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Abstract—In the dynamic field of web development, the 

integration of sophisticated AI technologies for query processing 

has become increasingly crucial. This paper presents a 

framework that significantly improves the relevance of web 

query responses by leveraging cutting-edge technologies like 

Hugging Face, FAISS, Google PaLM, Gemini, and LangChain. 

We explore and compare the performance of both PaLM and 

Gemini, two powerful LLMs, to identify strengths and 

weaknesses in the context of web development query retrieval. 

Our approach capitalizes on the synergistic combination of these 

freely accessible tools, ultimately leading to a more efficient and 

user-friendly query processing system. 
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I. INTRODUCTION 

In the rapidly evolving landscape of web development, the 
quest for efficient and accurate query retrieval systems has 
become a cornerstone of enhancing user experience and 
information accessibility. While effective to a certain extent, 
traditional query processing methods often fall short in coping 
with the complexity and dynamism of user-generated queries 
in real-time web environments. 

Generative AI, including models like the GPT series [1], 
Google PaLM, and Gemini, have demonstrated remarkable 
capabilities in generating human-like text and answering 
queries in a contextually relevant manner. These models 
leverage large-scale transformer architectures to understand 
and generate complex language, making them highly suitable 
for sophisticated query processing tasks. 

Retrieval-Augmented Generation (RAG) [2] is a cutting-
edge approach that combines retrieval-based and generative 
models to enhance the accuracy and relevance of responses. 
RAG models retrieve relevant documents or pieces of 
information from a database and use these as context to 
generate more precise and contextually aware answers. This 
technique has been particularly effective in scenarios where the 
generative model alone might lack the necessary contextual 
knowledge to provide accurate responses [3]. 

Our approach integrates freely accessible tools like 
Hugging Face [4], FAISS [5], Google PaLM [6], Gemini [7], 
and LangChain [8]. Each tool brings its strengths to the table, 
contributing to a more robust query processing framework. 

We explore and compare the performance of both PaLM 
and Gemini, two powerful Large Language Models (LLMs), to 
identify which is more effective in the context of web 
development query retrieval. This comparative analysis 
provides valuable insights into the strengths and weaknesses of 
each model for this specific task. By combining these cost-free 
technologies, we create a query processing system that is not 
only more efficient but also delivers significantly more relevant 
responses to user queries. This cost-effectiveness allows for the 
development of sophisticated AI-driven solutions without the 
burden of API usage fees or proprietary restrictions. 

This research contributes novel insights to web 
development by: 

 Highlighting the potential of combining sophisticated 
open-source AI models and advanced methodologies 
like RAG for improved user query handling. 

 Providing a comparative analysis of PaLM and Gemini, 
offering valuable insights into their effectiveness for 
web development query retrieval. 

 Emphasizing accessibility and cost-effectiveness 
through the utilization of freely available tools. 

The following sections will delve into the technical 
architecture, implementation details, and performance 
evaluation of the system in Sections II, III, IV, V and VI, 
providing a comprehensive understanding of its capabilities 
and potential impact on the future of web development in 
Section VII. 

II. EVOLUTION OF LANGUAGE MODELS 

The evolution of language models in query processing is 
crucial in natural language processing (NLP) and artificial 
intelligence (AI), witnessing significant advancements over the 
past few decades. This section explores the trajectory of these 
developments, focusing on how they have revolutionized query 
processing and understanding. 

The journey began with early language models like n-gram 
models and statistical language models. These models, such as 
those used in early versions of machine translation and speech 
recognition systems, relied heavily on statistical probabilities 
of word sequences. However, their major limitation was the 
inability to capture long-range dependencies and contextual 
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nuances in language, leading to suboptimal performance in 
complex query processing [9]. 

The introduction of neural network-based models marked a 
significant shift. Recurrent Neural Networks (RNNs) and Long 
Short-Term Memory (LSTM) networks began to address the 
shortcomings of traditional models by better capturing 
sequential information and context [10]. Despite their 
improvements, these models still struggled with processing 
longer sequences and required substantial computational 
resources. 

The introduction of transformer architecture [11] in 2017 
marked a significant transformation in language modeling. 
Distinct from earlier models, the transformer employs self-
attention mechanisms to analyze entire text sequences at once, 
allowing for more effective context capturing. This innovative 
framework serves as the foundational structure for models such 
as Google's BERT (Bidirectional Encoder Representations 
from Transformers) and the GPT (Generative Pre-trained 
Transformer) series developed by OpenAI. 

BERT [12] was groundbreaking due to its bidirectional 
training, enabling it to comprehend the context of a word by 
considering all of its surrounding words. This feature made it 
particularly effective for tasks like question answering and 
language inference. 

The GPT series demonstrated remarkable capabilities in 
generating human-like text and answering queries in a 
contextually relevant manner. Its large-scale transformer 
model, trained on vast amounts of data, could generate 
coherent and contextually relevant text over extended passages. 

The most recent advancements, such as Google's PaLM 
(Pathways Language Model) and Gemini, have pushed the 
boundaries further. PaLM, with its even larger scale and more 
sophisticated training, has shown capabilities in not just 
understanding but also generating complex and nuanced 
language, making it highly effective for sophisticated query 
processing tasks. On the other hand, Gemini showcases 
strength in its multimodality, seamlessly processing text, 
images, and code. This versatility could prove advantageous in 
web development scenarios where queries might incorporate 
screenshots or snippets of code alongside textual information. 

The impact of these advancements on query processing has 
been profound. Language models have transitioned from 
simply predicting the next word in a sequence to understanding 
and generating human-like responses to complex queries. This 
evolution has enabled the development of more sophisticated 
AI-driven applications, such as virtual assistants, chatbots, and 
advanced search engines, capable of understanding and 
responding to user queries with unprecedented accuracy and 
relevance. 

III. VECTOR DATABASES 

Integrating vector databases in information retrieval 
significantly advances AI and web development. This section 
reviews the evolution and application of vector databases, 
particularly focusing on their role in enhancing information 
retrieval capabilities in AI systems. 

Vector databases, fundamentally different from traditional 
relational databases, are designed to store and retrieve high-
dimensional vector data efficiently. This capability is crucial in 
handling the outputs of advanced AI models, especially in the 
context of natural language processing and machine learning 
(ML). The early conceptualization and use of vector spaces in 
information retrieval set the stage for the development of these 
databases [13]. 

Developing technologies like FAISS (Facebook AI 
Similarity Search) marked a significant milestone in vector 
databases. FAISS is designed for efficient similarity search and 
clustering of dense vectors. Its ability to handle billions of 
vectors makes it particularly suitable for large-scale AI 
applications, including those in web development and query 
processing [14]. 

Vector databases have found extensive application in AI-
driven systems, particularly in enhancing the efficiency and 
accuracy of information retrieval. For instance, their 
integration into recommendation systems and search engines 
has significantly improved the relevance of results based on 
user queries and preferences [15]. 

Despite their advancements, vector databases face 
challenges, particularly in scalability and real-time processing 
in web environments. Future research is directed toward 
optimizing these databases for more efficient real-time query 
processing and integration with evolving AI models [16]. 

IV. SYSTEM ARCHITECTURE 

This section outlines the system architecture of our AI-
driven web application, emphasizing the integration of 
Streamlit and various AI components to enhance user 
experience and query processing efficiency. 

The front-end of our system is built using Streamlit [17], an 
innovative framework that allows for rapid development and 
deployment of data applications. Streamlit's simplicity and 
efficiency make it an ideal choice for integrating complex AI 
models into web applications. 

Key components of the front-end include: 

 User Interaction: It presents a web interface where users 
can type questions in a text box. 

 Visual Elements: Streamlit elements like headers, 
subheaders, and text boxes are used to create a user-
friendly interface. 

 Feedback Mechanism: The script provides feedback to 
the user by displaying placeholders that change state 
based on the application's progress. Initially, it displays 
"Awaiting your question..." and transitions to 
"Processing..." when the user submits a question. 
Finally, it displays "Answer" if a successful response is 
generated or an error message if the process fails. 

 Communication: The front-end interacts with the back-
end by passing the user's question as input and 
displaying the generated response. 

Fig. 1 shows the web application's initial input interface. 
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Fig. 1. The web application interface. 

The front-end acts as the communication layer for users, 
while the back-end handles the core functionalities of the 
application. It serves as the engine that processes user queries, 
interacts with the data and AI models, and generates the final 
response. 

In Fig. 2, the init_google_palm_model() function initializes 
the Google PaLM model. It retrieves an API key [18], which is 
used to authenticate Google's services. The model is initialized 
with a temperature parameter set to 0.1, which influences the 
model's output's randomness (lower temperature values result 
in more deterministic outputs). The changes to the 
init_google_gemini_model function are relatively 
straightforward in leveraging Gemini's capabilities instead of 
PaLM. Import the necessary libraries for Gemini and modify 
the line that initializes the model. Instead of GooglePaLM, use 
ChatGoogleGenerativeAI and specify the model="gemini-pro" 
argument to indicate the Gemini model variant. 

In Fig. 3, the init_hf_embeddings() function initializes 
embeddings from the Hugging Face's InstructEmbeddings [19] 
model. These embeddings can be used to convert text into 
numerical vectors, which represent the semantic meaning of 
the text and can be used for similarity search and vector-based 
analysis. 

 
Fig. 2. Functions to initialize PaLM and Gemini models. 

 

Fig. 3. The init_hf_embeddings() Function. 

 
Fig. 4. The setup_vector_database() Function. 

The setup_vector_database() function in Fig. 4 sets up a 
vector database using FAISS. It loads question-and-answer 
pairs from a CSV file (prompt_answer.csv) using  LangChain’s 
CSVLoader. The function then initializes the Hugging Face 
embeddings (init_hf_embeddings function) to convert the 
loaded FAQ data into vector embeddings. These embeddings 
are then used to create a FAISS database with the 
FAISS.from_documents method. Finally, the FAISS database 
is saved locally using the provided file path, allowing the 
application to quickly retrieve relevant answers based on 
similarity searches in the future. 

Fig. 5 shows samples of the provided data file, 
‘prompt_answer.csv’. The dataset comprises a collection of 
questions and corresponding responses intended for the 
computer science department. This spreadsheet is structured 
with two primary columns: prompt and response. The prompt 
column contains a variety of questions that might be asked by 
students, faculty, or other stakeholders, while the response 
column provides the appropriate answers. The data can be 
easily updated to reflect new queries or changes in the 
information provided, ensuring that the dataset remains current 
and helpful in addressing the diverse inquiries directed towards 
the CS department. 

 
Fig. 5. The prompt_answer.csv data file. 

After the front-end invoked the setup_qa_chain() function 
and passed the user question, Fig. 6’s setup_qa_chain() 
function first initializes embeddings using the function 
init_hf_embeddings. These embeddings are then used to load a 
local FAISS database from the specified file path generated by 
the setup_vector_database() function. 

 
Fig. 6. The setup_qa_chain()  function. 

In line 45 of Fig. 6, a retriever object is created from the 
FAISS database with a score threshold of 0.7, meaning it will 
only consider results that meet or exceed this similarity score. 
This retriever is used to fetch relevant context for incoming 
questions. 
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The code then defines a prompt_template, which is a 
structured text template for generating prompts to be used with 
a large language model. Finally, the function initializes a LLM 
(Google PaLM or Gemini model) and generates a QA chain 
that takes a query as input, uses the retriever to fetch relevant 
context based on the query, and then generates an answer using 
the LLM and the structured prompt. 

Throughout the program, robust error-handling 
mechanisms are in place to manage potential failures and 
processing errors. 

V. TECHNICAL DETAILS 

Google PaLM or Google Gemini models generate 
responses to user queries. The models have customized 
behavior (e.g., setting temperature) to tailor the response 
generation. At a high level, temperature controls the likelihood 
distribution over words or tokens the model might select at 
each step in generating text. A lower temperature makes the 
model more confident and conservative in its choices, leading 
to more predictable text. A higher temperature increases 
randomness, making the model more likely to produce varied 
and sometimes more creative or less likely outputs. Choosing 
the right temperature is a balancing act: too low, and the model 
might generate dull, repetitive text; too high, and its outputs 
might become too random and less coherent. The optimal 
setting often depends on the specific application and desired 
user experience. For a technical query retrieval system, a 
slightly lower temperature might be preferred to ensure the 
reliability and relevance of the information provided. 

Langchain is a backbone that connects various AI and 
machine learning components, ensuring seamless interaction. 
The library assembles components (like the Google PaLM or 
Gemini language model, HuggingFaceInstructEmbeddings, 
and the FAISS vector database) into a cohesive QA chain. This 
chain orchestrates the process of receiving a query, processing 
it through the model, and fetching relevant answers. The 
CSVLoader component in LangChain is used to load data from 
CSV files. The CSV file contains two columns: one for the 
prompts (or questions) and another for the corresponding 
answers or information. These pairs are used to build a 
knowledge base for the FAISS vector database, allowing the 
system to retrieve relevant answers based on the embeddings 
generated from user queries. 

The system uses the following prompt_template: "Please 
provide an answer to the question below, ensuring that your 
response is derived solely from the provided context. Focus on 
using the text from the 'response' section of the source 
document, altering it as little as possible. If the context does 
not contain the information necessary to answer the question, 
simply reply with 'I am not sure. Please call: 1-334-808-6576' 
to avoid creating or inferring any information not explicitly 
stated in the context. Exceptions: Answer all computer science 
questions using your own knowledge and give tutorials and 
explain in detail". 

The model is instructed to base its responses solely on the 
provided context, specifically focusing on the ‘response’ 
section of the source documents. This restriction ensures 
factual accuracy and reduces the risk of the model generating 

misleading or fabricated information (hallucination). Prompt 
engineering, which involves carefully crafting the input text, 
helps achieve this objective. When the context lacks sufficient 
information to answer a department question, the model is 
instructed to provide a clear default message ("I am not 
sure..."). This transparency helps manage user expectations and 
prevents frustration in cases where a definitive answer cannot 
be found. 

There is also a crucial exception for computer science 
questions. In these cases, instead of being confined solely to 
the provided department question context, the model can draw 
on its own knowledge base to answer computer science 
questions. Comprehensive tutorials and detailed explanations 
for computer science topics can be delivered. This exception 
caters to students seeking deeper understanding and learning 
resources beyond basic department questions in the CSV file. 

The PaLM Model app can be accessed at this link: 
https://troy-cs-ai-assistant.streamlit.app/. 

The Gemini Model app can be accessed at this link: 
https://troy-ai-gemini.streamlit.app/. 

VI. RESULTS ANALYSIS 

Fig. 7 shows a programming tutorial interface facilitated by 
an AI PaLM assistant, exemplifying an interactive learning 
environment. It features a question-and-answer dialogue where 
the user inquiry, "Can you give me C++ tutorial?" is met with a 
comprehensive response from the AI assistant. The AI assistant 
outlines C++'s applicability in system, application, and game 
development, and offers resources for further learning. This 
exchange is encapsulated in a clean, structured layout, 
promoting an engaging and educational user experience. 

 
Fig. 7. Interactive Programming Tutorial via AI PaLM Assistant. 
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Fig. 8. Departmental Inquiry Response by AI Gemini Assistant. 

Fig. 8 illustrates an AI Gemini assistant answering a 
prospective student's inquiry, "What degrees do you offer?" 
The AI assistant provides a detailed response listing the 
degrees offered by the university, facilitating ease of 
information retrieval for prospective students or interested 
parties. 

Forty unique questions were used to test the PaLM and 
Gemini models, assessing their accuracy and capabilities in 
answering questions such as the cost of the master's program, 
Python tutorials, identifying the faculty of computer science, 
differences between Python and C++, potential jobs post-
graduation, and details about the degree concentrations. 

Performance: 

1) PaLM demonstrated better accuracy, correctly 

answering 37 out of 40 questions. For example, when asked, 

"Can I get a bachelor's degree online?" PaLM provided a clear 

and informative response, highlighting the university's online 

program and its benefits. 

2) In contrast, Gemini answered 32 questions correctly. 

While some answers were accurate, others showed limitations, 

like the response to "Can I get a bachelor's degree online?". In 

this instance, Gemini offered uncertainty and directed the user 

to contact the department or instructor, potentially hindering a 

user's ability to get a quick answer. This difference in handling 

specific questions highlights areas for improvement in 

Gemini's knowledge base and its ability to provide definitive 

answers. 

3) User feedback indicates response time differences 

between the PaLM and Gemini models. Users report that the 

PaLM web application loads noticeably faster in both Safari 

and Google Chrome browsers. 

Contextual Understanding and Prompting: 

1) PaLM excels at the provided prompt and adheres to 

strict guidelines. The prompt template specifically instructs 

the model to "give tutorials and explain in detail" for computer 

science questions. PaLM effectively obeys this direction, 

retrieving relevant information from its knowledge base. 

2) Gemini's strength lies in its multimodality. It can 

handle various data formats like text, images, and code. This 

versatility makes it a good candidate for web development 

scenarios where user queries might incorporate diverse 

information, such as screenshots or code snippets alongside 

textual content. However, Gemini is less adept when working 

with pre-defined CSV data for tasks requiring strict adherence 

to specific prompts. Its focus might shift towards pattern 

matching within the CSV content, potentially leading to less 

comprehensive responses or failing to follow the prompt's 

instructions. This could be particularly true for tasks requiring 

in-depth explanations or generating new content, such as 

computer science tutorials. However, in domains like the 

medical field, where factual accuracy and information 

retrieval from structured data are crucial, Gemini's ability to 

handle diverse formats and find relevant patterns could prove 

advantageous. 

Data Restriction: 

1) Both models rely heavily on the information stored in 

the CSV files. Gemini's ability to generate content would be 

inherently limited if those files lack rich information or 

detailed explanations for departmental or computer science 

concepts. 

2) PaLM might be better at drawing from external 

knowledge sources or generating explanations from its own 

understanding, even if the CSV data is somewhat limited. 

Table I compares the performance of PaLM and Gemini on 
a set of sample questions. The table categorizes the questions 
into three sections: scenarios where both systems failed due to 
limitations set by the prompt, instances where PaLM provided 
more accurate or helpful responses, and examples where 
Gemini outperformed PaLM. The examples highlight the 
strengths and weaknesses of each system in handling specific 
types of inquiries, such as basic greetings, specific program 
information, and technical support questions. 

TABLE I.  MODEL PERFORMANCE COMPARISON ON SAMPLE QUESTIONS 

The sample question that neither PaLM nor Gemini can address due to 
the prompt restricting responses to information outside the CSV data file: 

Q: What is the best website to find sports data 

PaLM: I am not sure. Please call 1-334-808-6576… 

Gemini: I am not sure. Please call 1-334-808-6576… 

Examples of questions where PaLM performed better than Gemini: 

Q: Hello? 

PaLM: Hello, how can I help you? 

Gemini: I am not sure. Please call: 1-334-808-6576… 

Q: How much does the masters of computer science program cost 

PaLM: Please check: https://www.troy.edu/scholarships-costs-aid/costs/ 

Gemini: I am not sure. Please call: 1-334-808-6576… 

Q: How big are the graduate classes? 

PaLM: The average class size for graduate computer science courses at Troy 
University is approximately 20 students. 

Gemini: I am not sure. Please call: 1-334-808-6576… 

Q: Can you give Python tutorials? 

PaLM: Python is a general-purpose programming language that is designed to 
be easy to read and write… 

Gemini: I am not sure. Please call: 1-334-808-6576… 

Examples of questions where Gemini outperformed PaLM: 

Q: What are the admission requirements for graduate students? 

PaLM: To be considered for admission to a graduate program at Troy 
University, you must meet the following requirements… 

Gemini: please check: https://www.troy.edu/applications-
admissions/admissions-process-requirements/graduate/index.html 

https://www.troy.edu/scholarships-costs-aid/costs/
https://www.troy.edu/scholarships-costs-aid/costs/
https://www.troy.edu/applications-admissions/admissions-process-requirements/graduate/index.html
https://www.troy.edu/applications-admissions/admissions-process-requirements/graduate/index.html
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Q: Where can I find additional help on programming 

PaLM: An error occurred: list index out of range 

Gemini: You can contact the course instructors, tutors or use resources such as 
chatGPT or other generative AI (GenAI). 

VII. CONCLUSION AND FUTURE WORK 

This paper presented a framework that integrates advanced 
AI models and vector databases to enhance the effectiveness of 
query retrieval in web development significantly. Our system 
leverages freely available tools, making it cost-effective and 
accessible for developers. The comparative analysis between 
PaLM and Gemini revealed their unique strengths: PaLM can 
learn from a few examples, which might be helpful for limited 
datasets. In contrast, Gemini focuses on factual accuracy and 
aims to reduce factual errors and hallucinations. Future work 
will involve comprehensive testing and evaluation of the 
system's performance across diverse user scenarios to ensure 
scalability and robustness. The system's effectiveness is highly 
dependent on the quality and comprehensiveness of the CSV 
data. Future work will explore techniques for continuous 
knowledge base improvement. Strategies for automatic data 
augmentation, user feedback integration, and potentially 
incorporating external knowledge sources to enrich the 
information available to the LLMs can be considered. 
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