularity of social media has significantly 

increased the speed and scope of news dissemination, making the 

emergence and spread of fake news easier. Current fake news 

detection methods often ignore the correlation between text and 

images, leading to insufficient modal interaction and fusion. To 

address these issues, a cross-modal fine-grained interaction and 

fusion model for fake news detection is proposed. Specifically, this 

study addresses the correlation problem between text and image 

modalities by designing an interaction similarity domain. It 

extracts features of text word weight distribution using an 

attention mechanism network, guides the features of different 

regions of the image, and calculates the local similarity between 

the two. This approach analyzes positive and negative correlations 

between modalities at a fine-grained level, thereby strengthening 

the intermodal connection. Additionally, to tackle the problem of 

insufficient fusion of semantic feature vectors between text and 

images, this paper designs a fusion network that employs 

improved encoding and decoding using a Transformer for inter-

modal information fusion, achieving the final multimodal feature 

representation. Experimental results show that our proposed 

method achieves excellent performance on WeiboA and Twitter, 

with accuracies of 88.2% and 89%, respectively, outperforming 

the benchmark model in several evaluation metrics. 

Keywords—Fake news detection; attention mechanism; 

multimodal feature fusion; local similarity 

I. INTRODUCTION  

With the advent of the Internet, a multitude of online social 
media platforms such as Twitter, Weibo, Shake, and Shutterbug 
have experienced unprecedented growth [1]. These platforms, 
characterized by their low operational costs, high efficiency, 
real-time capabilities, and the diverse nature of their content, 
have revolutionized traditional methods of information 
dissemination. Consequently, an increasing number of 
individuals are gravitating towards these platforms for 
information acquisition and personal life sharing, thus 
diversifying the modalities of information exchange. However, 
this evolution has inadvertently facilitated the genesis and 
proliferation of fake news. Online fake news not only seriously 
impacts the audience and weakens the authority and credibility 
of mainstream media institutions, but also brings risks in many 
aspects, including economic and political [2]. A pertinent 
example of the detrimental impact of misinformation is the 
wide dissemination of spurious content during the U.S. Capitol 
riots in January 2021, which obscured the factual narrative and 
intensified societal polarization. Hence, it is imperative to 
devise and implement sophisticated methods for the detection 

and containment of fake news to mitigate its adverse effects on 
public discourse and social harmony. 

In the realm of fake news detection, traditional approaches 
have predominantly centered around the verification processes 
conducted by domain experts or credible institutions [3]. While 
this strategy is commendably precise, its feasibility has been 
compromised by the contemporary influx of voluminous 
information and the escalation of operational costs. In response 
to these challenges, academia has ventured into the realm of 
manual feature extraction, focusing on lexical, syntactic (e.g., 
structure and grammar), and semantic (encompassing rhetorical 
techniques, thematic consistency, and emotive expressions) 
aspects. These extracted features are then amalgamated with 
established machine learning models like decision trees and 
support vector machines to discern deceptive information 
[4][5][6]. Nevertheless, this manual feature extraction method 
often falls short in grasping intricate semantics and complex 
narratives, thus limiting the overall performance of detection 
systems. Given the potentially severe repercussions of 
misinformation spread, the academic community is actively 
engaged in advancing the capabilities and accuracy of these 
detection mechanisms. Consequently, refining methodologies 
for the accurate detection of fake news has emerged as a focal 
area of research, drawing significant scholarly interest and 
resource investment. 

The evolution of deep learning has demonstrated substantial 
efficacy across diverse sectors, marked by its capacity for 
autonomous feature detection, advanced representational 
learning, and extensive generalization abilities. In the context 
of the multifaceted nature of news content, research initiatives 
are increasingly focused on deriving complex intermodal 
representations through deep neural networks. Yet, a 
predominant share of current methodologies relies on 
leveraging pre-trained models for feature extraction, followed 
by a simplistic concatenation to amalgamate multimodal 
features, often overlooking the critical nuances in informational 
content across different modalities. Such unimodal feature 
extraction methodologies inadequately harness the 
comprehensive information available from varied modalities, 
consequently impeding the effective formation of intermodal 
linkages [7][8][9]. Furthermore, In complex scenarios where 
the image and text do not match, for example, such as the 
example depicted in Fig. 1, presenting a fake news report about 
a new fish product, where most regions of the image depict fish 
characteristics, while a small portion does not. The primary 
regions of the image align with the text, whereas the secondary 
regions do not. Relying solely on the overall similarity between 
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the text and the image for calculations may lead to erroneous 
model judgments and impact its performance. 

To address the aforementioned issues, this paper proposes a 
cross-modal fine-grained interactive fusion model for false 
news detection. To tackle the problem of insufficient 
interaction between modalities, the model employs an attention 
mechanism network to extract text word weight distribution 
features, which guide the extraction of features from different 
regions of the image, thereby strengthening inter-modal 
connections. In complex scenarios of graphical inconsistency, 
this study utilizes text word weight distribution features and 
image region features for similarity calculation, obtaining local 
similarity features that enable a more granular analysis of 
positive and negative correlations between modalities. This 
increases the likelihood of the model accurately extracting 
relevant features. Additionally, to overcome the challenge of 
directly merging text and image semantic feature vectors in 
modality fusion, a fusion network is designed to effectively 
integrate modal information, resulting in a comprehensive 
multimodal feature representation. By refining these 
modalities, the detection performance of the model is 
significantly improved. The main contributions of this paper are 
as follows: 

1) An interactive similarity domain is designed to extract 

text word weight distribution features using a network of 

attention mechanisms to guide different levels of image feature 

extraction and to obtain fine-grained local similarity features 

between modalities, aiming to strengthen inter-modal 

connections and enhance the effectiveness of modal features.  

2) A novel fusion network, featuring an improved 

Transformer dual-encoder architecture, has been devised to 

meticulously extract deep semantic cues from multimodal fake 

news content. This architecture facilitates the realization of a 

highly accurate multimodal feature representation, optimizing 

the detection and analysis of counterfeit information across 

varied modalities. 

3) Through extensive comparison and ablation experiments 

with benchmark models such as the classical EANN, conducted 

on two popular multimodal fake news detection benchmark 

datasets, WeiboA and Twitter, the CFIF model demonstrates 

superior performance across most evaluation metrics. 

 

Fig. 1. Some examples of multimodal fake news. 

The rest of this paper is as follows, Section II review 
previous studies. Section III discusses the methodology. 
Section IV presents experimental setup. Section Ⅴ describes the 
results of the experiment and discusses. Finally, conclusion 
presents in Section Ⅵ. 

II. RELATED WORKS 

Fake news detection employs news article content, social 
context, and external knowledge to assess news authenticity. 
This section introduces two primary approaches from the 
perspective of modality quantity: unimodal and multimodal 
fake news detection. In terms of effectiveness, multimodal 
detection demonstrates superior performance due to its richer 
and more comprehensive information. However, simple 
modality fusion and insufficient modality interaction cannot 
satisfy the current research needs, as the model requires features 
with finer granularity and greater generalizability. 

A. Unimodel-based Fake News Detection 

In history, news predominantly existed in textual form, 
encapsulating the author's perspectives, emotions, and stylistic 
choices. Leveraging this information, lexical, syntactic, and 
semantic features can be extracted. Therefore, the core of 
unimodal machine learning detection techniques lies in adeptly 
constructing and filtering features to accurately represent 
textual news information. Horne et al. [4] categorized text 
features into three main groups—style, complexity, and 
psychological traits—analyzing them at the word level with a 
Support Vector Machine (SVM) model to identify fake news. 
Similarly, Perez-Rosa et al. [5] manually compiled a set of text 
features at the word level, comprising n-grams, punctuation, 
psycholinguistic attributes, and generative rules, and employed 
the SVM model for fake news detection. However, this method 
faces challenges in feature interpretability and handling the 
variability and diversity of fake news. Castillo et al. [6] devised 
a suite of linguistic features, including question marks, 
emoticons, emotional words, and pronouns, to evaluate the 
credibility of tweets and detect fake news. Although manual 
feature extraction progress in detecting fake news, the required 
targets and features differ among news types, distribution 
channels, and dissemination routes. Consequently, extracting 
unique features for each news type proves to be both resource-
intensive and time-consuming. Moreover, to preserve the 
stability and accuracy of detection outcomes, feature extraction 
techniques must be regularly updated and refined to 
accommodate evolving news events, leading to an inevitable 
rise in costs. 

Deep learning technology has demonstrated its robustness 
and effectiveness across various domains. Its primary strengths 
lie in its capacity to autonomously extract data features, 
superior representation learning, and broad generalization 
capabilities. Ma et al. [10] explored how deep neural networks, 
utilizing Word-Embedding and RNN models, could represent 
news to enhance detection efficiency and accuracy, thus 
providing innovative approaches for applying deep learning in 
journalism. Volkova et al. [11] analyzed tweet texts using 
linguistic markers, social graphs, bias, subjectivity, and ethical 
features, employing CNN and LSTM networks to categorize 
information, yet this method did not enhance model 
performance, even with the integration of grammatical and 
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syntactic elements. Chawda et al. [12] highlighted the 
significance of context in text categorization by employing a 
Recurrent Convolutional Network (RCNN) with an LSTM 
network, achieving improved accuracy. Hansen He et al. [13] 
proposed a fake news detection model based on feature 
aggregation, employing a BiLSTM network to extract global 
temporal features and a CNN network for word or phrase 
features within a window, thus enhancing the model's 
generalization capability. 

With the evolution of the Internet and the diversification of 
news forms on social media, some scholars have shifted their 
focus to image analysis for detecting fake news. Qi et al. [14] , 
developed a CNN-based network to identify complex patterns 
in fake news images within the frequency domain and a multi-
branch CNN-RNN model to extract visual features across 
various semantic levels in the pixel domain. They integrated 
these features from both domains using an attention mechanism 
to enhance detection. However, this method heavily depends on 
sophisticated visual feature extraction, posing challenges in 
identifying subtle alterations used by fake news creators, 
potentially compromising detection accuracy. Xue et al. [15] 
introduced the MVFNN model, comprising a visual modality 
module, a visual feature fusion module, a physical feature 
module, and an integration module, all working synergistically 
for fake news image detection. Zhou et al. [16] proposed a 
method to identify tampered regions using a dual-stream Faster 
R-CNN network: one stream processes RGB images to extract 
features like contrast differences, while the other analyzes noise 
inconsistencies from the model's filter layer, with both feature 
sets subsequently fused for detection. 

Unimodal methods have advanced significantly in detecting 
fake news but exhibit several limitations. Primarily, they rely 
on a single modality, such as text or image, neglecting multi-
source information, which compromises detection accuracy due 
to the multi-modal nature of fake news. Furthermore, these 
methods are susceptible to adversarial attacks, as attackers can 
bypass detection by crafting sophisticated false information. 
Additionally, unimodal methods often overlook inter-modal 
correlations, resulting in incomplete information capture. 
Lastly, they struggle with cross-modal fake news, where fake 
news spreads across different modalities like social media, 
news articles, and images. 

B. Multimodal-based Fake News Detection 

In response to the diversity of news and the limitations of 
unimodal false news detection, researchers have shifted 
towards multimodal approaches. Initially, these methods 
separately extracted unimodal features, combining them 
sequentially, as illustrated in Fig. 2. Jin et al. [7] were the 
pioneers in proposing a multimodal fake news detection 
framework, utilizing the LSTM model for text and the VGG-19 
model for image feature extraction, followed by sequential 
integration for classification. Chen et al. [8] implemented 
DeepFM-a blend of deep learning and factorization machines-
to assess social news features, Text-CNN, and VGG-19 for 
textual and visual feature extraction, merging these elements to 
derive multimodal features for classification. Wang et al. [9] 
also employed Text-CNN and VGG-19 to process text and 
image data, respectively, but enhanced the approach by adding 
an event discrimination module and applying Adversarial 

Neural Networks, which significantly improved detection 
efficacy. 

While the aforementioned methods have notably enhanced 
the performance of fake news detection compared to unimodal 
approaches, they have not fully leveraged the complementary 
information across modalities. To address this, researchers have 
developed advanced methods. Zhou et al. [17] proposed a 
similarity-aware model that identifies discrepancies between 
text and images in fake news, employing Text-CNN for text 
feature extraction and an image2sentence model to transform 
image features, with classification subsequently based on the 
similarity between these elements. Song et al. [18] employed a 
combination of multiple attention mechanisms and the pre-
trained VGG-19 model to selectively cross-learn information 
from different modalities using a bidirectional cross-attention 
mechanism, preserving the original feature information. This 
approach has proven effective across four datasets. 

 
Fig. 2. Feature fusion diagram. 

In conclusion, recent research in fake news detection has 
increasingly leveraged both image and text information, 
achieving notable success in identification. Nonetheless, these 

methods continue to confront various challenges： 

1) Insufficient interaction between modalities: Most 

multimodal fake news detection models extract high-level 

features from images by designing specific models for different 

modal data, e.g., using pre-trained VGG models, but the lack of 

effective interactions before fusing these modalities restricts the 

ability of the model to fully utilize the information between 

modalities, which in turn affects the performance. 

2) Insufficient fine-grained analysis: Most models use 

cosine similarity for intermodal similarity calculations, which 

may lead to the selection of incorrect features and the failure to 

capture data details, thereby affecting the model's accuracy and 

reliability. 

3) Feature fusion methods are comparatively simple: 

Classic fake news detection models like EANN adopt a 

straightforward concatenation strategy, which not only 

increases computational complexity but also results in 

information redundancy. Outer product fusion may lead to 

excessively large dimensions of output features, thereby raising 

the risk of dimensional explosion. 

To tackle these challenges, this study develops a 
multimodal fake news detection model emphasizing the 
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detailed analysis of modalities and their interactive fusion to 
improve semantic feature extraction, thereby enhancing the 
accuracy of fake news detection. 

III. METHODOLOGY 

A. Overview of the Model 

In this study, we present a false news detection model cross-
modal fine-grained interaction fusion. Addressing the 
challenges of inter-modal interaction and fine-grained analysis, 
the model employs a text attention mechanism to guide the 
generation of image features. Given BERT’s [19] strong feature 
extraction capabilities, which may lead to local optimization of 

text features, therefore, the Text-CNN [20] model's sparsity is 
leveraged to filter noise and capture text features at various 
granularities. Moreover, recognizing the varying information 
and importance across image regions, we introduce a weighted 
region division method using image segmentation technology, 
followed by ResNet-50 for detailed feature extraction from the 
image. To resolve the issue of simplistic feature fusion, the 
model incorporates a fusion network that integrates text and 
image features, further enhanced with local similarity metrics 
to produce the final fused features. The model comprises three 
core components: the feature extractor for text and images, the 
feature fusion mechanism, and the feature discriminator, with 
its comprehensive framework depicted in Fig. 3. 

 
Fig. 3. CFIF model structural framework.

B. Multimodal Feature Extraction 

1) Textual Feature Extraction: Text feature extraction is 

crucial for detecting fake news. In this study, we employed the 

pre-trained ROBERT [21] model for text labeling and initial 

feature extraction. ROBERT, an advanced variant of BERT, 

dynamically generates vector representations of words in 

various contexts, addressing the context-independence issue 

inherent in Word2vec [22]. Moreover, ROBERT utilizes a 

larger corpus and undergoes more extensive training than 

BERT. Additionally, it implements a dynamic masking strategy 

that generates a new mask pattern each time a sequence is 

processed, enabling the model to gradually adapt to various 

masking strategies and learn diverse linguistic representations. 

This adaptability across different domains makes ROBERT 

particularly suitable for our research needs. 

Initially, the text 
1 2 3{ , , ,..., }nT W W W W , is represented, 

where 
iW  denotes the i th word in T . 

1 2
{[ ], , ,..., ,[ ]}

nW W WT' CLS Token Token Token SEP is the result 

of the BertTokenizer segmenting the text into tokens. 
Subsequently, these tokens are converted into their respective 
IDs and fed into the ROBERT model to generate the word 

vectors 
1 2[ ] [ ]{ , , ,..., , }

nCLS W W W SEPV V V V V V ,where 
iV  represents 

the vector for the ith word. These vectors are then input into the 
Text-CNN model, which employs various convolutional 

kernels and sliding windows to further extract the semantic 

information 
tX  from the text, as delineated in Eqs (1)-(3). 

 ( )T' BertTokenizer T  (1) 

 ( )V ROBERT T'  (2) 

 ( )tX Text CNN V   (3) 

 Besides the text being the core element of the news event, 
the image is also a significant modality. Therefore, it is 
necessary not only to input the word vector V into the 

Text CNN to obtain a comprehensive textual representation 

but also to feed V  and the mask into the Attention Mechanism 

Network to learn the distribution of word weights in the text. 
The aim is to update the weight distribution of the original 
image and adjust the weight of the semantic information in the 
image, as shown in Eq (4). 

 _ ( )cX Mask Attention V  (4) 

2) Visual Feature Extraction: Given that images are 

inherently more intuitive than text, making them easier to 

understand and recall [23][24] , their widespread adoption in 

news articles has become customary. This underscores the 

criticality of efficiently extracting image data in the detection 

of fake news. Convolutional networks, particularly VGG [25] 

and ResNet models, have emerged as efficient tools for 
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extracting these crucial image features. While the VGG model 

excels in extracting image features with greater accuracy, it 

demands higher computational resources due to its larger 

memory footprint and parameter count. Moreover, the VGG 

model is plagued by the issue of gradient vanishing. Thus, for 

this study, we opted for the ResNet-50 model from the ResNet 

family. Not only does it achieve remarkable progress in 

accuracy and minimize loss, but it also resolves the gradient 

vanishing problem, boasts a deeper network structure, and is 

particularly well-suited for classification tasks. 

Initially, establish a data conversion pipeline to standardize 
the image dimensions to (224×224) and convert them to RGB 
three-channel style. Let C  represent the original image. Then, 

divide the image into multiple identical regions 

1 2 3{ , , ,..., }NP P P P , where each iP  represents a portion of the 

image C  with dimensions of (32×32), resulting in a total of 49 

copies. Next, each iP  undergoes feature extraction using 

ResNet-50, yielding subgraph features denoted as _ iSub P . 

Additionally, adjust the information of each image copy using 

the textual weight distribution information cX  acquired in 

Section Ⅲ. B. 1). Finally, these adjusted features are weighted, 

summed, and consolidated to obtain the refined image 

information vX , as depicted in Eqs (5)-(8): 

 1 2 3( ) , , ,..., NSplit C P P P P  (5) 

 _ ( ( ) )i iSub P W Resnet P b    (6) 

 ( ( , _ ; ))i c ia SoftMax S X Sub P   (7) 

 1
_

N

i ii
v

a Sub P
X

N




 (8) 

where (  ,  ;    )S   represents a mapping network, ia  

signifies the weight vector determining the significance of the 
subgraphs, N  denotes the quantity of subgraphs, while W and 

b denote the parameters of the fully connected layer, and ( )  

denotes the activation function. 

C. Local Similarity Feature Extractor 

Fake news detection usually involves some complex cases 
where the image and text do not match. For example, if the body 
of an image matches the text semantically, while other parts do 
not, directly calculating their similarity may lead to detection 
errors. To cope with such problems, in this paper, we use cosine 

similarity to calculate the text weight distribution feature cX  

and the image region feature vector _ iSub P . The similarity of 

the text weight distribution feature cX  and the image region 

feature vector _ iSub P , after that, the normalization process is 

performed to obtain the similarity contribution of each part, and 
finally the weighted sum is obtained to obtain the local 
similarity feature. As shown in Eq. (9)-(11): 

 
2 2

_
_ _ ( , _ )      

max(|| || || _ || , )

c i
c i

c i

X Sub P
part similarity i X Sub P

X Sub P 
  (9) 

 

1

exp( _ _ )
         

exp( _ _ )
i N

i

part similarity i
w

part similarity i





 (10) 

 
1

_ _
N

d ii
X w part similarity i


  (11) 

where cX is the word weight feature obtained in Section Ⅲ. 

B. 1)., 2  is the 2l  normalization, iw is the proportion of 

subgraphs， dX is a local similarity feature. 

D. Multimodal Feature Fusion 

Using text features tX , image features vX  and local 

similarity features dX , designing an efficient feature fusion 

method so as to obtain effective multimodal features is the key 

to realize fake news detection. If tX , vX  and dX  are simply 

spliced together may lead to information redundancy as well as 
dimension explosion, and the outer product fusion method may 
lead to multimodal information asymmetry and high 
computational complexity.  

 

Fig. 4. Multimodal fusion framework diagram. 

To avoid the above problems, the fusion network is 
designed in this study, firstly, the Encoder framework 
automatically focuses on the key features of text and images 
through the multi-head self-attention mechanism. At the same 
time, the residual network is introduced to preserve the original 
features, and the feed-forward network is replaced with a one-
dimensional convolutional network in order to reduce the 
computational complexity. Second, the Decoder framework 
adopts the same structure as Encoder, but the difference is that 
its input combines text (primary) and image (secondary) 
features and fuses them with local similarity features to obtain 
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a multimodal information representation. The feature fusion 
apparatus, as depicted in Fig. 4 below. 

1) Encoder: Since picture modality and text modality 

coding are consistent, take the text modality coding process as 

an example, firstly, the text modality feature vector tX  is taken 

as the input, and the self-attention mechanism is carried out to 

continuously strengthen the information of the text modality. 

the Query vector t t QQ X W ,the Key vector t t KK X W ,and 

the Value vector t t VV X W , where t kd d
QW R


 , 

t kd d
KW R


 , t vd d

VW R


 , td  is the sequence length of the 

text modality, kd  is the dimension of the Query vector and Key 

vector, and vd  is the dimension of the Value vector. In this 

paper, we use Multi-Head Attention (MHA) mechanism to 

capture different attention information within and between 

modalities, and utilize the subspace of the multi-head matrix to 

express modality information from different perspectives. 

Multihead Attention is multiple independent Attention 

computations that are then stitched together. The computational 

process of the Multihead Attention mechanism is shown in 

Eq. (12)-(13): 

  ( , , )Q K V
i t i t i t ihead Attention QW K W VW  (12) 

 1( , , ) ( ,..., ) O
t t t hMHA Q K V Concat head head W  (13) 

where t kd dQ
iW R


 , t kd dK

iW R


  , t vd dV
iW R


  , 

v thd dOW R


 ， /k v td d d h  . 

The feature vector tX of the text modality undergoes the 

Multi-Head Attention (MHA) mechanism. The new vector 

representation tX '  is obtained through residual connection and 

layer normalization, and the computational process is depicted 
in Eq. (14) as follows. 

 ( ( , , ))t t t t tX ' LayerNorm X MHA Q K V   (14) 

Next, tX ' is the input to the second sublayer, which consists 

of a one-dimensional convolutional network, residual 
connections, and layer normalization operations. Subsequently, 
the output of the Encoder can be obtained. The computational 
process is then depicted in Eq. (15): 

 ( ( ))t t tX LayerNorm X ' Conv1d X '   (15) 

where t modeld d
tX R


 , td  is the sequence length of the text 

modal and modeld  is the size of the Embedding. 

The same operation is performed to obtain the image modal 

features vX . 

2) Decoder: The primary function of the Decoder is to 

facilitate cross-modal interaction between the text modality 

features enhanced by the Encoder and the picture modality 

features in order to obtain effective multimodal features. 

Specifically, the operation involves inputting the text modality 

feature 
tX outputted from the Encoder as Key and Value 

vectors, and the picture modality feature 
vX  outputted from the 

Encoder, as the Query vector into the Decoder, collectively 

obtaining the mixed text and picture features MTF . The 

specific formula is illustrated in Eq. (16)-(19): 

 v v QQ X W  (16) 

 t t KK X W  (17) 

 t t VV X W  (18) 

 Softmax( )
T

v t
t

k

Q K
MTF V

d
  (19) 

where v kd d
QW R


 , t kd d

KW R


 , t vd d
VW R


 , vd  is the 

sequence lengths of the visual modality, td  is the sequence 

length of the textual modality, kd  is the dimension of the Query 

and Key vectors. 

Subsequently, the textual modality feature vector tX  and 

the mixture feature vector MTF  are processed through residual 
connection and layer normalization to obtain the vector MTF'  
as the output of the first sublayer. The computational formula 
is illustrated in Eq. (20). 

 ( )tMTF' LayerNorm X MTF   (20) 

Next, MTF'  is inputted into the second sublayer to obtain 

the output MTF  of the Decoder. Afterward, it is combined 

with dX  to yield the final modal features. The specific 

equations are depicted in Eq. (21)-(22): 

 ( Conv1d( ))MTF LayerNorm MTF' MTF'   (21) 

 dHMF MTF X   (22) 

where Conv1d  is the one-dimensional convolutional layer, 

dX  is the local similarity feature, and HMF  is the final 

multimodal feature. 

E. Fake News Detector 

In this study, we frame the fake news detection task as a 
binary classification problem. We input the HMF  (multimodal 

fusion feature) from Section Ⅲ. D. 2) into a neural network 

consisting of a single hidden layer. The dimension of this 
hidden layer is configured to be twice that of the multimodal 
features. Subsequently, a Softmax function is employed to 
compute the probability distribution, with the category 
exhibiting the highest probability serving as the ultimate 
classification outcome, as illustrated in Eq. (23): 

 Softmax( )P W HMF b    (23) 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

951 | P a g e  

www.ijacsa.thesai.org 

where P  represents the probability that the prediction is 
false, while W  and b  denote the parameters of the fully 

connected layer. The real news is labeled as 0, and the fake 
news is labeled as 1. 

The cross-entropy loss function typically exhibits better 
gradient properties during optimization, allowing for more 
effective parameter updates during back-propagation. The 
gradient computation of the cross-entropy loss function 
involves comparisons between different classes, which guides 
parameter updates more effectively, leading to faster 
convergence to the optimal solution during training. In contrast, 
the gradient computation of the mean squared error function is 
more influenced by the errors between predicted and true 
values, which may sometimes lead to gradient vanishing or 
exploding, resulting in unstable parameter updates and 
affecting the training effectiveness of the model. Therefore we 
choose cross entropy as the loss function for this study. Hence 
we opt for cross entropy as the loss function in this study, as 
illustrated in Eq. (24). 

 ( , ) [ log (1 )log(1 )]H y p y p y p      (24) 

Where ( , )H y p  represents the binary cross-entropy loss, 

y  stands for the true category label, p  signifies the predicted 

probability of the model, denoting the probability that the 
sample belongs to category 1, and log denotes the natural 
logarithm. 

IV. EXPERIMENTAL SETUP 

A. Datasets and Evaluation Metrics 

1) Datasets: To validate this study, two datasets, WeiboA 

and Twitter, were selected for experimentation. These datasets, 

representing both languages, were used to demonstrate the 

generalization ability of the model. Here: 

WeiboA Dataset: Compiled by Jin et al. [26], this dataset 
captures all verified false news from May 2012 to January 2016 
through the official microblogging rumor debunking system. 
Primarily consisting of articles reported by ordinary users, they 
undergo verification by a forensic group comprised of reputable 
users to determine their veracity. For authentic news text, 
articles verified by Xinhua News Agency, China's authoritative 
news agency, are utilized. The study aims to discern 
multimodal information; therefore, text-only posts and 
duplicate or low-quality images are excluded. 

The Twitter dataset [27] is employed for false news 
discrimination and comprises a development set and a test set. 
Each data point in the dataset includes textual content, visual 
content (image/video), and relevant social context. As this 
study focuses on the visual modality of images, samples 
containing only video data are excluded. The development set 
is utilized as the training set, while the test set serves as the 
evaluation set. 

The length of the text needs to be processed under the 
premise of ensuring that the real data is balanced with the false 
data. Inconsistent text length will affect the performance of the 
model, so longer or shorter data need to be eliminated, and 
finally, the data set is statistically analyzed to obtain the 

statistical information of the data as shown in Table I. In 
addition, Fig. 5 and Fig. 6 give examples of images and 
corresponding texts in the datasets. 

TABLE I. DISTRIBUTION OF EACH DATASET 

Datasets Originating data Contains image data Final data 

WeiboA 9528 7723 7713 

Twitter 13136 13136 13136 

 

(A) Fake News                             (B) Real News 

Fig. 5. Examples of real and fake news in the twitter dataset. 

 

(a) Fake news                               (b) Real news 

Fig. 6. Examples of real and fake news in the WeiboA Dataset. 

2) Evaluation Metrics: The fake news detection models in 

this study fall under the classification model category. 

Evaluation metrics commonly employed to gauge model 

performance are presented in Eq. (25): 

 
2

(1 )
Precision Recall

F
Precision Recall

 



  

 
 (25) 

where, Precision measures the proportion of correctly 

identified positive cases, while Recall measures the proportion 

of actual positive cases correctly identified. Additionally, the 
value of   plays a crucial role in balancing Precision  and 

Recall . Specifically: 

(1) When 1  , the F  metric equates to the 1F  metric, 

signifying equal importance of Recall and Precision . 

(2) When 1  , Recall holds more significance than

Precision . 
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(3) When 1  , Precision  has a greater impact than

Recall . 

In this study,   is set to 1, indicating equal importance of 

Recall  and Precision . The equation at this point is shown in 

(26): 

 1 2
Precision Recall

F
Precision Recall


 


 (26) 

B. Experimental Details 

The experiments are conducted in a Python 3.8 
programming environment using the PyTorch deep learning 
framework to build and train the fake news detection model. To 
prevent overfitting and enhance model robustness, Dropout is 
applied in the fully-connected layer. Additionally, the 
EarlyStop strategy is employed during training, and Adam is 
utilized as the optimization function. The specific parameters 
are detailed in Table II. 

TABLE II. DETAILS OF EXPERIMENTAL PARAMETERS 

Parameters Value 

Epoch 50 

Learing Rate 0.0005 

Dropout 0.5 

Batch Size 32 

Optimizer Adam 

Window Size [2,3,4,5] 

Hidden Layer 64 

Number of heads 4 

C. Baseline 

In order to highlight the performance of the model, this 
study will compare the parameters (accuracy, precision, recall, 
and F1 value) with the current effective model (benchmark 
model), and the following benchmark models are involved in 
this study: 

 Textual. Utilizes various convolutional kernels to 
extract text features and performs simple concatenation 
for classification. 

 Visual. Utilizes a pre-trained ResNet50 model to extract 
solely image features for classification. 

 EANN [9]. A classic multimodal fake news detection 
model. It utilizes a Text-CNN model to extract text 
features and a pre-trained VGG-19 model to extract 
image features. These features are concatenated and fed 
into the fake news detection model for classification. 
Additionally, it incorporates Adversarial Neural 
Networks for event discrimination.  

 SAFE [17]. Utilizes a Text-CNN model to extract 
features from text and images. It employs an 
image2sentence model for modal transformation of 
images before extracting them with the Text-CNN 
model. Finally, it calculates the similarity between text 
and images for classification.  

 MVAE [28]. Utilizes Bi-LSTM and VGG-19 for text 
and image feature extraction respectively. The features 
are then concatenated to form multimodal information, 
and a variational autoencoder (VAE) efficiently 
captures the complex structure and relationships of 
multimodal data for classification. 

 CARMN [18]. Employs multi-head attention and pre-
trained VGG-19 to learn news text and image features. 
Based on a bidirectional cross-attention mechanism, it 
selectively learns information from one modality to 
another and combines the residuals to preserve the 
original feature information. 

 DCNN [8]. Integrates DeepFM with the FM algorithm 
to learn news social features. Text-CNN and VGG19 are 
employed to learn news text and image features, which 
are then concatenated to obtain multimodal features. 

 MCNN [29]. Utilizes deep learning combined with the 
ELA algorithm to extract image tampering features. 
BERT and Bi-GRU extract textual feature sequences, 
while ResNet50 and an Attention mechanism extract 
visual semantic features. These features are used to 
explore the consistency of multimodal content after 
extraction. 

 Roberta+CNN [30]. This framework integrates a 
specialized convolutional neural network model for 
image examination and a sentence transformer for 
textual evaluation. Characteristics derived from visual 
and textual sources are merged via dense layers, 
ultimately converging to forecast deceitful visuals. 

 BDANN [31]. Textual characteristics in BDANN are 
derived from a pre-trained BERT model, whereas visual 
traits are acquired through a pre-trained VGG-19 model. 
Reliance on particular events is lessened by integrating 
a domain classifier.  

V. RESULTS AND DISCUSSION 

A. Experimental Results 

Table III presents the results of both the benchmark model 
proposed in the previous subsection and the model proposed in 
this study, using equivalent evaluation metrics, on the WeiboA 
and Twitter datasets. 

Upon analyzing the experimental results from both datasets, 
several key conclusions emerge. Firstly, across both the 
WeiboA and Twitter datasets, this study's model outperforms 
alternative methods. This superiority suggests the effectiveness 
of leveraging word weight features from news text to enhance 
the semantic information of images, alongside employing a 
fine-grained approach for extracting local similarity features. 
Moreover, the multimodal features extracted in this study 
exhibit greater effectiveness compared to alternative methods. 

In the WeiboA dataset, the performance of the Text-CNN 
model surpasses that of the Visual-CNN model. Remarkably, 
even when considering unimodal information, the Text-CNN 
model's performance closely rivals that of the EANN model 
utilizing multimodal information. This underscores the pivotal 
role of textual information in journalism, given its rich 
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semantic, emotional, and contextual content. The Visual-CNN 
model's underperformance may be attributed to subpar image 
quality or insufficient key information, leading to noise in the 
extracted features. 

In the multimodal scenario, the MVAE model exhibits the 
poorest performance, possibly attributed to its simplistic fusion 
of modal information lacking information redundancy resulting 
from modal interaction. Additionally, the performance decline 
could be due to the variable autocoder's sensitivity to 
hyperparameters such as variable dimensions and loss 
functions. Conversely, the inclusion of social scenario features 
in the DCNN model does not improve performance; rather, it 
decreases it. This decline may stem from the distant relation 
between social scenario features and text/picture features, 
introducing noise and consequently impacting model 
performance. Similarly, the EANN model, despite 
incorporating an event discrimination module to leverage 

adversarial learning for discarding event-specific features, 
faces performance challenges akin to the MVAE model due to 
its rudimentary fusion of model features. Moreover, completely 
discarding event-specific features risks losing vital event 
context. In contrast, the CARMN model outperforms the 
current model, leveraging an attention mechanism akin to this 
study. However, this study's comprehensive interaction of 
textual information with images leads to superior results 
compared to the CARMN model. 

The model demonstrates superior performance on the 
Twitter dataset compared to the WeiboA dataset. This 
discrepancy is likely due to the smaller number of training 
samples available in the WeiboA dataset, resulting in 
insufficient information for effective learning. Consequently, 
the quality of multimodal features diminishes, resulting in 
marginally poorer performance on the Twitter dataset.

TABLE III. COMPARISON OF ACCURACY, PRECISION, RECALL, AND F1 FOR DIFFERENT BASELINES 

Datasets Method Accuracy 
Fake News Real News 

Precision Recall F1 Precision Recall F1 

WeiboA 

Textual 0.832 0.860 0.816 0.838 0.804 0.850 0.827 

Visual 0.668 0.686 0.688 0.687 0.648 0.645 0.646 

EANN 0.836 0.843 0.851 0.847 0.828 0.819 0.824 

MVAE 0.750 0.731 0.864 0.781 0.812 0.629 0.709 

CARMN O.853 0.891 0.814 0.851 0.818 0.894 0.854 

DCNN 0.803 0.804 0.819 0.811 0.803 0.787 0.795 

Roberta+CNN 0.812 0.851 0.784 0.816 0.744 0.826 0.782 

BDANN 0.842 0.830 0.870 0.850 0.850 0.820 0.830 

CFIF 0.882 0.883 0.901 0.881 0.891 0.873 0.884 

Twitter 

Textual 0.526 0.586 0.553 0.569 0.469 0.526 0.496 

Visual 0.596 0.695 0.518 0.593 0.524 0.700 0.599 

EANN 0.648 0.810 0.498 0.617 0.584 0.759 0.660 

MVAE 0.745 0.801 0.719 0.758 0.689 0.777 0.730 

SAFE 0.766 0.777 0.795 0.786 0.752 0.731 0.742 

MCNN 0.784 0.778 0.781 0.779 0.790 0.787 0.788 

Roberta+CNN 0.853 0.821 0.943 0.877 0.913 0.745 0.820 

BDANN 0.830 0.810 0.630 0.710 0.830 0.930 0.880 

CFIF 0.890 0.871 0.940 0.901 0.921 0.833 0.872 

B. Analysis of Ablation Experiments 

To validate the efficacy of each module within the model 
proposed in this study, we conducted ablation experiments by 
disassembling each module of CFIF. These experiments aimed 
to explore the impact of each module on performance, focusing 
on the following variants: 

1) CFIF-M: The modal interaction module is removed and 

the extracted word weight features are not involved in the 

generation of visual features. It is used to validate the 

effectiveness of the interaction module. 

2) CFIF-L: Removes the locally similar features and the 

multimodal features include only the combination of textual 

features and visual features. Used to validate the effectiveness 

of the similarity module. 

3) CFIF-F: Remove the Modified Transformer based 

feature fusion module, and use the simplest way to splice the 

features. It is used to verify the effectiveness of modal fusion. 

The results of the ablation experiments are presented in 
Table IV. 

Based on the experimental results, it's apparent that 
removing any module—be it the Modal Interaction Module, 
Local Similarity Module, or Feature Fusion Module results in a 
performance decline for the model. This underscores several 
significant findings: 

Effective modal interaction facilitates the acquisition of 
more efficient features, thus enhancing overall model 
performance. This validates the efficacy of using word weight 
features to guide visual feature extraction. 

The incorporation of improved Transformer encoding and 
decoding fusion helps in reducing information redundancy and 
noise interference, consequently leading to performance 
improvements. 

Precise extraction of local similarity features plays a crucial 
role in mitigating graphical inconsistencies. Furthermore, it 
highlights the effectiveness of employing word weight features 
for fine-grained similarity computations within subgraphs.
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TABLE IV. COMPARISON OF RESULTS OF ABLATION EXPERIMENTS 

 

Datasets 
 

Method Accuracy 
Fake News Real News 

Precision Recall F1 Precision Recall F1 

WeiboA 

CFIF-M 0.871 0.850 0.886 0.878 0.894 0.860 0.887 

CFIF-L 0.867 0.820 0.892 0.874 0.920 0.822 0.871 

CFIF-F 0.866 0.843 0.851 0.847 0.828 0.819 0.824 

CFIF 0.882 0.883 0.901 0.881 0.891 0.873 0.884 

Twitter 

CFIF-M 0.860 0.831 0.923 0.872 0.896 0.784 0.835 

CFIF-L 0.883 0.842 0.962 0.900 0.952 0.794 0.863 

CFIF-F 0.879 0.881 0.902 0.890 0.881 0.862 0.871 

CFIF 0.890 0.871 0.940 0.901 0.921 0.833 0.872 

C. Parameter Analysis 

In this study, we experiment and analyze two significant 
parameters with respect to two evaluation metrics: accuracy and 
F1 value. One parameter examines the impact of the number of 

heads on model performance within the modal fusion segment 
utilizing the multi-head attention mechanism. The other 
parameter investigates the effect of the number of output hidden 
layer neurons on model performance. The results of these 
analyses are presented in Fig. 7 and Fig. 8.

 
Fig. 7. The effect of different numbers of head on the results. 

 
Fig. 8. The effect of different numbers of hidden layer neurons on the results.

Based on the experimental findings, it's evident that an 
increased number of heads doesn't necessarily yield superior 
results. This phenomenon arises due to various factors such as 
computational resource constraints, overfitting, information 
redundancy, and challenges in hyperparameter selection. 

Firstly, augmenting the number of attention heads significantly 
escalates both the model's parameter count and computational 
complexity. This presents challenges in effective learning and 
optimization, particularly when resources are limited. 
Secondly, an excessive number of attention heads heightens the 
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risk of overfitting the training data, thereby reducing the 
model's ability to generalize to new data. Moreover, the 
information learned across attention heads may exhibit 
similarity or redundancy rather than complementarity, thereby 
diminishing the model's expressive power. Conversely, an 
increase in hidden layer neurons correlates with a decrease in 
accuracy due to neural networks with excessive hidden layer 
neurons being prone to overfitting. This abundance of nodes 
prolongs training time, hindering the achievement of desired 
outcomes. Hence, this study opts for optimal model 
performance, selecting four polyheads and 64 output hidden 
neurons as the preferred configuration. 

D. Visualization Analysis 

In order to further demonstrate the superiority of this paper's 
model, the dataset WeiboA is used as an example. The 
multimodal feature distribution of the test set is employed to 
visualize and analyze the classical fake news detection model 
EANN and this paper's model (CFIF). However, due to the high 
dimensionality of the multimodal features, it is challenging to 
intuitively understand the results. Therefore, the t-SNE 
algorithm is applied to map the multimodal feature dimensions 
to a two-dimensional space for visualization. The results are 
shown below in Fig. 9 multimodal feature distribution. 

As can be seen from Fig. 9, for most of the data, both models 
are able to extract different features of real news and fake news, 
for the classification results, the more efficient the model, the 
closer the same class will be, and vice versa, the further away, 
while the EANN model is relatively loose regardless of the 
same class or different class spacing, which indicates that the 
uniqueness of the class features extracted by the model is 
relatively small, which is prone to lead to a lower performance 
of the model, and at the same time resulting in low 
generalization ability of the model. On the contrary, the model 
in this paper is able to make the news of the same category 

aggregated with small intervals on a great part of the data, while 
the different categories have large intervals at the same time, 
which reflects the importance of fine-grained modal 
interactions and good modal fusion. 

  
(a) EANN feature distribution            (b) CFIF feature distribution 

Fig. 9. Multimodal feature distribution. 

E. Fault Case Study 

This subsection delves into the Chinese dataset WeiboA, 
with a focus on instances of model classification errors. 
Through an in-depth analysis of typical samples, we aim to 
discern the underlying reasons for these errors. In Fig. 10, false 
news is erroneously classified as true news. The textual content 
narrates activities related to visiting and traveling in Australia, 
accompanied by an image depicting similar activities. The 
convergence of textual and visual content makes it challenging 
to discern the veracity of the news solely based on internal cues. 
Consequently, our model identifies it as real news. In Fig. 11, 
real news is misclassified as false news. The textual content 
describes a father's affection for his son, whereas the 
accompanying image merely portrays an elderly father cooking. 
This discrepancy between the textual and visual elements 
results in a lack of coherence, leading our model to classify it 
as false news.

 

Fig. 10. Fake news judged to be true. 

 
Fig. 11. True news judged to be fake.

VI. CONCLUSION 

The proliferation of social media in recent years has 
facilitated easier access to information; however, it has also 
become a fertile ground for the propagation of false news. To 
enhance the efficacy of fake news detection, this paper proposes 
a cross-modal fine-grained interactive fusion model, primarily 

addressing the current issues of insufficient interaction between 
modalities and overly simplistic modality fusion in some 
detection models. This model achieves effective interaction by 
employing word weight features to guide the generation of 
visual features. Subsequently, it utilizes these features to 
compute fine-grained similarity across different regions of the 
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image, obtaining local similarity features. Finally, a fusion 
network is employed to integrate modal information, 
effectively mitigating the challenges associated with false news 
detection. Comparison experiments and ablation studies 
conducted on WeiboA and Twitter datasets demonstrate the 
efficacy of the proposed model compared to several benchmark 
models such as EANN. 

Furthermore, the fine-grained fake news detection model 
proposed in this paper has some limitations, such as utilizing 
only part of the information within the dataset. Future studies 
can incorporate the remaining information as well as external 
data, such as the dissemination path of the news, user 
characteristics, and a priori characteristics combined with 
external information. Additionally, given the continuous 
evolution of technology and the sophistication of tampering 
methods, a significant proportion of fake news content falls into 
a gray area, blending elements of truth and falsehood. 
Therefore, future efforts should avoid oversimplifying the fake 
news detection task as a binary classification problem and 
instead develop it into a multi-classification challenge. 
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