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Abstract—This paper introduces a comprehensive 

methodology for conducting sentiment analysis on social media 

using advanced deep learning techniques to address the unique 

challenges of this domain. As digital platforms play an 

increasingly pivotal role in shaping public discourse, the demand 

for real-time sentiment analysis has expanded across various 

sectors, including policymaking, brand monitoring, and 

personalized services. Our study details a robust framework that 

encompasses every phase of the deep learning process, from data 

collection and preprocessing to feature extraction and model 

optimization. We implement sophisticated data preprocessing 

techniques to improve data quality and adopt innovative feature 

extraction methods such as TF-IDF, Word2Vec, and GloVe. Our 

approach integrates several advanced deep learning 

configurations, including variants of BiLSTMs, and employs tools 

like Scikit-learn and Gensim for efficient hyperparameter tuning 

and model optimization. Through meticulous optimization with 

GridSearchCV, we enhance the robustness and generalizability of 

our models. We conduct extensive experimental analysis to 

evaluate these models against multiple configurations using 

standard metrics to identify the most effective techniques. 

Additionally, we benchmark our methods against prior studies, 

and our findings demonstrate that our proposed approaches 

outperform comparative techniques. These results provide 

valuable insights for implementing deep learning in sentiment 

analysis and contribute to setting benchmarks in the field, thus 

advancing both the theoretical and practical applications of 

sentiment analysis in real-world scenarios. 
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I. INTRODUCTION 

In the digital era, social networks such as Twitter, now 
known as X, play a pivotal role in shaping public discourse and 
capturing real-time public sentiment [1]. These platforms 
provide unprecedented access to vast streams of user-generated 
content, reflecting the collective mood on topics ranging from 
daily interests to major global events. This rich dataset is fertile 
ground for sentiment analysis, crucial for understanding social 
dynamics and applications such as policy-making and 
personalized services. Automating the classification of 
sentiment in text data effectively enables stakeholders to 
respond more swiftly and appropriately to public opinion [2]. 

Despite its extensive utility, sentiment analysis poses several 
practical challenges, especially in the context of social media 
where language use is diverse and constantly evolving [3]. 
Machine learning, particularly deep learning, has emerged as a 
robust solution to these complexities. These techniques excel at 

deciphering subtle nuances of language on social media by 
modeling high-level abstractions in data [4]. 

However, deploying deep learning for sentiment analysis 
involves navigating a range of technical challenges across the 
deep learning workflow. This includes data acquisition and 
preprocessing, selection and application of feature extraction 
techniques, choice and tuning of models, and rigorous analysis 
of model performance. Each stage is critical; for example, 
effective data preprocessing significantly reduces noise and 
enhances the quality of the dataset, while the choice of feature 
extraction method greatly impacts the model’s ability to 
correctly interpret and classify sentiment [5]. 

The motivations behind our proposed approach stem from 
the need to enhance the accuracy and efficiency of sentiment 
analysis in the ever-evolving landscape of social media. 
Traditional methods often fall short due to their inability to 
handle the vast diversity and rapid changes in language use on 
these platforms. By utilizing advanced deep learning techniques, 
our approach aims to overcome these limitations, providing a 
more understanding of public sentiment. 

The main contributions in this paper include multifold 
advancements in sentiment analysis. First, we introduce a 
comprehensive system architecture that covers all phases of the 
deep learning process, with careful attention to each stage. This 
approach integrates advanced data preprocessing strategies and 
innovative feature extraction methods such as TF-IDF, 
Word2Vec, and GloVe, utilizing tools from well-known 
libraries like Scikit-learn and Gensim [21]. Second, we explore 
the use of advanced deep learning frameworks like BiLSTM, 
optimizing each model’s configuration to maximize 
performance. Third, we conduct extensive experiments to 
evaluate and compare these models across various 
configurations, thoroughly analyzing their performance to 
identify the most effective approaches for sentiment 
classification. Lastly, we benchmark our methods against prior 
studies, helping to establish new standards in the field. 

The structure of this paper is organized as follows. Section 
II explores related works on sentiment analysis. Section III 
presents the foundations of deep learning. Section IV details our 
proposed methods. Section V focuses on our experimental 
analysis and comparison of various models. Finally, Section VI 
concludes with a summary of findings and future research 
directions. 

II. RELATED WORK 

The field of sentiment analysis has witnessed substantial 
contributions that employ various language processing 
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techniques aimed at refining data to enhance accuracy. One 
notable approach involves using regular expressions, as 
demonstrated by the TransRegex tool introduced by [6], which 
significantly improved accuracy across diverse datasets by 
removing extraneous elements like special characters, URLs, or 
HTML tags. Moreover, focused classification and reduction of 
stop words have been shown to substantially reduce corpus size 
and enhance overall accuracy [7]. Challenges specific to 
language, such as addressing spelling errors and the need for 
word normalization, have been tackled with algorithms like 
Damerau-Levenshtein [8] and targeted lemmatization 
techniques, which notably increase accuracy in sentiment 
analysis for languages like Bangla [9]. 

The application of linguistic analysis extends beyond 
everyday communications to encompass political and social 
domains. Studies such as [10] and [11] have illustrated the 
effectiveness of preprocessing in improving sentiment analysis 
outcomes in diverse contexts, including political events and film 
reviews. Moreover, the role of machine learning in identifying 
and analysing patterns of hate speech on platforms like Twitter 
has been examined, with algorithms like Naïve Bayes 
demonstrating superior performance in detecting and 
categorizing hateful content [12]. 

The vast data generated on social networks has been a rich 
source for sentiment analysis, as exemplified by research 
focusing on political sentiments during the Jakarta Governorship 
Election [13]. Here, the use of techniques like TF-IDF [20] for 
feature extraction and the application of k-fold cross-validation 
methods underscored the potential for machine learning in 
improving accuracy in sentiment prediction. 

Innovative approaches have also been explored for the 
deeper analysis of textual data, integrating models such as CNN 
and LSTM to process large datasets, including movie reviews 
on platforms like IMDB [14]. These deep learning models have 
shown remarkable efficacy in classifying sentiments with high 
accuracy, illustrating the advantage of advanced algorithms in 
extracting emotional content from text. 

Comparative studies have further highlighted the diversity of 
machine learning and deep learning methods in sentiment 
analysis tasks. The contrast between classical machine learning 
techniques and the more complex deep learning approaches, 
particularly in their methods of converting text into analysable 
vectors, reveals a spectrum of accuracy and efficiency in 
sentiment classification [15]. This variety of methodologies 
highlights the continuous evolution of sentiment analysis, 
promoting the use of supervised and unsupervised learning 
models to improve accuracies across different domains. 

This landscape of related work reflects the dynamic nature 
of sentiment analysis research. It also points towards the 
continuous need for innovation in processing techniques and 
algorithmic strategies to tackle the complexities of natural 
language and the reliability of sentiment analysis outcomes. 

III. DEEP LEARNING FOUNDATIONS 

Deep learning, a branch of machine learning, employs 
hierarchical neural networks to model complex patterns and 
high-level abstractions in data. Unlike traditional machine 
learning techniques such as Logistic Regression and Support 

Vector Machine, which are effective for tasks where the 
relationship between input and output is less intricate, deep 
learning excels in scenarios where the predictive factors involve 
complex relationships and high-dimensional data, such as 
sentiment and emotion classification. Traditional models often 
require manual feature extraction and selection, whereas deep 
learning networks automatically learn feature representations 
from raw data, removing the need for manual intervention. 

 
Fig. 1. LSTM architecture. 

This section explores several advanced deep learning models 
such as LSTM, GRU, Bi-LSTM, Bi-GRU, CNN-LSTM, and 
ConvLSTM. It highlights how these technologies enhance 
sentiment analysis through predictive modeling. 

A. Long Short-Term Memory (LSTM) 

LSTM networks represent a crucial innovation in neural 
networks [26]. As an enhancement of Recurrent Neural 
Networks, LSTMs are adept at recognizing patterns in extended 
sequences of data, essential for tasks like time series prediction. 

As illustrated in Fig. 1, LSTMs consist of interconnected 
cells featuring three main gates: forget, input, and output. These 
gates control the flow and modification of information within 
the network, helping to maintain, update, and retrieve data 
across different time steps. This selective memory capability 
significantly enhances decision-making processes. 

Focusing on sentiment analysis, the strength of LSTMs lies 
in their capability to understand the context and nuances over 
longer text sequences, making them ideal for analyzing opinions 
and emotions in user-generated content. By utilizing this 
technology, deep learning models can more accurately gauge 
sentiment trends from large volumes of text data, providing 
insights into public opinion dynamics or customer preferences. 

B. Bidirectional Long Short-Term Memory (Bi-LSTM) 

Bi-LSTM model, derived from the Bidirectional Recurrent 
Neural Network (Bi-RNN), processes data by analyzing it both 
forwards and backwards [27]. This method enhances the context 
understanding of the sequence data. As depicted in Fig. 2, Bi-
LSTM uses two separate LSTM layers, one moving forward and 
the other backward through the input sequence. This dual-
pathway ensures comprehensive visibility of data at any point, 
integrating insights from both before and after the current data 
point. This extensive perspective highly enhances the model’s 
accuracy and depth of understanding. The Bi-RNN’s model 
employs traditional LSTM gates (forget, input, and output gates) 
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in both directional layers, which allows precise control over 
information flow. 

 
Fig. 2. BiLSTM architectire. 

In the context of sentiment analysis using deep learning, Bi-
LSTMs are particularly effective due to their ability to 
understand the full context of expressions, capturing the nuances 
that influence sentiment. This capability makes them ideal for 
analyzing extensive text data, such as customer reviews or social 
media posts, where understanding the sentiment context is key 
to interpreting overall sentiment accurately. 

C. Gated Recurrent Units (GRU) 

GRUs mark a significant step forward in neural network 
technology [28]. Like their close relative, the LSTM, GRUs are 
designed to process sequences of data but with a simplified 
architecture that includes two key components: the update gate 
and the reset gate. These two gates are critical to the GRU's 
function. The update gate determines how much of the past 
information to keep against the new input, while the reset gate 
controls the extent to which the previous state affects the current 
state. This setup allows GRUs to discard irrelevant data, making 
them efficient and flexible. 

GRUs stand out by managing variable-length input 
sequences, crucial for understanding the nuances in written 
opinions. Their ability to maintain relevant historical 
information and combine it with new, incoming data allows for 
more accurate predictions of sentiment trends. This capability is 
beneficial in analyzing large volumes of text data, providing 
deeper insights into consumer sentiments and market trends. 

D. Bidirectional Gated Recurrent Units (Bi-GRU) 

Bi-GRU extends the concept of Bi-RNN by integrating GRU 
mechanisms for both forward and backward sequence 
processing [27]. This architecture employs two critical gates: the 
update gate, which integrates new information, and the reset 
gate, which controls the amount of past information retained. 

In the Bi-GRU setup, the interaction of these gates in both 
directions allows the model to synthesize information from both 
past and future contexts relative to the current data point. This 
approach greatly enhances the model's understanding of 
sequences, improving its predictive capabilities in applications 
like sentiment analysis. 

E. Convolutional Neural Network Long Short-Term Memory 

(CNN-LSTM) 

The CNN-LSTM architecture combines the spatial analysis 
strengths of Convolutional Neural Networks (CNN) with the 

sequential data handling capabilities of Long Short-Term 
Memory (LSTM) networks [29]. The CNN-LSTM model can 
analyze video or sequential image data. It combines the 
strengths of CNNs, which capture spatial details from visual 
data, with LSTMs that track how these features evolve over 
time. This integrated approach allows for a refined 
understanding of changes in sentiment. As a result, the CNN-
LSTM model is highly effective for analyzing customer 
reactions in video reviews and social media content, providing 
nuanced insights into consumer sentiment trends. 

F. Convolutional Long Short-Term Memory (ConvLSTM) 

The ConvLSTM represents an enhancement in neural 
network architecture by integrating the LSTM’s time-sensitive 
processing capabilities with the spatial feature detection of 
convolutional layers [29]. This architecture embeds 
convolutional operations within the LSTM cell transitions, 
making it particularly adept at managing data that exhibits both 
spatial and temporal characteristics. For sentiment analysis, 
particularly in applications like video content analysis, the 
ConvLSTM excels by capturing temporal sequences of spatial 
features, such as facial expressions or body language. This 
ability helps in accurately determining the progression of 
emotions or sentiments over time. 

IV. MODEL DEVELOPMENT 

This section describes our proposed methods for sentiment 
analysis. It outlines the overall framework of deep learning, 
encompassing all stages from data collection to model 
optimization. 

A. Deep Learning Framework for Sentiment Analysis 

Our proposed system architecture is structured into four 
phases, as depicted in Fig. 3. This architecture is crafted to 
process and interpret sentiments efficiently. The initial phase 
encompasses data collection and preprocessing, which includes 
text cleaning, stop word removal, and lemmatization. These 
steps aim to enhance the data's quality and relevance. 
Subsequently, the focus shifts to the critical task of feature 
extraction, employing sophisticated techniques such as TF-IDF, 
Word2Vec, and GloVe to identify meaningful patterns in the 
data. In the third phase, we concentrate on developing and 
rigorously training a variety of machine learning models. The 
fourth and concluding phase involves a comparative evaluation 
of the models' performances. This comparison is vital for 
determining the most effective methods in terms of accuracy and 
efficiency, thereby identifying the best strategy for sentiment 
analysis. The details of these phases are elaborated in the 
following subsections. 

B. Dataset Description 

Our research utilizes the Sentiment140 dataset, a significant 
contribution from Stanford University [16]. Known for its 
comprehensive and carefully assembled collection of tweets, the 
dataset is gathered directly from Twitter through its search API. 
It stands out for its utility in sentiment analysis research and is 
publicly accessible on Kaggle. Kaggle is a platform renowned 
for hosting a wide array of datasets suitable for various data 
science projects. The Sentiment140 dataset is especially 
valuable for training machine learning models in sentiment 
analysis, thanks to its large size and balanced composition. It 
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features 1.6 million tweets, evenly split between positive and 
negative sentiments. 

 
Fig. 3. Deep learning framework for sentiment analysis. 

The structure of this dataset is meticulously organized into a 
CSV file format, which includes six critical columns: Sentiment, 
Id, Date, Query, User, and OriginalTweet. The 'Sentiment' 
column classifies each tweet's emotional tone with a numeric 
system: '0' denotes negative sentiment, and '4' represents 
positive sentiment. The 'Id' column provides a unique identifier 
for each tweet. The 'Date' column records the tweet's posting 
date. The 'Query' column specifies if the tweet was retrieved 
using a specific search keyword, though our study includes all 
tweets regardless of the query used. The 'User' column lists the 
username of the tweet's author, and 'OriginalTweet' contains the 
text of the tweet. For our analysis, we focus solely on the 
'Sentiment' and 'OriginalTweet' columns. This selective 
approach allows us to concentrate on the textual content and its 
associated sentiment, discarding extraneous data that do not 
directly contribute to our sentiment analysis objectives. 

Through statistical analysis of the dataset, we display the 
frequency distribution of tweet lengths in Fig. 4 and Fig. 5. Fig. 
4 unveils the range of tweet lengths, highlighting the concise 
nature of Twitter communication. Most tweets are brief, peaking 
at seven words. This pattern highlights the importance of 
grasping the typical tweet structure and tailoring our analysis 
techniques to Twitter's compact format. Fig. 5 reveals the 
dataset's lexical patterns, offering insights into the vocabulary 
frequently used by Twitter users. This analysis is crucial for 
pinpointing key terms commonly found in tweets, guiding our 
preprocessing and feature extraction strategies to improve model 
performance. 

 
(a) Tweet lengths in words. 

 
(b) Length of negative (left) and positive (right) tweets. 

Fig. 4. Frequency distribution of tweet lengths. 

 
Fig. 5. Frequency distribution of the 30 most common words. 
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C. Data Preprocessing 

Data preprocessing is a critical step in our sentiment analysis 
methodology, addressing the challenges posed by the 
unstructured or semi-structured nature of data harvested from 
online platforms like Twitter. Prior research [17] has shown that 
effective preprocessing of data plays a key role in enhancing the 
accuracy of machine learning (ML) models. It does so by 
eliminating noise and reducing the dataset's dimensionality, 
which brings into focus the features that have a high correlation 
with the target outcomes. Moreover, given the computational 
demands of processing large datasets, preprocessing not only 
aids in improving prediction accuracy by concentrating on 
relevant data but also enhances computational efficiency [18]. 
The details of this data preprocessing phase are outlined in the 
following subsections. 

1) Data cleansing: In the first step of data cleansing, we 

utilize Python's "re" module for its robust regular expressions. 

These expressions enable us to methodically eliminate URLs, 

HTML tags, hashtags, mentions, emojis, and unnecessary 

spaces from the dataset. This crucial step helps in eliminating 

distractions and standardizing the data for analysis. Next, we 

remove special characters and numbers since they typically 

don't aid sentiment analysis, further purifying the dataset. We 

also standardize all words to lowercase to avoid duplicates that 

could diminish the performance, for example, treating 

capitalized words at the start of sentences the same as their 

lowercase counterparts elsewhere. This approach ensures 

uniform treatment of words, regardless of their position in a 

sentence. 

Given Twitter's informal and abbreviated language, we 
employ a detailed list of abbreviations to translate shortened 
forms into their full expressions, such as converting "he's" to "he 
is". This standardization is crucial for maintaining data 
consistency and clarity. Moreover, we rectify spelling errors 
resulting from repeated characters, for example, correcting 
“saddd” to “sad”. For a more straightforward classification 
process, we adjust sentiment labels, designating negative 
sentiments as '0' and positive sentiments as '1'. Table I illustrates 
the distribution of tweet lengths after cleansing, laying the 
groundwork for further analysis. 

TABLE I.  TWEET LENGTH DISTRIBUTION AFTER CLEANSING 

Statistic Original Tweet Cleansed Tweet 

The average value 13.18 11.69 

Standard deviation 6.96 6.46 

Minimum length 1 0 

25% 7 6 

50% 12 11 

75% 19 17 

Maximum length 64 40 

2) Stop word removing: Stop words like “is”, “has”, “and”, 

“to”, and others frequently appear in sentences and may reduce 

the significance of other words in sentiment analysis. 

Removing these stop words is a common strategy to decrease 

noise in text data. However, in sentiment analysis, this practice 

might change the intended meaning of sentences. For example, 

“The product is not good” clearly expresses a negative 

sentiment, but removing the stop word changes it to “product 

good”, suggesting a positive sentiment instead. To assess how 

stop word removal affects model performance, we explore two 

scenarios in our study: one with stop word removal and one 

without. 

For this procedure, we utilize the stop word dictionary from 
the Natural Language Toolkit library, available at www.nltk.org, 
with a crucial modification: we retain the words “not” and “no” 
to preserve the sentiment context within the sentences. This 
method ensures that tweets are cleansed of stop words while 
preserving essential words for expressing negation. Tables II 
and III provide insights into the impact of this step. Table II lists 
the top 10 most frequent words in the dataset before cleansing, 
highlighting that stop words dominate the list across both 
negative and positive sentiments with similar frequencies. Table 
III then illustrates how tweet lengths change once stop words are 
removed, offering a quantitative view of this preprocessing 
step's effect. 

TABLE II.  TOP 10 MOST FREQUENT WORDS IN ORIGINAL TWEETS 

Word Frequency in Negative Tweets Frequency in Positive Tweets 

to 613,036 492,288 

the 482,000 493,002 

a 351,648 380,776 

my 333,834 226,216 

i 320,264 179,768 

and 280,480 270,046 

is 236,252 199,134 

in 216,842 187,746 

for 192,596 227,006 

it 182,174 161,450 

TABLE III.  TWEET LENGTH DISTRIBUTION AFTER CLEANSING AND STOP 

WORD REMOVAL 

Statistic Cleansed Tweets Tweets without stop words 

The average value 11.69 7.07 

Standard deviation 6.46 3.89 

Minimum length 0 0 

25% 6 4 

50% 11 7 

75% 17 10 

Maximum length 40 34 

3) Word normalization: English words frequently appear in 

multiple forms. For example, “go”, “went”, “gone”, “going”, 

and “goes” all stem from “to go”. If these variations are not 

simplified, they can unnecessarily expand the dataset with 

redundant features. To address this, we use the NLTK library 
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[19] to reduce words to their base forms, employing two 

approaches: stemming and lemmatization. 

Stemming shortens words by removing endings or 
beginnings, which may sometimes lead to imprecise meanings 
or spellings. This method is preferred in large datasets where 
processing speed is crucial. Conversely, lemmatization 
considers the word's context to derive its meaningful base form, 
known as the lemma. Although more accurate, lemmatization 
requires more computational resources because it involves 
extensive lookup tables. Fig. 6 demonstrates how word 
normalization simplifies "going" to its fundamental form "go". 
This crucial step prepares the dataset for the next phase of 
feature extraction, making the text more concise. 

 
(a) After removing stop words and cleansing text. 

 
(b) After Lemmatization. 

Fig. 6. Top 30 words after normalization to root forms. 

D. Feature Extraction 

Following the initial preprocessing phase, our dataset 
undergoes feature extraction, a pivotal step in transforming text 
into a format amenable for model training. We employ three 

advanced techniques for this purpose: TF-IDF, Word2Vec, and 
GloVe, each converting text into numerical vectors. 

1) TF-IDF: The Term Frequency-Inverse Document 

Frequency (TF-IDF) stands out for its ability to identify the 

significance of a word within a document, relative to a 

collection of documents. It calculates a weight for each term: 

the Term Frequency (TF) measures a term's frequency within a 

document, while the Inverse Document Frequency (IDF) 

assesses the term's rarity across all documents. The formula 

given as Eq. (1) combines these two metrics to determine a 

term's overall importance: 

TF − ID𝐹(𝑡,𝑑) = T𝐹(𝑡,𝑑) × log (
𝑁

𝐷𝐹(𝑡)
).  (1) 

Here, N represents the total document count in the dataset, 
DF(t) denotes the number of documents featuring term t, and 
TF(t,d) is term t's frequency in document d. Utilizing the Scikit-
learn library's TF-IDF vectorizer [21], available at scikit-
learn.org, we efficiently extract features that prioritize words 
based on their document-wise relevance, reducing emphasis on 
common words and elevating unique terms. Configurations such 
as min_df=5 exclude terms appearing in fewer than five 
documents, and ngram_range=(1,1) limits our focus to 
individual words. 

2) Word2Vec: Word2Vec, a model for creating word 

embeddings from text, uses neural networks in two distinct 

approaches: Continuous Bag of Words (CBOW) and Skip-gram 

[22]. The CBOW method predicts a word based on its 

surrounding context, while the Skip-gram approach does the 

opposite by predicting the surrounding context of a word. These 

methods not only make the model more versatile but also 

enhance its understanding of language subtleties. 

In this research, we train Word2Vec on our dataset with the 
help of the Gensim library [21]. This process generates dense 
and meaningful vector representations of words. Additionally, 
we utilize pre-trained vectors from Google News. This dataset 
contains about 100 billion words, which have been used to 
produce 300-dimensional vectors for over 3 million terms. Such 
extensive data enrich our analysis by providing a wide range of 
linguistic insights. 

Both the Gensim library and the Google News vectors are 
accessible through resources like the Gensim library itself and 
the Kaggle platform [21]. These tools and datasets play a crucial 
role in our methodology. Table IV provides detailed information 
on our setup and parameters. 

TABLE IV.  WORD2VEC TRAINING SETUP PARAMETERS 

Parameter Value Description 

vector_size 300 Dimension of word vector 

workers 8 Number of threads involved in model training 

min_count 5 Exclude words appearing fewer than 5 times 

sg 0 Use CBOW 

3) GloVe: GloVe, short for Global Vectors, emerges as an 

influential open-source initiative from Stanford, as noted in 
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[23]. This innovative project offers a method for generating 

word vector representations, facilitating a deeper understanding 

of language through mathematical modeling. Unlike traditional 

models, GloVe constructs word embeddings by optimizing a 

model based on the aggregation of word co-occurrences across 

a text corpus. This method focuses on shrinking the dimensions 

of the occurrence count matrix, capturing the essence of word 

relationships more efficiently. 

Our research benefits from the utilization of GloVe vectors 
pre-trained on the extensive Common Crawl dataset. This 
massive corpus, comprising 840 billion tokens and a vocabulary 
of 2.2 million terms, provides a rich, contextually diverse 
linguistic foundation. The downloaded dataset, encapsulating 
300-dimensional vectors for words and phrases, spans 2.03 GB, 
offering a comprehensive resource for our analytical needs. 

E. Deep Learning Configurations and Parameter Tuning 

Among the six deep learning architectures discussed in 
Section III, BiLSTM stands out for its performance in sentiment 
analysis [24]. For this reason, and to facilitate direct 
comparisons with previous research, we focus our in-depth 
experiments on BiLSTM. The key advantage of BiLSTM is its 
bidirectional data processing capability, which allows it to 
effectively assimilate contextual information from both 
preceding and subsequent text segments. This dual-directional 
approach is particularly beneficial for sentiment analysis, where 
understanding the complete context of text sequences is crucial 
for accurately determining sentiment polarity. 

Building on this foundation, we have implemented three 
distinct BiLSTM models, each configured with different layer 
setups to optimize performance based on the nature of 
sentiment-laden words within the text, as noted in [24]. These 
configurations are specifically designed to enhance the model’s 
ability to detect and interpret sentiment polarity, which heavily 
relies on contextual cues. The detailed specifications of each 
model configuration are outlined in Table V, showing the 
variations in layer structures and their intended impacts on 
model efficacy. 

TABLE V.  CONFIGURATIONS OF BILSTM MODELS 

Model Parameters and architecture 

BiLSTM1 
Embedding layer, Bidirectional LSTM x 2, Conv1D, 
GlobMaxPool1D, Dense(16, ReLU), Dense(2, softmax) 

BiLSTM2 
Embedding layer, Conv1D, Maxpooling1D, BiRdirectional 

LSTM, Dropout, Dense(2, softmax) 

BiLSTM3 
Embedding layer, Bidirectional LSTM, Dense (128, ReLU), 
Dropout, Dense (64, ReLU), Dense (2, softmax) 

To ensure optimal performance of the BiLSTM deep 
learning algorithm, we utilize the GridSearchCV tool from the 
Sklearn library for meticulous parameter fine-tuning. This 
process involves 10-fold cross-validation solely on the training 
set to rigorously evaluate different configurations without 
risking leakage from the testing data. Through this approach, we 
have identified and implemented a set of optimal parameters that 
significantly enhance model efficacy. These parameters include 
a learning rate of 0.001, a training duration of 50 epochs, and a 
batch size of 1024, using the Adam optimizer for efficient 
convergence. Additionally, to prevent overfitting, we 

incorporate an EarlyStopping mechanism with a patience of 5 
epochs, halting training if there is no improvement in the 
validation loss. Furthermore, we deploy the ReduceLROn- 
Plateau strategy, which automatically reduces the learning rate 
when there are no further improvements in validation loss, 
ensuring that the training process is both efficient and robust. 

V. EXPERIMENTAL ANALYSIS AND COMPARISON 

This section conducts a detailed exploration of experimental 
tasks, emphasizing the practical use of the methods described in 
Section III. We train various deep learning models, each 
employing various configurations and parameters meticulously 
optimized for sentiment classification. We evaluate the 
effectiveness of these models using recognized evaluation 
metrics, including Accuracy, Precision, Recall, and F1-Scores. 

The results from these experiments lay the groundwork for 
in-depth analysis, discussion, and comparison. By delving into 
these outcomes, we aim to identify the strengths and weaknesses 
of each model configuration and evaluate their influence on 
overall performance. This analysis is crucial as it pinpoints the 
most effective techniques and settings tailored to the unique 
characteristics of our selected dataset. Moreover, our research 
extends beyond basic performance metrics to incorporate a 
comparative analysis of the models. We contrast the models 
against one another under equivalent conditions to determine 
which configurations deliver the optimal balance between 
precision and recall and which enhance overall accuracy and F1-
Scores. This comprehensive experimental analysis also aims to 
establish benchmarks for sentiment classification, which is 
detailed in the subsequent subsections. 

A. Analysis of Traning Performance 

In our evaluation of deep learning models, we repeatedly 
train and validate each model ten times to compute both the 
average values and standard deviations. As detailed in Table VI, 
the BiLSTM2 model demonstrates superior performance, 
achieving an accuracy of 88.881% and an AUC of 95.996%, 
which are the highest among the tested BiLSTM models. In 
contrast, the BiLSTM2 Word2Vec Pretrain model shows the 
lowest performance, with an accuracy of 81.351% and an AUC 
of 89.515%. 

TABLE VI.  PERFORMANCE OF BILSTM MODELS ON THE TRAINING DATA 

Model Accuracy AUC Loss 

BiLSTM1 
0.85228 

±0.00226 

0.93258 

±0.00197 

0.32977 

±0.00482 

BiLSTM2 
0.88881 

±0.00077 

0.95996 

±0.00043 

0.25562 

±0.00141 

BiLSTM3 
0.84987 

±0.00022 

0.93081 

±0.00021 

0.33406 

±0.00052 

BiLSTM1_Word2Vec 
0.83079 

±0.00120 

0.91170 

±0.00100 

0.37321 

±0.00208 

BiLSTM2_Word2Vec 
0.81789 

±0.00208 

0.89966 

±0.00209 

0.39787 

±0.00416 

BiLSTM3_Word2Vec 
0.83011 

±0.00381 

0.91252 

±0.00331 

0.37429 

±0.00671 

BiLSTM1_Word2Vec_Pretrain 
0.82740 
±0.00128 

0.90981 
±0.00118 

0.37989 
±0.00237 

BiLSTM2_Word2Vec_Pretrain 
0.81351 

±0.00112 

0.89515 

±0.00112 

0.40666 

±0.00208 

BiLSTM3_Word2Vec_Pretrain 
0.82541 
±0.00317 

0.90799 
±0.00299 

0.38340 
±0.00601 
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BiLSTM1_Glove_Pretrain 
0.83309 

±0.00143 

0.91501 

±0.00012 

0.36939 

±0.00262 

BiLSTM2_Glove_Pretrain 
0.81906 

±0.00081 

0.90035 

±0.00088 

0.39682 

±0.00170 

BiLSTM3_Glove_Pretrain 
0.83018 

±0.00565 

0.91119 

±0.00516 

0.37443 

±0.01084 

B. Analysis of Testing Performance 

Fig. 7 illustrates the performance metrics of various 
BiLSTM models using Word2Vec and GloVe embeddings. The 
BiLSTM1 model with GloVe embeddings shows the best 
performance, achieving an accuracy of 82.175% (see Fig. 7(a)), 
an F1-Score of 82.174% (see Fig. 7(b)), a precision of 82.189% 
(see Fig. 7(c)), and a recall of 82.178% (see Fig. 7(d)). In 
contrast, the BiLSTM2 model with a default embedding layer 
records the lowest metrics: an accuracy of 78.971% (see Fig. 
7(a)), an F1-Score of 78.929% (see Fig. 7(b)), a precision of 
78.926% (see Fig. 7(c)), and a recall of 78.918% (see Fig. 7(d)). 
Overall, Fig. 7 highlights the superior performance of the 
BiLSTM1 model with GloVe embeddings across all measured 
metrics. 

1) Performance with SGD and adam optimizers: To 

enhance the BiLSTM1 model, we explore variations such as 

BiLSTM1, BiLSTM1_Word2Vec, BiLSTM1_Word2Vec_ 

Pre-train, and BiLSTM1_Glove_Pretrain using the SGD 

optimizer with settings of 50 epochs, a learning rate of 0.1, 

momentum of 0.8, and Nesterov disabled. Subsequently, we 

evaluate these models against their counterparts trained with the 

Adam optimizer. The detailed outcomes of these experiments 

are presented in Fig. 8 and Fig. 9. 

As depicted in these figures, the standard BiLSTM1 model 
trained with the SGD optimizer has lower accuracy and F1-
Score than with Adam. Specifically, Adam achieves 79.794% 
accuracy, surpassing SGD's 79.198%. Similarly, the 
BiLSTM1_Word2Vec model shows better performance with 
Adam, reaching an accuracy of 82% and an F1-Score of 
81.999%. 

Further analysis shows the BiLSTM1_Word2Vec_Pretrain 
model, using pre-trained Word2Vec vectors, performs similarly 
to its non-pretrained counterpart. On the other hand, the 
BiLSTM1_Glove_Pretrain model, with pre-trained GloVe 
embeddings, outperforms all others, achieving the highest 
accuracy of 82.175% and an F1-Score of 82.174%. 

These findings underscore the advantage of using pre-
trained embeddings like Word2Vec and GloVe. Additionally, 
the Adam optimizer tends to yield superior results compared to 
SGD, highlighting its effectiveness in optimizing deep learning 
models. 

 
(a) Accuracy performance of deep learning models. 

 
(b) F1-Score performance of deep learning models. 

 
(c) Precision performance of deep learning models. 

 
(d) Recall performance of deep learning models. 

Fig. 7. Performance of deep learning models on the testing data. 

Accuracy 

F1-Score 

Precision 

Recall 
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Fig. 8. BiLSTM1 performance with SGD optimizer. 

 
Fig. 9. BiLSTM1 accuracy trends across epochs with SGD optimizer. 

 
Fig. 10. BiLSTM1 performance with Stemming and Lemmatization. 

2) Performance with stemming and lemmatization: We 

evaluate how Stemming and Lemmatization impact the 

performance of various BiLSTM1 configurations: BiLSTM1, 

BiLSTM1_Word2Vec, BiLSTM1_Word2Vec_Pre-train, and 

BiLSTM1_Glove_Pretrain. We analyze and compare these 

preprocessing techniques to determine which yields better 

results, with specifics illustrated in Fig. 10. 

For the standard BiLSTM1 model, both Stemming and 
Lemmatization have negligible effects on performance, 
achieving similar accuracy and F1 scores: The method achieves 
an accuracy of 80.023% and an F1 score of 80.135%. The 
BiLSTM1_Word2-Vec, incorporating Word2Vec, also shows 
little variation between the two techniques, with a minor 
deviation of just 0.0036%. 

Similarly, the BiLSTM1_Word2Vec_Pretrain and 
BiLSTM1 models exhibit minimal differences when applying 
either tech-nique. However, Lemmatization provides a slight 
improvement in performance, achieving an accuracy of 
81.669% and an F1-score of 81.665%. 

The BiLSTM1_Glove_Pretrain model, using pre-trained 
GloVe embeddings, performs well under both techniques but 
shows a slight preference for Lemmatization, which delivers the 
highest accuracy and F1-score among the tested models at 
82.175% and 82.174%, respectively. 

The comprehensive analysis indicates that although the 
differences between the two methods are generally small across 
the models, Lemmatization consistently shows a slight 
improvement in accuracy and F1-scores. 

3) Performance with stop words: In this experiment, we 

investigate how the exclusion of stop words influences the 

performance of the BiLSTM1 model, particularly focusing on 

the BiLSTM1_Glove_Pretrain model, which omits the stop 

word removal step during data preprocessing. The results from 

this configuration demonstrate an accuracy of 0.83962, an F1-

Score of 0.83857, a recall of 0.83042, and a precision of 

0.84689. These findings suggest that removing stop words can 

significantly affect model performance in sentiment analysis 

tasks, particularly with techniques that rely heavily on word 

context, like Word2Vec. 

(b) BiLSTM1_Word2Vec 

 

Model Accuracy Model Loss 

Epoch Epoch 

(a) BiLSTM1 

 

Epoch Epoch 

Model Loss Model Accuracy 

(c) BiLSTM1_Word2Vec_Pretrain 

 

Epoch Epoch 

Model Accuracy Model Loss 

(d) BiLSTM1 Glove 

 

Model Accuracy Model Loss 

Epoch Epoch 
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Notably, the performance metrics for the BiLSTM1_Glove_ 
Pre-train model show substantial improvement across all 
parameters when stop words are retained: accuracy improved 
from 0.82175 to 0.83962, F1-Score from 0.82174 to 0.83857, 
recall from 0.82178 to 0.83042, and precision from 0.82189 to 
0.84689. This improvement highlights how stop words add 
contextual depth, enhancing the model's accuracy. 

4) Benchmarking against prior studies: Our study 

meticulously compares the effectiveness of our sentiment 

analysis models with the results reported in a previous study, 

specifically [25], which employed the same dataset and data 

division methodology. The dataset is partitioned into training 

and testing sets with a 90:10 ratio, and the training set is further 

split into training and validation sets, also with a 90:10 ratio. 
The results in Table VII demonstrate that our proposed 

methods (BiLSTM1_Glove_Pretrain and BiLSTM1_Glove_ 
Pretrain With-out Stop Word Removal), shown in the first two 
rows, consistently outperform the approaches from study [25] 
(listed in the subsequent rows) in terms of accuracy and F1-
score. Notably, our methods achieve, on average, an 
improvement of 2.07% in accuracy and 2.20% in F1-score 
compared to those reported in study [25]. 

To elucidate, our BiLSTM1_Glove_Pretrain model records 
an accuracy of 82.2% and an F1-score of 82.2%, while our 
BiLSTM1_Glove_Pretrain_NoSW-Removal variant shows 
even more impressive results with an accuracy of 83.9% and an 
F1-score of 83.8%. In contrast, the best-performing model from 
the prior study, the LSTM + FastText, only achieves an accuracy 
and F1-score of 82.4%. Other models from the same study, such 
as LSTM + Glove and LSTM + Glove Twitter, present lower 
performances with accuracy and F1-scores ranging from 80.4% 
to 81.6%. These results underscore the effectiveness of our 
methodologies, particularly in enhancing the precision and 
reliability of sentiment analysis in real-world applications. 

TABLE VII.  PERFORMANCE COMPARISON WITH PRIOR STUDY [25] 

Model Accuracy F1-score 

BiLSTM1_Glove_Pretrain 82.2 % 82.2 % 

BiLSTM1_Glove_Pretrain_NoSW-Removal 83.9 % 83.8 % 

DNN (Baseline) [25] 79.0 % 78.4 % 

LSTM + FastText [25] 82.4 % 82.4 % 

LSTM + Glove [25] 81.5 % 81.4 % 

LSTM + Glove Twitter [25] 80.4 % 80.4 % 

LSTM + w/o Pretrained Embed  [25] 81.6 % 81.4 % 

VI. CONCLUSION AND FUTURE DIRECTIONS 

Social networks such as Twitter, now known as X, are crucial 
platforms for capturing real-time public sentiments. This study 
exploited the power of these platforms, particularly utilizing the 
Sentiment140 dataset, which includes 1.6 million tweets, to 
develop and evaluate a comprehensive methodology for 
sentiment analysis using advanced machine learning techniques. 
Our approach spanned from data collection and preprocessing to 
feature extraction and model optimization. We extensively 

explored several deep learning architectures through various 
configurations and parameters settings. 

Our exploration into deep learning frameworks, particularly 
the BiLSTM models, revealed their high ability to capture 
nuanced expressions of sentiment. These models, when 
integrated with pre-trained GloVe embeddings, significantly 
outperformed traditional embeddings, achieving an accuracy of 
88.88% and an AUC of 96%. These results highlight the 
potential of deep learning techniques to enhance sentiment 
analysis tools. 

The evaluations not only confirmed the effectiveness of our 
methodology but also helped establish benchmarks in the field. 
Compared to existing approaches, our methods consistently 
demonstrated higher performance, often surpassing baseline 
results by more than 3%. This provides valuable insights and a 
solid foundation for further research and practical applications. 

Our research will increasingly focus on exploring deep 
learning techniques, particularly Transformer-based models, 
which are well-suited for managing the complexities of 
language in sentiment analysis due to their superior handling of 
sequential data. We also aim to expand our methodologies to 
include multilingual datasets, enhancing the global applicability 
of our findings across various linguistic and cultural contexts. 
These strategic directions are intended to not only advance the 
technical aspects of sentiment analysis but also to increase its 
practical relevance and effectiveness in dynamic environments. 

ACKNOWLEDGMENT 

This work has been supported by the College of Information 
Technology and Communication at Can Tho University. 
Additionally, we received support from the European Union's 
Horizon Research and Innovation program under the MSCA-SE 
grant agreement 101086252, Call: HORIZON-MSCA-2021-
SE-01. 

REFERENCES 

[1] U. Singh, K. Abhishek, and H.K. Azad. 2024, “A Survey of Cutting-edge 
Multimodal Sentiment Analysis”, ACM Comput. Surv, 2024. 

[2] D. Dash, M. Kolekar, C. Chakraborty, and R. Khosravi, “Review of 
Machine and Deep Learning Techniques in Epileptic Seizure Detection 
using Physiological Signals and Sentiment Analysis”. ACM Trans. 23, 1, 
Article 16, 2024. 

[3] R. Das and T.D. Singh, “Multimodal sentiment analysis: A survey of 
methods, trends, and challenges”, ACM Comput. 55, 13s, 2023. 

[4] M. Ibánez, A. Ventura, F. Mateos, P. Jiménez, “A review on sentiment 
analysis from social media platforms”, Expert Systems with Applications, 
Vol. 223, 2023. 

[5] Bordoloi and Biswas, “Sentiment analysis: A survey on design 
framework, applications and future scopes”, Artif Intell Rev 56, 2023. 

[6] Y. Li et al., “TransRegex: multi-modal regular expression synthesis by 
generate-and-repair”, in International Conference on Software 
Engineering (ICSE), IEEE, pp. 1210–1222, 2021. 

[7] D. J. Ladani and N. P. Desai, “Stopword identification and removal 
techniques on TC and IR applications: A survey,” in International 
Conference on Advanced Computing and Communication Systems 
(ICACCS), IEEE, pp. 466–472, 2020. 

[8] N. Zukarnain, B. S. Abbas, S. Wayan, A. Trisetyarso, and C. H. Kang, 
“Spelling checker algorithm methods for many languages”, in 
International Conference on Information Management & Technology 
(ICIMTech), IEEE, pp. 198–201, 2019. 



(IJACSA) International Journal of Advanced Computer Science and Applications, 

Vol. 15, No. 5, 2024 

980 | P a g e  

www.ijacsa.thesai.org 

[9] Md. Kowsher, A. Tahabilder, M. M. Hossain Sarker, Md. Z. Islam Sanjid, 
and N. J. Prottasha, “Lemmatization algorithm development for bangla 
natural language processing”, in icIVPR, IEEE, pp. 1–8, 2020. 

[10] J. S. Santos, A. Paes, and F. Bernardini, “Combining labelled datasets for 
sentiment analysis from different domains based on dataset similarity to 
predict electors sentiment” in Brazilian Conference on Intelligent Systems 
(BRACIS), IEEE, pp. 455–460, 2019. 

[11] E. Haddi, X. Liu, and Y. Shi, “The role of text pre-processing in sentiment 
analysis”, Procedia Comput. Sci., vol. 17, pp. 26–32, 2013. 

[12] K. K. Kiilu, G. Okeyo, R. Rimiru, and K. Ogada, “Using Naïve Bayes 
algorithm in detection of hate Tweets,” Int. J. Sci. Res. Publ. IJSRP, vol. 
8, no. 3, 2018. 

[13] W. P. Ramadhan, S. Astri Novianty, and S. Setianingsih, “Sentiment 
analysis using multinomial logistic regression,” in ICCREC, IEEE, pp. 
46–49, 2017. 

[14] U. Gandhi, P. Kumar, G. Babu, and G. Karthick, “Sentiment analysis on 
Twitter data by using convolutional neural network and long short-term 
memory (LSTM)”, Wirel. Pers. Commun., 2021. 

[15] V. Umarani, A. Julian, and J. Deepa, “Sentiment analysis using various 
machine learning and deep learning techniques”, J. Niger. Soc. Phys. Sci., 
pp. 385–394, Nov. 2021. 

[16] A. Go, R. Bhayani, and L. Huang, “Twitter sentiment classification using 
distant supervision”, CS224N Proj. Rep. Stanf., vol. 1, 2019. 

[17] F. Rustam, I. Ashraf, A. Mehmood, S. Ullah, and G. S. Choi, “Tweets 
classification on the base of sentiments for US airline companies”, 
Entropy, vol. 21, no. 11, p. 1078, 2019. 

[18] V. Kalra and R. Aggarwal, “Importance of text data preprocessing & 
implementation in RapidMiner”, ICITKM, vol. 14, pp. 71–75, 2017. 

[19] D. Khyani and S. B. S, “An interpretation of lemmatization and stemming 
in natural language processing”, J. Univ. Shanghai Sci. Technol., 2020. 

[20] S. Robertson, “Understanding inverse document frequency: on theoretical 
arguments for IDF”,  J. Doc., vol. 60, no. 5, 2004. 

[21] F. Pedregosa et al., “Scikit-learn: Machine learning in Python”, 
ArXiv12010490 Cs, 2021. 

[22] T. Mikolov, K. Chen, G. Corrado, and J. Dean, “Efficient estimation of 
word representations in vector space”, arXiv, 1301.3781, 2013. 

[23] J. Pennington, R. Socher, and C. D. Manning, “GloVe: Global vectors for 
word representation”, in Empirical Methods in Natural Language 
Processing (EMNLP), 2014, pp. 1532–1543. 

[24] G. Xu, Y. Meng, X. Qiu, Z. Yu, and X. Wu, “Sentiment analysis of 
comment texts based on BiLSTM”, IEEE Access, vol. 7, 2019. 

[25] A. S. Imran, S. M. Daudpota, Z. Kastrati, and R. Batra, “Cross-cultural 
polarity and emotion detection using sentiment analysis and deep learning 
on COVID-19 related Tweets”, IEEE Access, vol. 8, pp. 181074–181090, 
2020. 

[26] U.B., Mahadevaswamy and P. Swathi, “Sentiment analysis using 
bidirectional LSTM network”. Procedia Computer Science, 45-56, 2023. 

[27] R. Cheruku, K. Hussain, I. Kavati, A.M. Reddy, and K.S. Reddy, 
“Sentiment classification with modified RoBERTa and recurrent neural 
networks”, Multimedia Tools and Applications, 83(10), 2024.  

[28] K. Cho, B. Merri¨enboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. 
Schwenk, Y. Bengio, “Learning phrase representations using rnn 
encoderdecoder for statistical machine translation”, arXiv, 1406.1078, 
2014. 

[29] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, 
G.S.Corrado, A. Davis, J.  Dean, M. Devin, “Tensorflow: Large-scale 
machine learning on heterogeneous distributed systems”, arXiv,  preprint 
arXiv:1603.04467, 2016.

 


