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Abstract—Accurate decoding of brain intentions is a pivotal 

technology within Brain-Computer Interface (BCI) systems that 

rely on Motor Imagery (MI). The effective extraction of 

information features plays a critical role in the precise decoding of 

these brain intentions. However, there exists significant individual 

and environmental variability in signals, and the sensitivity of 

EEG signals from different subjects also varies, imposing higher 

demands on both feature exploration and accurate decoding. To 

address these challenges, we employ adaptive sliding time 

windows and a stepwise discriminant analysis strategy to 

selectively extract features obtained through the Filter Bank 

Common Spatial Pattern (FBCSP). This entails the identification 

of an optimal feature combination tailored to specific patients, 

thereby mitigating individual differences and environmental 

variations. Initially, adaptive sliding time windows are applied to 

segment electroencephalogram (EEG) data for different subjects, 

followed by FBCSP for feature extraction. Subsequently, a 

stepwise discriminant analysis (SDA) incorporating prior 

knowledge is employed for optimal feature selection, effectively 

and adaptively identifying the best feature combination for 

specific subjects. The proposed method is evaluated using two 

publicly available datasets, the EEG recognition accuracy for 

Dataset A is 98.47%, and for Dataset B, it is 95.2%. In comparison 

to current publicly reported research results (utilizing Power 

Spectral Density (PSD) + Support Vector Machine (SVM) 

methods) for Dataset A, the proposed method improves MI 

recognition accuracy by 25.37%. For Dataset B, compared to 

current publicly reported results (FBCNet method), the proposed 

method improves MI recognition accuracy by 26.4%. The 

experimental results underscore the method's broad applicability, 

scalability, and substantial value for promotion and application. 

Keywords—Stepwise discriminant analysis; electroenceph 

alogram; motor imagery; sliding time window; filter bank common 
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I. INTRODUCTION 

Brain-computer interface (BCI) technology has witnessed 
rapid development, injecting new vitality into the fields of 
neuroscience and engineering [1, 2]. Among various BCI 
applications, the interpretation of electroencephalogram (EEG) 
signals through Motor Imagery (MI) has emerged as a notable 
research focus [3-12]. MI-EEG technology enables individuals 
to control external devices through brain activity, holding 
tremendous promise in neuroscience, medical rehabilitation, and 
intelligent assistive devices. It offers a potential pathway for 
individuals who have lost motor capabilities due to illness or 
injury [13-16]. This technology finds widespread application in 
neurorehabilitation, particularly for patients recovering from 
conditions such as stroke [17] and spinal cord injuries [18]. 

Through MI-EEG, patients can control external devices by 
imagining movements, promoting the re-adaptation and repair 
of damaged neural systems. Additionally, MI-EEG plays a 
crucial role in controlling smart assistive devices, providing a 
more flexible and independent lifestyle for individuals with 
disabilities [19 -22]. 

Internationally and domestically, research teams have made 
substantial progress in EEG signal studies, delving into BCI 
systems' five processes: signal acquisition, signal preprocessing, 
feature extraction, feature classification, and external device 
control [23-25]. Feature extraction is a critical aspect of MI 
recognition, and common methods in MI-BCI include Common 
Spatial Pattern (CSP) [26], Power Spectral Density (PSD) [27], 
and wavelet feature extraction algorithms [28]. Wu et al. [29] 
proposed a PSD-based frequency band pre-determination 
method to effectively extract EEG signal features related to 
motion imagery when wearing exoskeletons. The CSP was then 
applied to extract features from the EEG's highest energy 
frequency band. Zheng et al. [30] introduced a new Regularized 
Common Spatial Patterns (RCSP) algorithm based on traditional 
CSP to handle small-sample EEG data. RCSP adjusts the values 
of two regularization parameters, introducing a certain degree of 
correlation among experimental data to reduce errors caused by 
individual differences. Results from testing on public datasets 
showed that RCSP algorithm classification outperformed 
traditional CSP by approximately 8%. Wei et al. [31] used the 
Filter Bank Common Spatial Pattern (FBCSP) with a one-to-one 
multi-class extension to classify four classes of MI-EEG (BCI 
Competition IV Datasets 2a). A majority voting strategy was 
applied to the selected individual classifiers, yielding a 
considerable classification accuracy of 68.52%. Siviero et al. 
[32] combined multi-channel empirical wavelet transform 
representation with Scattering Convolutional Networks (SCN) 
to effectively decode brain activity and extract MI-based BCI's 
relevant wave patterns. The highest average accuracy in the 
classification of tongue and left-hand MI tasks reached 82.05%. 
Jiang et al. [33] redefined regularized spatial or temporal filters 
through a reweighting technique, iterating them as CSP 
problems. Experimental validation on two sets of BCI 
competition motor imagery EEG data demonstrated the 
algorithm's effectiveness, achieving an average accuracy of 
85%. These studies primarily focus on feature extraction, 
highlighting the crucial role of this process in final result 
performance. Among various feature extraction methods, Filter 
Bank Common Spatial Pattern (FBCSP) stands out due to its 
comprehensive consideration of signal frequency information 
compared to traditional CSP and RCSP methods. This method 
exhibits superior performance in handling complex tasks and 
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has gained wide usage in the BCI field, especially in applications 
demanding high levels of personalization and accuracy. 
Consequently, the FBCSP algorithm was selected as the EEG 
feature extraction method in this study. 

Due to factors such as individual differences in reaction 
time, physical state, and environment, EEG data exhibit 
variability in terms of duration, space, frequency bands, etc. In 
recent years, researchers have proposed various sliding window 
techniques to improve classification accuracy. Gaur et al. [34] 
introduced two sliding window techniques, one calculating the 
longest continuous repetition of all sliding window prediction 
sequences, and the other computing patterns in all sliding 
window prediction sequences. CSP was used for feature 
extraction, and linear discriminant analysis was employed for 
classification in each time window, resulting in an overall 
classification accuracy of approximately 80%. Phunruangsakao 
et al. [35] presented two mutual information-based adaptive 
algorithms: the sliding window adaptive algorithm and the 
genetic algorithm adaptive algorithm. Both algorithms 
continuously adjust the starting point and length of the time 
window using optimized reference signals and mutual 
information analysis. The algorithms optimize reference signals 
based on mutual information analysis and performance 
evaluation. Finally, feature extraction and classification 
algorithms were applied to assess the performance of the sliding 
window adaptive algorithm and genetic algorithm adaptive 
algorithm. The results demonstrated that these adaptive 
algorithms improved traditional methods, enhancing 
classification accuracy by 6.00% and 6.37%, respectively. Shin 
et al. [36] performed feature extraction on the temporal process 
of EEG signals using a moving time window. Linear 
discriminant analysis (LDA) was used for classification, 
achieving a classification accuracy of 65.6% for MI-EEG. To 
enhance classification accuracy, P. Saideepthi et al. [37] 
introduced a post-processing step based on the longest 
continuous repetition of sliding windows using EEGNet as a 
decoding basis. The average classification accuracy reached 
77%. However, individual differences in brain signals and 
susceptibility to environmental influences pose challenges. 
Moreover, different components extracted from features 
contribute differently to MI recognition for different subjects. 
The use of generic feature extraction algorithms may not 
effectively select high-quality feature components. The 
challenge is how to adaptively extract common features with 
significant contributions from specific subjects in effective data, 
enhancing the generalization of BCI systems. 

Q. Dong et al. [38] utilized an electrode selection algorithm 
based on Independent Component Analysis (ICA). Time-
domain features of the selected P300 electrode were extracted, 
and stepwise linear discriminant analysis was applied for 
classification, achieving the best recognition rate of 80.2% and 
an average recognition rate of 74.4% for nine participants. This 
validated the feasibility of spatial auditory-evoked P300 
experiments and the effectiveness of the algorithm. Numerous 
studies on stepwise discriminant analysis suggest its feasibility 
in feature selection. However, the MI recognition accuracy of 
the proposed algorithm remains relatively low. Pane et al. [39] 
proposed a channel selection method for emotion recognition in 
EEG signals based on Stepwise discriminant analysis (SDA). 

SDA is an extension of discriminant analysis statistical tools, 
incorporating stepwise techniques. In their study, data were 
obtained from a public emotional EEG dataset using EEG 
devices with 62 channels targeting three target emotions 
(positive, negative, and neutral). To handle high-dimensional 
data in EEG signals, differential entropy features were extracted 
from five frequency bands: δ, θ, α, β, and γ. SDA's selection 
criterion was based on Wilks Lambda scores to obtain the best 
channels. To measure the performance of the selected channels, 
EEG signal feature vectors were fed into an LDA classifier. In 
experiments, several scenarios with different numbers of 
selected channels, such as 3, 4, 7, and 15 channels, were 
considered. In the case of 15 channels, the highest accuracy of 
99.85% was achieved across all frequency band combinations. 

To overcome the impact of individual differences in EEG 
data in terms of time, space, and frequency bands caused by 
factors such as subjects' reaction time, physical state, and 
environment, this study employed an optimized sliding time 
window algorithm combined with a stepwise discriminant 
feature selection algorithm. This algorithm not only expands the 
data volume and improves accuracy but also enables optimal 
feature selection for specific patients. To optimize the results of 
stepwise discriminant feature selection, this study introduced a 
method of incorporating prior knowledge, allowing the 
algorithm to adaptively select the optimal features applicable to 
specific individuals. For the FBCSP features of EEG signals, we 
adopted an adaptive feature selection method, and the 
experiments demonstrated that this method exhibits robust 
adaptability in handling EEG data features while maintaining 
strong generalization capabilities. The structure of the article is 
arranged as follows: Section II provides a detailed introduction 
to the data and methods, including the dataset used, the overall 
framework of the algorithm, and the feature extraction method. 
Section III presents the experimental results, while Section IV 
conducts an in-depth discussion of the proposed method. Section 
V draws the final conclusion. 

II. DATA AND METHODS 

A. Dataset Introduction 

1) Dataset A: Dataset A [36] consists of EEG data from 29 

healthy participants, including 28 right-handed individuals and 

1 left-handed individual, with a gender distribution of 14 males 

and 15 females. The average age was 28.5 ± 3.7 years (mean ± 

standard deviation). EEG data were recorded using a BrainAmp 

EEG amplifier with 30 active electrodes, connected to mastoid 

reference, and sampled at 1000 Hz. Fourteen sources and 

sixteen detectors generated 36 physiological channels, placed 

in frontal areas (9 channels around Fp1, Fp2, and Fpz), motor 

areas (12 channels around C3 and C4), and visual areas (3 

channels around Oz). The inter-electrode distance was 30 mm. 

The EEG dataset includes both Motor Imagery (MI) and 
Mental Arithmetic (MA) tasks. This paper focuses on the MI 
dataset, which comprises three sessions of left and right-hand 
motor imagery tasks. Each session consists of 20 trials for each 
condition, resulting in a total of 60 trials per participant across 
the three sessions. Each session begins with a one-minute pre-
experiment resting period, followed by 20 repetitions of the 
given task, and concludes with a one-minute post-experiment 
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resting period. Each task involves a two-second visual cue 
(indicating right or left-hand movement), a 10-second task 
period, and a 15-17-second rest period. The participants are 
instructed to imagine grasping movements of their left or right 
hand at a rate of 1 Hz. Further details about the dataset can be 
found in the reference [36]. 

2) Dataset B: Dataset B [40] involves experiments with 25 

healthy participants without prior Motor Imagery (MI)-based 

Brain-Computer Interface (BCI) experience, aged between 20 

and 24 years, with 12 females. The experiment used a 32-

channel solid electrode cap with Ag/AgCl, ensuring high 

current density, good anti-interference, and low impedance. 

The amplifier supported wireless transmission and real-time 

impedance monitoring, maintaining electrode impedance 

below 20 KΩ throughout the 250 Hz sampling. Data were 

stored in microvolts (uV). Bad segments were removed before 

preprocessing and automatically flagged by EEGLAB for 

amplitude exceeding 100 uV. Additional manual inspection by 

two experienced researchers determined the presence of bad 

segments. The four-second EEG data for MI tasks were saved 

for further processing. The sampling frequency was 250 Hz, 

providing a total time sample of 1000 for each trial. Baseline 

removal and bandpass filtering between 0.5-40 Hz using Finite 

Impulse Response (FIR) filters were applied. Some trials were 

lost due to the removal of bad segments in certain sessions. 

Before the experiment, participants received detailed 
explanations of the experimental methods and procedures, 
ensuring a thorough understanding. Experiment supervisors 
oversaw the process to guarantee reliability. The experiment 
took place in a spacious enclosed laboratory, where participants 
sat in a chair one meter away from a 15-inch LCD monitor. Each 
trial started with a fixed crosshair in the center of the monitor, 
signaling the upcoming task to the participant. When a left or 
right-hand movement was displayed on the monitor, participants 
were prompted to imagine the next movement. Trials consisted 
of 100 repetitions, with four interruption periods during the 
experiment. Participants imagined movements based on visual 
and auditory cues, maintaining rest and stillness to preserve 
physical and mental states and ensure high signal quality. The 
dataset is available for free download on Figshare 17 and is 
organized according to EEG-BIDS 28, an extension of the EEG 
Brain Imaging Data Structure. Various access methods, such as 
IEEE P273129, FAIR 30, and EEG-BIDS, are provided. IEEE 
P2731 defines a complete storage system, including decoding 
algorithms, preprocessing, feature extraction, and classification. 
This system comprehensively describes the generation, 
processing, and utilization of EEG datasets. 

Datasets A and B are representative EEG data in the field of 
brain computer interfaces, which have been validated by a large 
number of researchers and have higher reference value. 

B. Algorithm Framework 

This study conducts analysis and validation on two EEG 
datasets, and the algorithm framework is depicted in Fig. 1. The 
algorithm consists of four modules: 

1)  Raw data input and preprocessing: For EEG data from 

Dataset A, it undergoes downsampling to 200 Hz. Filtering is 

applied with a passband of 0.5 - 50 Hz using a fourth-order 

Chebyshev II filter. Baseline correction is performed by 

subtracting the average value between -3 seconds and 0 seconds 

from the segmented windows in the range of -10 seconds to 25 

seconds. EEG data from Dataset B, having undergone 

preprocessing in the original data, is not detailed in this section. 

2) Sliding time windows: For EEG data from Dataset A, 

after obtaining the necessary data, a sliding time window 

(window size: 3 s, step size: 1 s) is applied, dividing the data 

into 33 windows. Each window undergoes individual feature 

extraction. EEG data from Dataset B, after obtaining the 

necessary data, is subjected to a sliding time window (window 

size: 3 s, step size: 2 s), resulting in 49 windows. Similar to 

Dataset A, each window undergoes individual feature 

extraction. 

3) Feature extraction: For EEG data from both Dataset A 

and Dataset B, three methods are employed for feature 

extraction: Common Spatial Patterns (CSP), Regularized 

Common Spatial Patterns (RCSP), and Filter Bank Common 

Spatial Patterns (FBCSP). Through experimentation, CSP 

demonstrates superior performance on Dataset A, while FBCSP 

outperforms other methods on Dataset B. In general, FBCSP, 

considering signal frequency information comprehensively, 

exhibits better performance in handling complex tasks. Given 

its widespread use in brain-computer interface applications, 

especially in scenarios requiring high personalization and 

accuracy, FBCSP is ultimately selected as the EEG feature 

extraction method.  

4) Optimal feature selection and result prediction: For each 

window of EEG data from Dataset A and Dataset B after feature 

extraction, the features are split into training (70%) and testing 

(30%) sets. The training set undergoes normalization and 

stepwise discrimination to obtain an optimized new feature set, 

used to train a Linear Discriminant Analysis (LDA) classifier. 

During online testing, the optimal feature sequence index 

obtained through cross-validation based on the Stepwise 

discriminant analysis (SDA) algorithm is used to select feature 

components for testing data. The testing data is filtered based 

on the data index obtained from SDA in the training set and 

serves as the source signal. The LDA classifier calculates the 

classification accuracy. 

C. Feature Selection Strategies Based on FBCSP and SDA 

In brain-computer interface motor imagery tasks, significant 
variations exist in individuals' reaction speeds and response 
times. These differences lead to inconsistent timing when 
subjects receive commands and perform corresponding actions, 
impacting the data and potentially introducing errors in data 
processing. To address this issue, the sliding time window 
method is employed to effectively mitigate prediction result 
biases arising from inconsistent reaction times, thereby 
enhancing the dataset's volume and accuracy [41]. For Dataset 
A, EEG samples for each subject are sampled from -10 to 25 
seconds with a sliding window of 3 seconds and a step size of 1 
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second, resulting in 33 windows. For Dataset B, a sliding 
window of three seconds with a step size of two seconds is 
applied, yielding 49 windows. 

For the EEG signals of the two datasets, this study 
experimented with three feature extraction methods: Common 
Spatial Patterns (CSP), Regularized Common Spatial Patterns 
(RCSP), and Filter Bank Common Spatial Patterns (FBCSP). 

CSP is a feature extraction method designed for EEG or other 
biological signals to find projection directions that maximize the 
difference between two classes while minimizing the variance 
within the same class. By identifying the optimal projection 
direction in different spatial filters, CSP enhances differences 
between different classes and effectively increases the 
classification accuracy of task-related information in brain 
signals. 

Step 1：Data  Preprocessing

raw data

Resampling

 

Step 3：EEG Feature extraction

SDA

Train LDA

Step 4：Optimal feature selection and 

recognition

Training data Test data

Index of optimal features
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Fig. 1. Algorithm framework diagram. 
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The objectives of CSP are to find a projection matrix W, 
such that the covariance of the projected signals is diagonalized 
in the new coordinate system. This can be achieved by solving 
the following generalized eigenvalue problem: 

𝑆 = 𝑊𝑇𝑅1𝑊 =  𝑄1   (1) 

 𝑆 = 𝑊𝑇𝑅2𝑊 =  𝑄2  (2) 

Here, S is the total covariance matrix, Q1 and Q2 are 
diagonal matrices containing generalized eigenvalues. By 
solving this problem, the obtained projection matrix W can be 
used to project EEG signals into the new coordinate system. 

RCSP is an improvement upon CSP, introducing a 
regularization term to enhance the model's generalization 
performance and reduce overfitting. RCSP is commonly used 
for handling high-dimensional data, mitigating the overfitting 
issue associated with limited samples. By incorporating 
regularization, RCSP can better adapt to new data, thereby 
improving the model's robustness. Formulas (3) and (4) are 
provided below, where I is the regularization parameter, and α 
is the identity matrix. Regularization contributes to enhancing 
the model's generalization performance. 

𝑆 = 𝑊𝑇(𝑅1 + 𝛼𝐼)𝑊 =  𝑄1  (3) 

𝑆 = 𝑊𝑇(𝑅2 + 𝛼𝐼)𝑊 =  𝑄2  (4) 

FBCSP decomposes the signal into multiple frequency 
bands and applies CSP to each band individually. Finally, it 
consolidates the features extracted from different frequency 
bands for the ultimate classification. FBCSP takes into account 
the frequency information of the signal, allowing for a more 
comprehensive capture of features in brain signals, especially 
effective in complex BCI applications involving various 
movements or tasks. Formulas (5) and (6) are presented below, 
where W_i represents the corresponding CSP projection matrix. 
Thus, the objective function for FBCSP can be expressed as 
follows, where R_1i and R_2i are the covariance matrices for 
the two classes within its frequency band: 

𝑆𝑖 = 𝑊𝑖
𝑇𝑅1𝑖𝑊𝑖 =  𝑄1𝑖   (5) 

𝑆𝑖 = 𝑊𝑖
𝑇𝑅2𝑖𝑊𝑖 =  𝑄2𝑖   (6) 

The three feature extraction methods produce different 
effects on different datasets. RCSP is an extension of CSP, 
introducing regularization to address the issue of small sample 
data and improve the algorithm's generalization ability. FBCSP 
introduces frequency domain decomposition, breaking down the 
signal using a filter bank to better handle information in different 
frequency bands. RCSP focuses primarily on regularization for 
scenarios with limited samples, while FBCSP concentrates on 
frequency domain decomposition to enhance performance 
through operations in the frequency domain. Eventually, these 
three methods were chosen as feature extraction techniques. In 
summary, FBCSP, compared to traditional CSP and RCSP 
methods, comprehensively considers the frequency information 
of signals, exhibiting better performance in handling complex 
tasks. This method is widely used in the field of brain-computer 
interfaces, particularly in scenarios requiring high 
personalization and accuracy. In this paper, the FBCSP 
algorithm is selected as the EEG feature extraction method. 

Through multiple experiments, it was observed that different 
feature variables exhibit varying sensitivity, with different 
dimensions, units, and ranges, leading to the neglect of certain 
indicators. This affects the performance of subsequent stepwise 
discriminant analysis. To address this issue, the feature set 
underwent normalization. Since min-max normalization enables 
data from different ranges to be calculated within the same 
range, it facilitates easier processing and comparison, enhancing 
computational efficiency. Additionally, normalization helps 
avoid proportional relationships between attribute values, 
reducing the impact of attribute value magnitudes on the final 
result and mitigating algorithm bias. Therefore, max-min 
normalization was selected based on the feature set. 

After normalization, the feature data is within the same order 
of magnitude, significantly improving comparability among 
indicators. Despite being in the same order of magnitude, there 
are still significant differences in the statistical significance of 
features. To resolve this, the optimal feature subset containing 
all relevant features was determined, and irrelevant features 
were removed. The stepwise discriminant analysis (SDA) 
algorithm was employed to further process the feature data. 
SDA is a comprehensive method that combines forward 
introduction and backward elimination. It reduces 
multicollinearity by removing unimportant variables highly 
correlated with other variables [42, 43]. During the experiment, 
the SDA [44] algorithm introduced variables into the model one 
by one. After introducing each explanatory variable, an F-test 
was conducted, and the already selected explanatory variables 
were individually subjected to t-tests. If an originally introduced 
explanatory variable became insignificant due to the subsequent 
introduction of other explanatory variables, it was removed to 
ensure that the regression equation contained only significant 
variables before each new variable introduction. This process 
was repeated until there were no significant explanatory 
variables to include in the regression equation and no 
insignificant explanatory variables to remove, ensuring that the 
final set of explanatory variables obtained was optimal. 
Selecting the optimal set of variables enhances the accuracy of 
the results. Formula (7) is as follows, where Y is the target 
variable, Xi is the added independent variable, and βi is the 
corresponding regression coefficient. 

𝑌 =  𝛽0 + 𝛽1𝑋1 + ⋯ + 𝛽𝑖𝑋𝑖 + ⋯ + 𝛽𝑘𝑋𝑘 + 𝜖 (7) 

III. EXPERIMENTAL RESULTS 

A. Comparison of Different Feature Extraction Methods for 

Specific Subjects 

CSP and its variants, such as FBCSP and RCSP, exhibit 
distinct effects in feature extraction, and this variability is 
notable across individual EEG datasets. To select the optimal 
spatial feature extraction algorithm, experiments, and parameter 
selections were conducted on two publicly available datasets, 
evaluating CSP, RCSP and FBCSP. The datasets were initially 
segmented using sliding time windows, followed by feature 
extraction using CSP, RCSP, and FBCSP. Finally, the prediction 
accuracy of 30% of the blind source signals was assessed using 
an LDA classifier. To investigate the optimal feature extraction 
results, the experiments were conducted with different feature 
dimensions, m=2~8. The experimental results are illustrated in 
Fig. 2. 
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Fig. 2. (a) and (b) are 3D plots of ACC with varying feature dimensions M for specific subjects in datasets A and B. 

As shown in Fig. 2, the plots correspond to the accuracy of 
each subject as the feature dimension varies from 2 to 8. For 
dataset A, using the three methods, CSP exhibits stable 
performance when the feature dimension is 6, with an optimal 
average accuracy of 92.72% among the 25 subjects. RCSP 
achieves its optimal average accuracy of 76.63% when the 
feature dimension is 5. FBCSP reaches its optimal average 
accuracy of 91.57% when the feature dimension is 7. For dataset 
B, using the three methods, CSP achieves its optimal average 
accuracy of 77.35% when the feature dimension is 5. RCSP 
reaches its optimal average accuracy of 69.41% when the feature 
dimension is 5. FBCSP attains its optimal average accuracy of 
83.32% when the feature dimension is 4. From the results of 
these two datasets, it can be observed that among these three 
feature extraction methods, FBCSP performs more 
outstandingly. 

B. Feature Selection Strategy of FBCSP and SDA for Specific 

Subjects 

Due to the presence of feature redundancy in the results of 
feature extraction, coupled with the individual differences in 
features among different subjects, further efforts are made to 
select the optimal feature combination from the extracted 
features. This aims to make the features more adaptive to 
specific subjects. In this section, we propose the additional use 
of the SDA method for adaptive feature selection. Initially, a 
sliding time window is applied for segmentation. Subsequently, 
CSP, RCSP, and FBCSP are employed for feature extraction. 
Following this, SDA is utilized for feature selection. Compared 
to PSD and FBCNet, the additional use of SDA for feature 
optimization can effectively eliminate some poor feature data 
and improve the quality of features. Finally, an LDA classifier 
is employed to predict the accuracy of 30% of the blind source 

signals. We investigate the optimal feature extraction results, 
where the feature dimensions for the three feature extraction 
algorithms range from m=2~8. The experimental results are 
illustrated in Fig. 3. 

As shown in Fig. 3, the overall performance of the RCSP 
method is suboptimal for both datasets. It exhibits significant 
fluctuations and lower accuracy, ranging between 60% and 80% 
for each individual. Conversely, the FBCSP method yields 
predominantly favorable results, with accuracy consistently 
surpassing 80%. For Dataset A, the maximum average accuracy 
achieved by CSP, RCSP, and FBCSP is 96.36%, 81.23%, and 
98.47%, respectively. Notably, CSP utilizes a feature count M 
of 5, RCSP with M of 4, and FBCSP with M of 4. In the case of 
Dataset B, the maximum average accuracy for CSP, RCSP, and 
FBCSP is 82.26%, 72.12%, and 95.2%, respectively. CSP uses 
M=2, RCSP uses M=3, and FBCSP employs M=2. From the 
experimental results, it is evident that there is significant 
individual variability in the accuracy distribution of different 
subjects in both Dataset A and Dataset B. The adoption of this 
adaptive feature selection strategy substantially improves the 
recognition accuracy of specific subjects. 

To validate the effectiveness and generalization ability of the 
proposed sliding window-optimized stepwise regression feature 
selection algorithm and investigate the optimal feature selection 
count and corresponding recognition accuracy for different 
subjects, based on the experimental results, feature counts M for 
CSP, RCSP, and FBCSP for Dataset A and B are set to 5, 4, 4, 
and 2, 3, 2, respectively. Adaptive sliding time window 
truncation is applied to EEG data from different subjects in 
Datasets A and B. Various feature extraction methods are 
employed for feature extraction, followed by stepwise 
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discriminant analysis for further feature selection. The optimal 
feature selection count and corresponding recognition accuracy 
for different subjects in Datasets A and B are depicted in Fig. 4 
and Fig. 5. 

As illustrated in Fig. 4, the optimal feature count varies 
among the 29 subjects, with the majority selecting three features. 
The graph depicts the number of features selected through 
stepwise regression under the condition of maximum accuracy. 
For instance, for Subject 1, using the CSP method with an 
accuracy of 100%, the corresponding feature count is 6; with the 
RCSP method and an accuracy of 88.89%, the feature count is 
5; and with the FBCSP method and an accuracy of 100%, the 
feature count is 2. For Dataset A, after CSP, RCSP, and FBCSP 
feature extraction and feature selection, the average feature 
selection counts are 3.41, 2.45, and 3.93, respectively. The 
classification accuracy obtained from each subject indicates that 
stepwise regression possesses strong feature selection 
capabilities. 

The graph reveals that under different feature extraction 
methods, individual accuracy shows a certain trend of variation. 
FBCSP and CSP methods exhibit relatively high accuracy, with 
average accuracies reaching 98.47% and 96.36%, respectively. 
In contrast, RCSP shows larger fluctuations and an average 
accuracy of only 80.44%. On an individual level, differences in 
performance are observed across different subjects under 
various feature extraction methods. The ninth subject achieves 
100% accuracy across all three feature extraction methods. The 
fourteenth subject demonstrates high accuracy in CSP and 
FBCSP feature extraction methods, while possibly showing 
average performance in the RCSP method. This suggests that 
specific feature extraction methods may be more suitable for 

certain individuals, and individual responses to these methods 
are diverse. 

As depicted in Fig. 5, the optimal feature count varies among 
the 25 subjects, with the majority selecting 2 features. The graph 
illustrates the number of features selected through stepwise 
regression under the condition of maximum accuracy. For 
instance, for Subject 1, using the CSP method with an accuracy 
of 89.47%, the corresponding feature count is 1; with the RCSP 
method and an accuracy of 70.33%, the feature count is 3; and 
with the FBCSP method and an accuracy of 95%, the feature 
count is 2. After CSP, RCSP, and FBCSP feature extraction and 
feature selection for Dataset B, the average feature selection 
counts are 2.08, 1.96, and 2, respectively. The classification 
accuracy obtained from each subject indicates that stepwise 
regression possesses strong feature selection capabilities. 
Compared to Dataset A, the impact of the three methods on 
Dataset B's predictions is more distinct, with FBCSP being 
advantageous and RCSP at a disadvantage. RCSP exhibits 
relatively stable prediction results, but the average accuracy is 
only 72.12%; CSP shows larger fluctuations with an average 
accuracy of 82.26%. The overall best performance is observed 
in FBCSP, which maintains good stability while achieving an 
average accuracy of 92.5%. On an individual level, differences 
in performance are observed across different subjects under 
various feature extraction methods. The eighteenth subject 
achieves 70%, 71%, and 100% under the CSP, RCSP, and 
FBCSP methods, respectively. The nineteenth subject achieves 
89.47%, 70.4%, and 85% under the CSP, RCSP, and FBCSP 
methods, respectively. This indicates that specific feature 
extraction methods may be more suitable for certain individuals, 
and individual responses to these methods are diverse. 

 
(a) 

 
(b) 

Fig. 3. (a) and (b) are 3D graphs depicting the ACC variation with the feature count M for specific subjects in Datasets A and B. 
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Fig. 4. Optimal feature number and corresponding recognition accuracy for different feature extraction algorithms in dataset A. 

 
Fig. 5. Optimal feature number and corresponding recognition accuracy for different feature extraction algorithms in dataset B. 

C. Recognition Results of Different Classifiers 

To verify the generalization capability and robustness of the 
proposed method, this paper employs Linear Discriminant 
Analysis (LDA), Support Vector Machine (SVM), and k-nearest 
Neighbors (kNN) to evaluate the performance of the selected 
feature subset. As shown in Fig. 6, for Dataset A, three feature 
extraction methods and three classifiers—LDA, SVM, kNN, 
Decision Tree, and Random forest yield the following 
accuracies: CSP+LDA achieves an accuracy of 96.36%, 
CSP+SVM achieves 80.08%, CSP + KNN achieves 72.61%, 
CSP + Decision Tree achieves 81.99%, and CSP + Random 
Forest achieves 83.14%. Similarly, RCSP+LDA achieves an 
accuracy of 80.44%, RCSP+SVM achieves 77.78%, 
RCSP+KNN achieves 69.16%, RCSP + Decision Tree achieves 
76.25%, and RCSP + Random Forest achieves 74.71%. 
FBCSP+LDA achieves an impressive accuracy of 98.47%, 
FBCSP+SVM achieves 86.8%, FBCSP+KNN achieves 
73.18%, FBCSP +Decision Tree achieves 90.06%, and FBCSP 

+ Random Forest achieves 88.72%. For Dataset B, the 
accuracies are as follows: CSP+LDA achieves 82.26%, 
CSP+SVM achieves 68.82%, CSP+KNN achieves 67.42%, 
CSP + Decision Tree achieves 76.88%, and CSP + Random 
Forest achieves 77.65%. RCSP+LDA achieves 72.12%, 
RCSP+SVM achieves 65.45%, RCSP+KNN achieves 62.58%, 
RCSP + Decision Tree achieves 64.1%, and RCSP + Random 
Forest achieves 62.73%. FBCSP+LDA achieves an accuracy of 
95.2%, FBCSP+SVM achieves 71.65%, FBCSP +KNN 
achieves 69.51%, FBCSP + Decision Tree achieves 80.07%, and 
FBCSP + Random Forest achieves 83.4%. 

From the figures, it is visually apparent that, under the same 
classifier, FBCSP outperforms others. Furthermore, when 
employing the same feature extraction algorithm, the 
performance of the LDA classifier is notably superior to other 
classifiers. 
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(a) 

 
(b) 

Fig. 6. The recognition results of different classifiers under datasets A and B. 

(a) the result of dataset A, and (b) the results of dataset B. 

IV. DISCUSSION 

EEG feature extraction is crucial for decoding MI signals. 
However, due to factors such as individual variability among 
subjects and environmental variations during testing, spatial 
feature extraction methods and their improved versions, as well 
as the selection of feature parameters, can exhibit different 
effects on individuals. Experimental evidence has shown that 
FBCSP demonstrates superior generalization capabilities. 
Despite the significant redundancy in the features extracted by 
this spatial feature extraction method, effectively eliminating 
redundant information can greatly enhance EEG decoding 
accuracy. Therefore, this paper proposes the use of a Sliding 
Time Window-based Spatial Domain Adaptation (SDA) method 
to improve performance. To validate the effectiveness of this 
SDA feature selection strategy on the effects of feature 
extraction and generalization capabilities, we compared the 
distribution of features with and without the SDA feature 
selection strategy and performed experiments on two datasets. 
Fig. 7 illustrates the optimal feature visualization of EEG data 
from datasets A and B. 

Fig. 7 presents the t-SNE [45] visualization results for binary 
MI classification of the 9th participant, with (a) and (b) 

representing the feature visualization comparisons before and 
after stepwise discrimination for datasets A and B, respectively. 
It can be seen that the separability of data features has a certain 
effect. The features extracted by the proposed method achieved 
better feature separability which will enhance the classification 
performance of the model. Therefore, the visualized feature 
maps demonstrate that the latent features extracted by our 
method can more significantly represent the MI tasks, resulting 
in outstanding classification performance. This also indicates 
that our method can indeed uncover valuable information. 
Moreover, the strong generalization capability of the method is 
evident from the figure, highlighting its applicability to various 
modalities of data. 

To further evaluate the results of our work, we compared the 
performance of our method with studies using the same 
benchmarks, as shown in the Table I. The Table I presents the 
classification accuracy of different methods. From the Table I, 
it is evident that our method improves the classification accuracy 
and generalization performance of the model. The work by Shin 
et al. [36] utilized a comprehensive feature extraction and 
classification approach for BCI tasks. They extracted features 
from the logarithmic variances of the first three and last three 
CSP components of EEG signals and employed a regularized 
LDA classifier for classification. The average accuracy on the 
MI dataset was 65.5%. Ergun et al.'s [34] notable contribution 
lies in employing diverse feature extraction methods, including 
Katz fractal dimension and Hilbert transform. They used a k-
nearest neighbors classifier, a simple yet effective method 
suitable for various data types. Jiang et al. [33] proposed the use 
of Independent Decision Path Fusion (IDPF), incorporating 
multiple decision paths, each using different features and 
machine learning methods for classification. They achieved 
outstanding accuracy of 78.56% on the dataset using power 
spectral features and CSP features with SVM and LDA.  

As dataset B is newly publicly available, there are limited 
research results for dataset B.  In the literature [40], Ma et al. 
data from dataset B was divided into training, validation, and 
test sets in an 8:1:1 ratio. The average accuracy of 10-fold cross-
validation results reached 68.8%. In contrast, our proposed 
method achieved an accuracy of 95.2%. As there are limited 
publicly available results for dataset B, our comparison is based 
on the existing literature. 

Currently, individual variability, training speed of decoding 
algorithms, and online recognition speed are key challenges in 
motor imagery recognition. This paper focuses on addressing 
individual variability and improving online testing efficiency 
and training learning time. In comparison to current deep 
learning algorithms, our method is more efficient and addresses 
issues related to individual time and feature variability. Among 
publicly available literature using this dataset, our proposed 
method achieves the highest classification accuracy compared to 
traditional efficient machine learning algorithms. Our research 
not only achieves an accuracy of 98.47% in terms of 
classification accuracy but also performs exceptionally well in 
response time. In practical applications, our method can rapidly 
and accurately classify users' intentions, implying that our 
research has significant potential in the practical application of 
BCI technology, providing users with faster and more reliable 
feedback and control experiences. 
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Fig. 7. Comparison of t-SNE projection maps for feature extraction (a) the t-SNE visualization results of the features before and after stepwise discrimination for 

dataset A ，and (b) the t-SNE visualization results of the features before and after stepwise discrimination for dataset B. 
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TABLE I.  COMPARISON OF CLASSIFICATION ACCURACY OF DIFFERENT METHODS FOR DATASET A 

Method Algorithm Classification Accuracy (%) 

Shin et al CSP+Shrinkage LDA 65.5 

Ergun et al 
Power-Spectrum+SVM 73.1 

CSP+LDA 63.39 

Jıang et al Independent Decision Path Fusion 78.56 

Our method 

CSP + Sliding time window optimized SDA +LDA 96.39 

RCSP + Sliding time window optimized SDA +LDA 80.44 

FBCSP + Sliding time window optimized SDA+LDA 98.47 
 

Our research method holds important advantages in the BCI 
field. Firstly, we successfully address individual differences and 
environmental variations, a longstanding major challenge for 
BCI systems. Different individuals' neural activity patterns may 
vary significantly, and changes in environmental conditions can 
also have a crucial impact on signal quality. By using a sliding 
time window approach, our system can flexibly adapt to 
different situations, thereby enhancing system adaptability and 
robustness. This means that our method is not only applicable to 
laboratory environments but can also operate effectively in the 
diversity and complexity of the real world. Secondly, our 
method tackles the feature selection problem effectively through 
stepwise discriminant feature extraction, combining prior 
knowledge. Feature extraction is crucial in BCI systems as it 
directly influences system performance. Our method can more 
accurately select neural signal features related to motor imagery, 
thereby improving recognition accuracy. This not only helps 
optimize system performance but also reduces unnecessary 
computational burden. Therefore, our method provides an 
innovative solution to the feature extraction problem. 

In the future, our research method will have vast application 
prospects and development potential. Firstly, we can further 
optimize the method, such as adjusting the parameters of the 
sliding time window or improving feature extraction algorithms, 
to further enhance system performance. Additionally, we can 
consider introducing more data modalities, such as 
physiological data or brain imaging data, to enrich information 
sources and improve recognition accuracy and diversity. In 
practical applications, our method can be widely used in various 
fields. In the medical field, it can assist people with disabilities 
in regaining limb function, improving their quality of life. In 
virtual reality and gaming, our method can provide a more 
natural and faster user experience, enhancing interactivity. In the 
military and security fields, it can be used for operation control, 
improving response speed and decision accuracy. 

In conclusion, our research method not only provides an 
effective approach to addressing individual differences and 
environmental variations in BCI systems but also has extensive 
application prospects. Future research can further explore and 
expand this method to promote the application and development 
of BCI technology in various fields. 

V. CONCLUSION 

In our work, we combined an optimized sliding time window 
algorithm with a stepwise discriminative feature selection 
algorithm. Firstly, we adopted an adaptive sliding time window 
method that successfully addressed the challenges of individual 

differences and environmental changes. Secondly, our method 
integrates prior knowledge, utilizes SDA for feature extraction 
to improve recognition accuracy, and effectively adapts to 
finding the optimal feature combination for specific participants. 
It effectively solves the problem of feature selection. The 
experimental results show that this method improves the 
accuracy of motion image recognition. Specifically, for dataset 
A, use CSP The accuracy of EEG data using RCSP and FBCSP 
methods was 96.36%, 80.44%, and 98.47%, respectively. For 
dataset B, use CSP The accuracy of RCSP and FBCSP methods 
is 82.26%, 72.12%, and 95.2%, respectively. Compared with the 
currently published research results, this method significantly 
improves the recognition accuracy of MI. This indicates that the 
method has wide applicability, scalability, and high promotion 
and practical value. In this study, the dataset used for this 
method is unimodal data. Taking this article as a reference, this 
method can be extended to the study of multimodal datasets in 
future work. Moreover, this method is not limited to the field of 
motion imagination, but also has practical applications in 
emotion recognition, SSVEP, Many fields such as human-
computer interaction have certain reference value. 
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