
(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

1 | P a g e

www.ijacsa.thesai.org

Integrating Advanced Language Models and Vector

Database for Enhanced AI Query Retrieval in Web

Development

Xiaoli Huan1, Hong Zhou2

Department of Computer Science, Troy University, Troy, Alabama, USA1

Department of Mathematics and Computer Science, University of Saint Joseph, West Hartford, Connecticut, USA2

Abstract—In the dynamic field of web development, the

integration of sophisticated AI technologies for query processing

has become increasingly crucial. This paper presents a

framework that significantly improves the relevance of web

query responses by leveraging cutting-edge technologies like

Hugging Face, FAISS, Google PaLM, Gemini, and LangChain.

We explore and compare the performance of both PaLM and

Gemini, two powerful LLMs, to identify strengths and

weaknesses in the context of web development query retrieval.

Our approach capitalizes on the synergistic combination of these

freely accessible tools, ultimately leading to a more efficient and

user-friendly query processing system.

Keywords—LLM (Large Language Model); vector databases;

retrieval-augmented generation

I. INTRODUCTION

In the rapidly evolving landscape of web development, the
quest for efficient and accurate query retrieval systems has
become a cornerstone of enhancing user experience and
information accessibility. While effective to a certain extent,
traditional query processing methods often fall short in coping
with the complexity and dynamism of user-generated queries
in real-time web environments.

Generative AI, including models like the GPT series [1],
Google PaLM, and Gemini, have demonstrated remarkable
capabilities in generating human-like text and answering
queries in a contextually relevant manner. These models
leverage large-scale transformer architectures to understand
and generate complex language, making them highly suitable
for sophisticated query processing tasks.

Retrieval-Augmented Generation (RAG) [2] is a cutting-
edge approach that combines retrieval-based and generative
models to enhance the accuracy and relevance of responses.
RAG models retrieve relevant documents or pieces of
information from a database and use these as context to
generate more precise and contextually aware answers. This
technique has been particularly effective in scenarios where the
generative model alone might lack the necessary contextual
knowledge to provide accurate responses [3].

Our approach integrates freely accessible tools like
Hugging Face [4], FAISS [5], Google PaLM [6], Gemini [7],
and LangChain [8]. Each tool brings its strengths to the table,
contributing to a more robust query processing framework.

We explore and compare the performance of both PaLM
and Gemini, two powerful Large Language Models (LLMs), to
identify which is more effective in the context of web
development query retrieval. This comparative analysis
provides valuable insights into the strengths and weaknesses of
each model for this specific task. By combining these cost-free
technologies, we create a query processing system that is not
only more efficient but also delivers significantly more relevant
responses to user queries. This cost-effectiveness allows for the
development of sophisticated AI-driven solutions without the
burden of API usage fees or proprietary restrictions.

This research contributes novel insights to web
development by:

 Highlighting the potential of combining sophisticated
open-source AI models and advanced methodologies
like RAG for improved user query handling.

 Providing a comparative analysis of PaLM and Gemini,
offering valuable insights into their effectiveness for
web development query retrieval.

 Emphasizing accessibility and cost-effectiveness
through the utilization of freely available tools.

The following sections will delve into the technical
architecture, implementation details, and performance
evaluation of the system in Sections II, III, IV, V and VI,
providing a comprehensive understanding of its capabilities
and potential impact on the future of web development in
Section VII.

II. EVOLUTION OF LANGUAGE MODELS

The evolution of language models in query processing is
crucial in natural language processing (NLP) and artificial
intelligence (AI), witnessing significant advancements over the
past few decades. This section explores the trajectory of these
developments, focusing on how they have revolutionized query
processing and understanding.

The journey began with early language models like n-gram
models and statistical language models. These models, such as
those used in early versions of machine translation and speech
recognition systems, relied heavily on statistical probabilities
of word sequences. However, their major limitation was the
inability to capture long-range dependencies and contextual

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

2 | P a g e

www.ijacsa.thesai.org

nuances in language, leading to suboptimal performance in
complex query processing [9].

The introduction of neural network-based models marked a
significant shift. Recurrent Neural Networks (RNNs) and Long
Short-Term Memory (LSTM) networks began to address the
shortcomings of traditional models by better capturing
sequential information and context [10]. Despite their
improvements, these models still struggled with processing
longer sequences and required substantial computational
resources.

The introduction of transformer architecture [11] in 2017
marked a significant transformation in language modeling.
Distinct from earlier models, the transformer employs self-
attention mechanisms to analyze entire text sequences at once,
allowing for more effective context capturing. This innovative
framework serves as the foundational structure for models such
as Google's BERT (Bidirectional Encoder Representations
from Transformers) and the GPT (Generative Pre-trained
Transformer) series developed by OpenAI.

BERT [12] was groundbreaking due to its bidirectional
training, enabling it to comprehend the context of a word by
considering all of its surrounding words. This feature made it
particularly effective for tasks like question answering and
language inference.

The GPT series demonstrated remarkable capabilities in
generating human-like text and answering queries in a
contextually relevant manner. Its large-scale transformer
model, trained on vast amounts of data, could generate
coherent and contextually relevant text over extended passages.

The most recent advancements, such as Google's PaLM
(Pathways Language Model) and Gemini, have pushed the
boundaries further. PaLM, with its even larger scale and more
sophisticated training, has shown capabilities in not just
understanding but also generating complex and nuanced
language, making it highly effective for sophisticated query
processing tasks. On the other hand, Gemini showcases
strength in its multimodality, seamlessly processing text,
images, and code. This versatility could prove advantageous in
web development scenarios where queries might incorporate
screenshots or snippets of code alongside textual information.

The impact of these advancements on query processing has
been profound. Language models have transitioned from
simply predicting the next word in a sequence to understanding
and generating human-like responses to complex queries. This
evolution has enabled the development of more sophisticated
AI-driven applications, such as virtual assistants, chatbots, and
advanced search engines, capable of understanding and
responding to user queries with unprecedented accuracy and
relevance.

III. VECTOR DATABASES

Integrating vector databases in information retrieval
significantly advances AI and web development. This section
reviews the evolution and application of vector databases,
particularly focusing on their role in enhancing information
retrieval capabilities in AI systems.

Vector databases, fundamentally different from traditional
relational databases, are designed to store and retrieve high-
dimensional vector data efficiently. This capability is crucial in
handling the outputs of advanced AI models, especially in the
context of natural language processing and machine learning
(ML). The early conceptualization and use of vector spaces in
information retrieval set the stage for the development of these
databases [13].

Developing technologies like FAISS (Facebook AI
Similarity Search) marked a significant milestone in vector
databases. FAISS is designed for efficient similarity search and
clustering of dense vectors. Its ability to handle billions of
vectors makes it particularly suitable for large-scale AI
applications, including those in web development and query
processing [14].

Vector databases have found extensive application in AI-
driven systems, particularly in enhancing the efficiency and
accuracy of information retrieval. For instance, their
integration into recommendation systems and search engines
has significantly improved the relevance of results based on
user queries and preferences [15].

Despite their advancements, vector databases face
challenges, particularly in scalability and real-time processing
in web environments. Future research is directed toward
optimizing these databases for more efficient real-time query
processing and integration with evolving AI models [16].

IV. SYSTEM ARCHITECTURE

This section outlines the system architecture of our AI-
driven web application, emphasizing the integration of
Streamlit and various AI components to enhance user
experience and query processing efficiency.

The front-end of our system is built using Streamlit [17], an
innovative framework that allows for rapid development and
deployment of data applications. Streamlit's simplicity and
efficiency make it an ideal choice for integrating complex AI
models into web applications.

Key components of the front-end include:

 User Interaction: It presents a web interface where users
can type questions in a text box.

 Visual Elements: Streamlit elements like headers,
subheaders, and text boxes are used to create a user-
friendly interface.

 Feedback Mechanism: The script provides feedback to
the user by displaying placeholders that change state
based on the application's progress. Initially, it displays
"Awaiting your question..." and transitions to
"Processing..." when the user submits a question.
Finally, it displays "Answer" if a successful response is
generated or an error message if the process fails.

 Communication: The front-end interacts with the back-
end by passing the user's question as input and
displaying the generated response.

Fig. 1 shows the web application's initial input interface.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

3 | P a g e

www.ijacsa.thesai.org

Fig. 1. The web application interface.

The front-end acts as the communication layer for users,
while the back-end handles the core functionalities of the
application. It serves as the engine that processes user queries,
interacts with the data and AI models, and generates the final
response.

In Fig. 2, the init_google_palm_model() function initializes
the Google PaLM model. It retrieves an API key [18], which is
used to authenticate Google's services. The model is initialized
with a temperature parameter set to 0.1, which influences the
model's output's randomness (lower temperature values result
in more deterministic outputs). The changes to the
init_google_gemini_model function are relatively
straightforward in leveraging Gemini's capabilities instead of
PaLM. Import the necessary libraries for Gemini and modify
the line that initializes the model. Instead of GooglePaLM, use
ChatGoogleGenerativeAI and specify the model="gemini-pro"
argument to indicate the Gemini model variant.

In Fig. 3, the init_hf_embeddings() function initializes
embeddings from the Hugging Face's InstructEmbeddings [19]
model. These embeddings can be used to convert text into
numerical vectors, which represent the semantic meaning of
the text and can be used for similarity search and vector-based
analysis.

Fig. 2. Functions to initialize PaLM and Gemini models.

Fig. 3. The init_hf_embeddings() Function.

Fig. 4. The setup_vector_database() Function.

The setup_vector_database() function in Fig. 4 sets up a
vector database using FAISS. It loads question-and-answer
pairs from a CSV file (prompt_answer.csv) using LangChain’s
CSVLoader. The function then initializes the Hugging Face
embeddings (init_hf_embeddings function) to convert the
loaded FAQ data into vector embeddings. These embeddings
are then used to create a FAISS database with the
FAISS.from_documents method. Finally, the FAISS database
is saved locally using the provided file path, allowing the
application to quickly retrieve relevant answers based on
similarity searches in the future.

Fig. 5 shows samples of the provided data file,
‘prompt_answer.csv’. The dataset comprises a collection of
questions and corresponding responses intended for the
computer science department. This spreadsheet is structured
with two primary columns: prompt and response. The prompt
column contains a variety of questions that might be asked by
students, faculty, or other stakeholders, while the response
column provides the appropriate answers. The data can be
easily updated to reflect new queries or changes in the
information provided, ensuring that the dataset remains current
and helpful in addressing the diverse inquiries directed towards
the CS department.

Fig. 5. The prompt_answer.csv data file.

After the front-end invoked the setup_qa_chain() function
and passed the user question, Fig. 6’s setup_qa_chain()
function first initializes embeddings using the function
init_hf_embeddings. These embeddings are then used to load a
local FAISS database from the specified file path generated by
the setup_vector_database() function.

Fig. 6. The setup_qa_chain() function.

In line 45 of Fig. 6, a retriever object is created from the
FAISS database with a score threshold of 0.7, meaning it will
only consider results that meet or exceed this similarity score.
This retriever is used to fetch relevant context for incoming
questions.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

4 | P a g e

www.ijacsa.thesai.org

The code then defines a prompt_template, which is a
structured text template for generating prompts to be used with
a large language model. Finally, the function initializes a LLM
(Google PaLM or Gemini model) and generates a QA chain
that takes a query as input, uses the retriever to fetch relevant
context based on the query, and then generates an answer using
the LLM and the structured prompt.

Throughout the program, robust error-handling
mechanisms are in place to manage potential failures and
processing errors.

V. TECHNICAL DETAILS

Google PaLM or Google Gemini models generate
responses to user queries. The models have customized
behavior (e.g., setting temperature) to tailor the response
generation. At a high level, temperature controls the likelihood
distribution over words or tokens the model might select at
each step in generating text. A lower temperature makes the
model more confident and conservative in its choices, leading
to more predictable text. A higher temperature increases
randomness, making the model more likely to produce varied
and sometimes more creative or less likely outputs. Choosing
the right temperature is a balancing act: too low, and the model
might generate dull, repetitive text; too high, and its outputs
might become too random and less coherent. The optimal
setting often depends on the specific application and desired
user experience. For a technical query retrieval system, a
slightly lower temperature might be preferred to ensure the
reliability and relevance of the information provided.

Langchain is a backbone that connects various AI and
machine learning components, ensuring seamless interaction.
The library assembles components (like the Google PaLM or
Gemini language model, HuggingFaceInstructEmbeddings,
and the FAISS vector database) into a cohesive QA chain. This
chain orchestrates the process of receiving a query, processing
it through the model, and fetching relevant answers. The
CSVLoader component in LangChain is used to load data from
CSV files. The CSV file contains two columns: one for the
prompts (or questions) and another for the corresponding
answers or information. These pairs are used to build a
knowledge base for the FAISS vector database, allowing the
system to retrieve relevant answers based on the embeddings
generated from user queries.

The system uses the following prompt_template: "Please
provide an answer to the question below, ensuring that your
response is derived solely from the provided context. Focus on
using the text from the 'response' section of the source
document, altering it as little as possible. If the context does
not contain the information necessary to answer the question,
simply reply with 'I am not sure. Please call: 1-334-808-6576'
to avoid creating or inferring any information not explicitly
stated in the context. Exceptions: Answer all computer science
questions using your own knowledge and give tutorials and
explain in detail".

The model is instructed to base its responses solely on the
provided context, specifically focusing on the ‘response’
section of the source documents. This restriction ensures
factual accuracy and reduces the risk of the model generating

misleading or fabricated information (hallucination). Prompt
engineering, which involves carefully crafting the input text,
helps achieve this objective. When the context lacks sufficient
information to answer a department question, the model is
instructed to provide a clear default message ("I am not
sure..."). This transparency helps manage user expectations and
prevents frustration in cases where a definitive answer cannot
be found.

There is also a crucial exception for computer science
questions. In these cases, instead of being confined solely to
the provided department question context, the model can draw
on its own knowledge base to answer computer science
questions. Comprehensive tutorials and detailed explanations
for computer science topics can be delivered. This exception
caters to students seeking deeper understanding and learning
resources beyond basic department questions in the CSV file.

The PaLM Model app can be accessed at this link:
https://troy-cs-ai-assistant.streamlit.app/.

The Gemini Model app can be accessed at this link:
https://troy-ai-gemini.streamlit.app/.

VI. RESULTS ANALYSIS

Fig. 7 shows a programming tutorial interface facilitated by
an AI PaLM assistant, exemplifying an interactive learning
environment. It features a question-and-answer dialogue where
the user inquiry, "Can you give me C++ tutorial?" is met with a
comprehensive response from the AI assistant. The AI assistant
outlines C++'s applicability in system, application, and game
development, and offers resources for further learning. This
exchange is encapsulated in a clean, structured layout,
promoting an engaging and educational user experience.

Fig. 7. Interactive Programming Tutorial via AI PaLM Assistant.

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

5 | P a g e

www.ijacsa.thesai.org

Fig. 8. Departmental Inquiry Response by AI Gemini Assistant.

Fig. 8 illustrates an AI Gemini assistant answering a
prospective student's inquiry, "What degrees do you offer?"
The AI assistant provides a detailed response listing the
degrees offered by the university, facilitating ease of
information retrieval for prospective students or interested
parties.

Forty unique questions were used to test the PaLM and
Gemini models, assessing their accuracy and capabilities in
answering questions such as the cost of the master's program,
Python tutorials, identifying the faculty of computer science,
differences between Python and C++, potential jobs post-
graduation, and details about the degree concentrations.

Performance:

1) PaLM demonstrated better accuracy, correctly

answering 37 out of 40 questions. For example, when asked,

"Can I get a bachelor's degree online?" PaLM provided a clear

and informative response, highlighting the university's online

program and its benefits.

2) In contrast, Gemini answered 32 questions correctly.

While some answers were accurate, others showed limitations,

like the response to "Can I get a bachelor's degree online?". In

this instance, Gemini offered uncertainty and directed the user

to contact the department or instructor, potentially hindering a

user's ability to get a quick answer. This difference in handling

specific questions highlights areas for improvement in

Gemini's knowledge base and its ability to provide definitive

answers.

3) User feedback indicates response time differences

between the PaLM and Gemini models. Users report that the

PaLM web application loads noticeably faster in both Safari

and Google Chrome browsers.

Contextual Understanding and Prompting:

1) PaLM excels at the provided prompt and adheres to

strict guidelines. The prompt template specifically instructs

the model to "give tutorials and explain in detail" for computer

science questions. PaLM effectively obeys this direction,

retrieving relevant information from its knowledge base.

2) Gemini's strength lies in its multimodality. It can

handle various data formats like text, images, and code. This

versatility makes it a good candidate for web development

scenarios where user queries might incorporate diverse

information, such as screenshots or code snippets alongside

textual content. However, Gemini is less adept when working

with pre-defined CSV data for tasks requiring strict adherence

to specific prompts. Its focus might shift towards pattern

matching within the CSV content, potentially leading to less

comprehensive responses or failing to follow the prompt's

instructions. This could be particularly true for tasks requiring

in-depth explanations or generating new content, such as

computer science tutorials. However, in domains like the

medical field, where factual accuracy and information

retrieval from structured data are crucial, Gemini's ability to

handle diverse formats and find relevant patterns could prove

advantageous.

Data Restriction:

1) Both models rely heavily on the information stored in

the CSV files. Gemini's ability to generate content would be

inherently limited if those files lack rich information or

detailed explanations for departmental or computer science

concepts.

2) PaLM might be better at drawing from external

knowledge sources or generating explanations from its own

understanding, even if the CSV data is somewhat limited.

Table I compares the performance of PaLM and Gemini on
a set of sample questions. The table categorizes the questions
into three sections: scenarios where both systems failed due to
limitations set by the prompt, instances where PaLM provided
more accurate or helpful responses, and examples where
Gemini outperformed PaLM. The examples highlight the
strengths and weaknesses of each system in handling specific
types of inquiries, such as basic greetings, specific program
information, and technical support questions.

TABLE I. MODEL PERFORMANCE COMPARISON ON SAMPLE QUESTIONS

The sample question that neither PaLM nor Gemini can address due to
the prompt restricting responses to information outside the CSV data file:

Q: What is the best website to find sports data

PaLM: I am not sure. Please call 1-334-808-6576…

Gemini: I am not sure. Please call 1-334-808-6576…

Examples of questions where PaLM performed better than Gemini:

Q: Hello?

PaLM: Hello, how can I help you?

Gemini: I am not sure. Please call: 1-334-808-6576…

Q: How much does the masters of computer science program cost

PaLM: Please check: https://www.troy.edu/scholarships-costs-aid/costs/

Gemini: I am not sure. Please call: 1-334-808-6576…

Q: How big are the graduate classes?

PaLM: The average class size for graduate computer science courses at Troy
University is approximately 20 students.

Gemini: I am not sure. Please call: 1-334-808-6576…

Q: Can you give Python tutorials?

PaLM: Python is a general-purpose programming language that is designed to
be easy to read and write…

Gemini: I am not sure. Please call: 1-334-808-6576…

Examples of questions where Gemini outperformed PaLM:

Q: What are the admission requirements for graduate students?

PaLM: To be considered for admission to a graduate program at Troy
University, you must meet the following requirements…

Gemini: please check: https://www.troy.edu/applications-
admissions/admissions-process-requirements/graduate/index.html

https://www.troy.edu/scholarships-costs-aid/costs/
https://www.troy.edu/scholarships-costs-aid/costs/
https://www.troy.edu/applications-admissions/admissions-process-requirements/graduate/index.html
https://www.troy.edu/applications-admissions/admissions-process-requirements/graduate/index.html

(IJACSA) International Journal of Advanced Computer Science and Applications,

Vol. 15, No. 6, 2024

6 | P a g e

www.ijacsa.thesai.org

Q: Where can I find additional help on programming

PaLM: An error occurred: list index out of range

Gemini: You can contact the course instructors, tutors or use resources such as
chatGPT or other generative AI (GenAI).

VII. CONCLUSION AND FUTURE WORK

This paper presented a framework that integrates advanced
AI models and vector databases to enhance the effectiveness of
query retrieval in web development significantly. Our system
leverages freely available tools, making it cost-effective and
accessible for developers. The comparative analysis between
PaLM and Gemini revealed their unique strengths: PaLM can
learn from a few examples, which might be helpful for limited
datasets. In contrast, Gemini focuses on factual accuracy and
aims to reduce factual errors and hallucinations. Future work
will involve comprehensive testing and evaluation of the
system's performance across diverse user scenarios to ensure
scalability and robustness. The system's effectiveness is highly
dependent on the quality and comprehensiveness of the CSV
data. Future work will explore techniques for continuous
knowledge base improvement. Strategies for automatic data
augmentation, user feedback integration, and potentially
incorporating external knowledge sources to enrich the
information available to the LLMs can be considered.

REFERENCES

[1] T. Brown, B. Mann, N. Ryder, M. Subbiah, J. Kaplan, P. Dhariwal and
A. Neelakantan, "Language models are few-shot learners," in Advances
in Neural Information Processing Systems, Curran Associates, Inc.,
2020, pp. 1877--1901.

[2] P. Lewis, E. Perez, A. Piktus, F. Petroni and V. Karpukhin, "Retrieval-
augmented generation for knowledge-intensive NLP tasks," in
Proceedings of the 34th International Conference on Neural Information
Processing Systems, 2020.

[3] V. Karpukhin, B. Oguz, S. Min, P. Lewis, L. Wu, S. Edunov, D. Chen
and W. Yih, "Dense Passage Retrieval for Open-Domain Question
Answering," in Proceedings of the 2020 Conference on Empirical
Methods in Natural Language Processing, 2020.

[4] "hkunlp/instructor-large," Hugging Face, [Online]. Available:
https://huggingface.co/hkunlp/instructor-large. [Accessed 2024].

[5] "Facebook AI Similarity Search," Meta, [Online]. Available:
https://ai.meta.com/tools/faiss/. [Accessed 2024].

[6] A. Chowdhery, S. Narang, J. Devlin and M. Bosma, "PaLM: scaling
language modeling with pathways," The Journal of Machine Learning
Research, vol. 24, no. 1, p. 11324–11436, 2022.

[7] S. Pichai and D. Hassabis, "Introducing Gemini: our largest and most
capable AI model," 6th December 2023. [Online]. Available:
https://blog.google/technology/ai/google-gemini-ai/#sundar-note.

[8] "Applications that can reason. Powered by LangChain.," [Online].
Available: https://www.langchain.com/. [Accessed 2024].

[9] D. Jurafsky and J. H. Martin, Speech and language processing, 2nd ed.,
Prentice Hall, 2009.

[10] S. Hochreiter and J. Schmidhuber, "Long short-term memory," Neural
Computation, vol. 9, no. 8, pp. 1735-1780, 1997.

[11] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser and I. Polosukhin, "Attention is all you need," in
Proceedings of the 31st International Conference on Neural Information
Processing Systems, 2017.

[12] J. Devlin, M. W. Chang, K. Lee and K. Toutanova, "BERT: Pre-training
of deep bidirectional transformers for language understanding," in
Proceedings of the 2019 Conference of the North American Chapter of
the Association for Computational Linguistics: Human Language
Technologies, 2019.

[13] G. Salton, A. Wong and C. Yang, "A vector space model for automatic
indexing," Communications of the ACM, vol. 18, no. 11, p. 613–620,
1975.

[14] J. Johnson, M. Douze and H. Jégou, "Billion-Scale Similarity Search
with GPUs," IEEE Transactions on Big Data, vol. 7, no. 3, pp. 535 -
547, 2019.

[15] Y. Wang, X. Chen, J. Fang, Z. Meng and S. Liang, "Enhancing
Conversational Recommendation Systems with Representation Fusion,"
ACM Transactions on the Web, vol. 17, no. 1, pp. 1-34, 2023.

[16] Y. Han, C. Liu and P. Wang, "A Comprehensive Survey on Vector
Database: Storage and Retrieval Technique, Challenge," arxiv.org,
[Online]. Available: https://arxiv.org/pdf/2310.11703.

[17] "A faster way to build and share data apps," [Online]. Available:
https://streamlit.io/. [Accessed 2024].

[18] "Get API key," Google, [Online]. Available:
https://aistudio.google.com/app/apikey. [Accessed 2024].

[19] "Instruct Embeddings on Hugging Face," [Online]. Available:
https://python.langchain.com/v0.1/docs/integrations/text_embedding/inst
ruct_embeddings/. [Accessed 2024].

