
(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Can Semi-Supervised Learning Improve Prediction
of Deep Learning Model Resource Consumption?

Karthick Panner Selvam, Mats Brorsson
Snt, University of Luxembourg, Luxembourg

Abstract—As computational demands for deep learning mod-
els escalate, accurately predicting training characteristics like
training time and memory usage has become crucial. These
predictions are essential for optimal hardware resource allocation.
Traditional performance prediction methods primarily rely on
supervised learning paradigms. Our novel approach, TraPPM
(Training characteristics Performance Predictive Model), com-
bines the strengths of unsupervised and supervised learning to
enhance prediction accuracy. We use an unsupervised Graph
Neural Network (GNN) to extract complex graph representations
from unlabeled deep learning architectures. These representations
are then integrated with a sophisticated, supervised GNN-based
performance regressor. Our hybrid model excels in predicting
training characteristics with greater precision. Through em-
pirical evaluation using the Mean Absolute Percentage Error
(MAPE) metric, TraPPM demonstrates notable efficacy. The
model achieves a MAPE of 9.51% for predicting training step
duration and 4.92% for memory usage estimation. These results
affirm TraPPM’s enhanced predictive accuracy, significantly sur-
passing traditional supervised prediction methods. Code and data
are available at: https://github.com/karthickai/trappm

Keywords—Performance model; deep learning; Graph neural
network

I. INTRODUCTION

Deep learning (DL) has significantly advanced various
fields by analyzing complex patterns in extensive datasets.
The escalating complexity of DL models, driven by advances
in computational resources and data availability, necessitates
increased memory and computational power for training. This
heightened demand complicates the training process and in-
creases costs. Accurately predicting both memory consumption
and step time for DL models is challenging due to a variety
of hidden factors, including the choice of convolutional algo-
rithms, garbage collection mechanisms, memory pre-allocation
strategies, and the specifics of implementations like cuDNN
[1]. These factors complicate the task of making precise
predictions, highlighting the need for sophisticated approaches
to accurately estimate these critical training characteristics.
Effective prediction of memory and step time is not only
essential for preventing out-of-memory errors but also plays
a crucial role in optimizing resource allocation and enhancing
the effectiveness of neural architectural search (NAS), ulti-
mately enhancing the efficiency of the model development
process

In past studies, researchers primarily employed super-
vised Multi-Layer Perceptron (MLP) and GNNs to predict
the training and inference attributes of DL models [1]–[10].
These methods, while effective, are confined to the limits
of supervised learning and do not fully exploit the potential

of unlabeled data, which can significantly enhance prediction
performance.

In response to this gap, we introduce TraPPM, a novel
approach that leverages semi-supervised learning. First, we
utilize unsupervised GNN to learn graph representations from
an unlabeled dataset. GNNs are adept at capturing patterns and
relationships within graph-structured data. Next, we combine
the learned graph representations with static features of a DL
model. With this integrated vector, we train the supervised
GNN-based performance regressor using a labeled dataset,
allowing it to accurately estimate the training step time and
memory usage of a given DL model. Utilizing an embedding
generated from unsupervised learning in conjunction with
supervised training boosts performance prediction accuracy
compared to relying solely on supervised training. Our key
contributions include the following:

• We have implemented TraPPM, a novel methodology
that leverages the unsupervised GNN for learning
embeddings from unlabelled datasets. And combine
the embedding with DL static features to train the
GNN-based regressor model using a labeled dataset
to predict the training characteristics without running
it on target hardware.

• We rigorously assessed the performance of TraPPM
against state-of-the-art baselines, including supervised
GNN, MLP, and GBoost, TraPPM exhibits superior
performance, achieving a remarkable 910 MB RMSE
and 4.92% MAPE for memory and 23 ms RMSE and
9.51% MAPE for step-time prediction. This superior
performance underscores the efficacy of harnessing
unlabeled data for performance prediction.

• Furthermore, our comprehensive dataset, encompass-
ing 8,079 labeled graphs and 25,053 unlabelled graphs
from various DL model families, presents a substantial
contribution to the community, paving the way for
future research in performance prediction and opti-
mization.

II. BACKGROUND

1) Computational graphs: Deep learning models are usu-
ally represented as directed computational graphs, where each
node represents mathematical operations, such as matrix mul-
tiplication, and edges represent the data flow between these
nodes. For example, a simple Convolutional Neural Network
(CNN) model. The image data is fed into the network via
the input node, and it just passes data to the next node.
The Conv nodes perform convolution operations on the input
image data. The Pooling node is responsible for reducing the

www.ijacsa.thesai.org 74 | P a g e

https://github.com/karthickai/trappm

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

spatial dimensions of the input data to reduce computational
requirements. The Fully Connected (FC) node, where each
neuron is interconnected with all neurons from the previous
layer, applies the activation function to a weighted sum of
their inputs. Finally, the output node takes the data from the
FC node and provides prediction results.

2) Graph neural networks: GNNs constitute a specialized
class of deep learning models that operate on graph-structured
data, denoted as G = (V,E), where V represents the set of
nodes and E represents the set of edges in the graph. Each
node vi ∈ V is associated with a feature vector, which en-
codes information about that node. The fundamental principle
underlying GNNs is the iterative process known as message
passing, which facilitates the generation of embeddings for
nodes or entire graphs.

In the message passing process, each node vi updates its
embedding by aggregating information from its neighboring
nodes. This aggregation is achieved through functions such
as summation, averaging, or more intricate operations like
neural networks or attention mechanisms. Let h(l)

i denote the
embedding of node vi after l message passing iterations, where
l represents the layer in the GNN. Initially, h(0)

i corresponds
to the node’s original feature vector.

The update equation for node vi at layer l in a GNN can
be expressed as follows:

h
(l)
i = TRANSFORM

(
h
(l−1)
i ,

{
h
(l−1)
j : vj ∈ N (vi)

})
Here, h(l−1)

j represents the embeddings of the neighboring
nodes of vi at the (l − 1)-th layer, and N (vi) denotes
the set of neighbors of node vi. The TRANSFORM function
combines the embeddings of the node’s neighbors with its own
embedding from the previous layer. Through multiple layers
of message passing, each node gathers information from an
increasingly wider neighborhood in the graph. Thus, the final
embedding h

(l)
i for node vi after l layers encapsulates infor-

mation from both its immediate and more distant neighbors
within the graph. GNNs have demonstrated remarkable success
in various graph-related tasks, including node classification,
link prediction, and graph-level classification. Prominent GNN
variants such as GraphSAGE [11], Graph Attention Networks
(GAT) [12], and Graph Convolutional Networks (GCN) [13]
have gained widespread adoption in the research community
and have yielded state-of-the-art results in these tasks.

3) Graph auto encoders: GAEs [14], play a critical role
in unsupervised learning with graphs. They are particularly
useful when we have a lot of unlabeled data. A GAE comprises
two essential parts: an encoder and a decoder. The encoder’s
role is to transform the input graph into lower-dimensional
representations known as embeddings of nodes. This is often
accomplished with a Graph Convolution Network (GCN),
converting the input adjacency matrix A and feature matrix
X into an embedding matrix Z. Where the adjacency matrix
represents the connectivity between nodes in a graph. This
can be written as Z = encoder(X,A). The decoder takes
the node embeddings produced by the encoder, the matrix Z,
and tries to rebuild the original adjacency matrix. A common

way of achieving this is using the node embeddings’ inner
product as the decoder function. The motivation here is that
the inner product, as a similarity measure, can capture the
likelihood of a link between two nodes. A′ = decoder(Z).
The effectiveness of this transformation is evaluated using a
loss function. This function measures the reconstruction error -
the difference between the original adjacency matrix A and the
reconstructed one A′. This discrepancy is usually calculated
using a method like Binary Cross Entropy (BCE). The model
is trained to minimize this loss, thus improving the GAE’s
precision. Having an established foundational understanding
of DL as a computational graph and GAE, we can now delve
into TraPPM’s methodology. TraPPM leverages unsupervised
GNN, particularly with a GAE, to learn the graph representa-
tion of unlabelled datasets. We utilize the computation graph
as input to the TraPPM, with nodes representing operators and
node features corresponding to operator attributes. The edges
signify the connections between operators. We will explore it
further in Section IV.

III. RELATED WORK

The study of performance prediction of deep learning
models is relatively recent, having only started to receive focus
just a few years ago. Qi et al. [15] use a straightforward
approach to estimate the training time of DL models, layer
by layer, using an analytical model. They calculated each step
duration and summed it to calculate the overall estimation. The
model presumes no concurrent operations, which may only be
accurate for some hardware types. Gao et al. [1] also used an
analytical model to predict the memory consumption for the
training DL model. Bouhali et al. [16] used an MLP-based
regressor to predict the execution time of a DL model. They
used input features such as trainable parameter count, memory
size, and input size to predict the execution time. Nevertheless,
the traditional MLP method could have been more effective
due to its limited understanding of the DL layers.

Justus et al. [2] used the layer-by-layer technique proposed
by Qi et al. [15] to improve the performance prediction accu-
racy. But use an MLP-based regression model instead of an
analytic model. Gianti et al. [7] used a layer-by-layer technique
as Justus et al. [2]. Instead of layer parameters, they used
complex parameters such as FLOPS to predict the execution
time and power of an individual layer of the DL model. Other
researchers [17]–[20] also used the same layerwise approach
to predict the execution time, memory allocation, and power
consumption of the DL model. Yu et al. [3] employed a wave-
scaling method for estimating the training step time of the
deep learning model on a GPU. They also used the layerwise
approach. However, this wave scaling technique necessitates
the availability of a GPU to facilitate the prediction.

On the other hand, researchers used a graph neural net-
work instead of MLP in a layerwise approach to predict the
performance of the DL model [8], [9]. The layerwise approach
did not capture the DL model network topology, and therefore
prediction accuracy is sub-optimal [10]. To solve the above
problem, Gao et al. [4] and other researchers, [5], [6], [10],
used a graph learning to understand the model network topol-
ogy by generating embeddings. Furthermore, they combine
embeddings with overall DL features to predict the training and
inference characteristics. The majority of prior studies utilized

www.ijacsa.thesai.org 75 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

supervised techniques for DL model performance prediction,
neglecting the vast pool of unlabelled DL model data. Our
innovative approach, TraPPM, bridges this gap using a semi-
supervised learning paradigm, enhancing prediction accuracy
by harnessing unlabelled data.

In the first step, we employ an unsupervised graph neural
network using unlabelled DL models. This network generates
embeddings for input DL models, facilitating an in-depth
understanding of the input DL model’s network topology. In
the subsequent step, we combine the embeddings with the
static features extracted from a DL model. This fused data is
utilized for training a GNN-based regressor using labeled data
to predict the training characteristics. Our approach provides
a more comprehensive and effective performance prediction
mechanism than the previous works.

IV. METHODOLOGY

Our methodology consists of two phases. Phase 1: Unsu-
pervised Learning, unlabelled DL graphs are trained using a
GAE to generate embeddings, as explained in Section IV-B.
However, we cannot directly feed the DL model in Open
Neural Network Exchange (ONNX)1 format into the input of
GAE for training. Instead, we need to convert it to PyTorch
Geometric (PyG) [21] data format before training, as explained
in Section IV-A. Phase 2: Supervised Learning, the trained
encoder from the GAE is utilized to generate embeddings for
the labeled DL model. These embeddings and static features,
along with the labeled DL models to, train GNN-based re-
gressors to predict the training characteristics, as described in
Section IV-C.

A. Graph Transformation

Given a DL model M with operations O =
{o1, o2, ..., on}, we transform M (in ONNX format)
into a graph G compatible with PyG. In G, nodes represent
M ’s operations stored in the node feature matrix X , while
A captures directed relationships. Specifically, G = (X,A)
where X = O and A[i][j] = 1 if a directed edge exists from
oi to oj , else A[i][j] = 0. If M is labeled, we incorporate
a target vector Y into PyG data. For each node v in the
DL model graph, we define an attribute vector Av as:
[EO(v), Iv,Ov,Macv, Pv,Mv]. Here, EO(v) is a one-hot
encoded vector of length |O|, where |O| = 98, surpassing
the previous work supported only 32 operators [10]. The
vectors Iv and Ov , each of length 6, encapsulate the input
and output shape, respectively, with an extension to consider
3D convolution. The attributes Macv , Pv , and Mv symbolize
the MAC, parameters, and memory of node v, respectively.
Thus, our node feature vector n has a dimensionality of
113, offering a more exhaustive representation as shown
in Fig. 1. To the best of our knowledge, this is the first
work to incorporate 2D and 3D convolutions, alongside
transformer-based architectures, into node features. This
advancement distinguishes our approach from prior studies
that were limited to 2D convolutions.

1https://github.com/onnx/onnx

98 6 6 1 1 1

Fig. 1. The graph’s nodes are augmented with node features, each consisting
of 113 elements. To accommodate 3D convolution, padding was appended at

the end of both the input and output shapes.

B. Phase 1: Unsupervised Learning

In order to leverage the potential of unlabelled data, we
train the GAE model in unsupervised manner. The fundamen-
tals of GAE are explained in Section II-3. However, it is not
possible to directly use the DL model in ONNX format as
input to the GAE. Therefore, we first transform the ONNX
format to G as described in Section IV-A. The overview of
our GAE is illustrated in Fig. 2.

The GAE’s encoder is composed of four GraphSAGE
convolution layers, which process node features of dimen-
sion [#nodes, 113]. These layers aggregate neighborhood fea-
tures, followed by batch normalization and ReLU activation
to introduce non-linearity and enhance training stability. A
dropout layer with a rate of 0.5 prevents overfitting. The
encoder outputs embeddings Z in a latent space of dimension
[#nodes, 512], as depicted in Fig. 2. The decoder reconstructs
the adjacency matrix Â using the embeddings Z through the
operation σ(ZZT), where σ is the sigmoid function. The BCE
loss for the GAE is defined as:

LBCE = − log(Â(z, ipos, jpos)+ϵ)− log(1−Â(z, ineg, jneg)+ϵ)

In this equation, Â denotes the predicted adjacency matrix.
The terms ipos, jpos signify the indices of positive edges,
while ineg, jneg correspond to negative edges, obtained through
negative sampling. To ensure stability during the computation
of logarithms, we used a small constant ϵ = 1 × 10−15. The
essence of this loss metric lies in its ability to guide the GAE
towards accurately reflecting the original graph structure. The
model optimizes this loss, aiming to accurately reconstruct
the graph’s adjacency matrix. Upon minimizing this loss, the
weights of the GAE’s encoder are frozen, setting the stage for
Phase 2’s supervised training.

C. Phase 2: Supervised Learning

The primary objective of TraPPM is to predict training
characteristics such as memory usage (MB) and training step
time (ms). To achieve this, we employ a GNN-based regressor
for prediction. The overview of supervised learning is shown
in Fig. 3. The input G includes both actual values, represented
by [mb, W], and static characteristics. The static features
encompass the batch size B, the total number of nodes Nt, the
total number of edges Et, total MAC operations (MACt), total
parameters (Pt), and total memory (Mt). The values Nt and
Et are directly extracted from G, while the values MACt, Pt,
and Mt are obtained using the ONNX tool. Consequently, the
static feature vector Fs has a length of 6. Supervised learning
consists of three components.

GNN Component: It consists of two layers of the SAGE-
Conv layer, and each SAGEConv layer is succeeded by a ReLU
activation function and a dropout mechanism with a rate of
0.05.

www.ijacsa.thesai.org 76 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

4x

Z

SA
G

E
 C

on
v

B
at

ch
 N

or
m

R
eL

U

D
ro

po
ut

E
m

be
dd

in
gs

R
ec

on
st

ru
ct

ed

A

dj
ac

en
cy

 M
at

ri
x

Decoder
G

ra
ph 

Tr
an

sf
or

m
at

io
n

D
L

M
od

el

O
N

N
X

,

Encoder
Fig. 2. Unsupervised Learning - Training Graph Auto Encoder to minimize reconstruction loss of unlabelled DL model graphs.

Feature Aggregation Component: The node features pro-
duced by the SAGEConv layer were aggregated using the sum
reduce function, resulting in a [1, 512] dimension. Similarly,
embeddings generated from the GAE were reduced to [1, 512]
using another sum aggregator function. These two embeddings
were then combined with a static feature Fs, forming a vector
of dimensions [1, 1030], which was subsequently fed into the
MLP component.

MLP Component: The concatenated feature vector is
passed through two Fully connected (FC) layers. Both FC
layers are succeeded by ReLU activations and dropout layers
with a rate of 0.05. The processed features are passed through
a final layer that produces a single output value.

In the forward pass, the model processes the input G, per-
forms graph convolutions, aggregates node features, integrates
it with static features and aggregated embeddings generated
from GAE, and passes it through the FC layers to produce
the final prediction. We employed the Mean Squared Error
(MSE) as our loss function and utilized the Adam optimizer
for the training phase. In the backward pass, the model updates
the parameters θ, in both the GNN and MLP components. To
individually predict memory usage (MB) and step time (ms),
we have trained two distinct models: M1 for memory and M2
for step time and frozen their weights. A given input G is
simultaneously processed by all two models (M1 and M2).
Alongside G, each model also receives the static feature vector
Fs and the aggregated embeddings generated by the GAE as
we discussed earlier. The combined input helps these models
produce accurate predictions on the training characteristics of
a given DL model.

D. Evaluation Metrics

To assess the performance of our TraPPM model compared
to the baseline models, we employ two widely used evaluation
metrics: MAPE and Root Mean Square Error (RMSE). We
chose MAPE because it measures the average percentage
difference between the predicted and actual values. It allows
us to assess the relative accuracy of the predictions as shown
in Eq. (1). On the other hand, RMSE is used to measure the
overall magnitude of prediction errors on the same scale as the
predicted variable, providing a standardized and interpretable
metric for assessing the performance of prediction models as
shown in Eq. (2). By utilizing both MAPE and RMSE in our

experiment, we thoroughly evaluate TraPPM’s performance
compared to the baseline models.

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100 (1)

RMSE =

√√√√ 1

n

n∑
i=1

(yi − ŷi)2, (2)

V. EXPERIMENTS AND RESULTS

A. Enviromental Setup

We used two hardware configurations for data collection:
the first comprised an AMD EPYC 7402 processor with two
sockets (24 cores per socket), 512 GB DDR4-3200 RAM,
and a NVIDIA A100 GPU with 40 GB HBM; while the
second utilized 2× Intel Xeon Gold 6148 CPUs (2× 20 cores
at 2.4 GHz) and a NVIDIA V100 GPU with 16 GB HBM.
However, we exclusively used the hardware equipped with the
NVIDIA A100 GPU for the experiments. The experimental
environment for developing TraPPM involved the utilization
of several essential Python libraries. The important libraries
used were PyTorch 2.0.0, torch-geometric 2.3.0, torch-cluster
1.6.1, ONNX 1.13.1, and torch-sparse 0.6.17. These libraries
played a crucial role in implementing and training the TraPPM
model. The experiments for training TraPPM and generating
the dataset were conducted on the abovementioned system
using CUDA 11.7.

B. Datasets

For our TraPPM experiment, we employed a dual-
method approach, harnessing both unsupervised and super-
vised datasets. As we already discussed, unsupervised datasets
are used for training GAE, and the supervised dataset is used
to train the GNN-based regressor.

1) Unsupervised dataset: For the TraPPM experiment, we
harnessed the Timm library [22] to generate a diverse unsuper-
vised dataset comprising various CNN and transformer-based
architectures. These models were exported in ONNX format
and subsequently converted to PyG data, a process detailed
in Section IV-A. The dataset includes 25,053 unlabeled DL
models, spanning eleven distinct model families as outlined

www.ijacsa.thesai.org 77 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Z

Forward Pass
Sum Aggregator

Concatenated Vector

G
ra

ph 
Tr

an
sf

or
m

at
io

n

D
L

M
od

el

O
N

N
X

,

Fu
lly

 C
on

ne
ct

ed

R
eL

U

D
ro

po
ut

GNN
Supervised Training

Feature
Aggregation

MLP

In
: 1

03
0

O

ut
: 5

12

L
in

ea
r L

ay
er

O
ut

: 1

Predicted Training Characteristic

Static Features6

+

+
R

eL
U

D
ro

po
ut

,

Encoder

SA
G

E
 C

on
v

2x

512

512

2x

Fig. 3. Supervised Learning - Training a GNN regressor using MSE loss to minimize the actual y vs. predicted ŷ. We train three different models separately
for predicting step time (ms), memory usage (MB), and power consumption (W).

in Table I. This extensive collection of models underpins our
unsupervised learning approach, as elaborated in Section IV-B.

The dataset features a range of model variants within
each family. For instance, the ConvNext family [23] en-
compasses variants like Base, Large, Small, and Tiny. The
DenseNet family [24] includes DenseNet121, 161, 169, and
201. Other represented families are EfficientNet [25], Mnas-
Net [26], MobileNet [27], PoolFormer [28], ResNet [29],
Swin [30], VGG [31], along with additional models such as
Visformer [32] and ViT [33]. This breadth ensures a com-
prehensive representation of current DL model architectures,
facilitating robust unsupervised learning.

2) Supervised dataset: Our supervised dataset is subset of
unsupervised dataset. The data collection was conducted using
two GPUs: the NVIDIA A100 and the NVIDIA V100, as
described in Section V-A. Specifically, using the A100 GPU,
we collected a total of 7536 labeled DL models. Conversely,
with the V100 GPU, we gathered 543 labeled DL models. For
baseline model comparisons, we primarily utilized the labeled
DL models from the A100 GPU. Meanwhile, the dataset
collected from the V100 GPU was exclusively reserved for
evaluating TraPPM’s transfer learning capabilities. We again
utilized the Timm library to generate DL models. However,
instead of saving them to the ONNX format, we trained
each model for 55 iterations, with the initial five iterations
serving as a warm-up phase. We calculated the CUDA time
during each iteration, representing the time taken to process
a single iteration or step time in the training process. Our
focus was primarily on step time, as it remains consistent
during the training of the DL model, except for the initial
few iterations that may exhibit variations due to warm-up
effects. Therefore, we excluded the first five iterations when
calculating the metrics. Additionally, we collected memory
usage and power consumption data using the NVML2 Python
library. For each of the eleven different model families, we
repeated this process, averaging the step time (ms), memory
usage (MB), and power consumption (W). The results, along

2https://pypi.org/project/pynvml/

TABLE I. TRAPPM: DATASET DISTRIBUTION

Family Unsupervised Supervised

A100 V100

DenseNet 838 466 27
EfficientNet 1370 566 44
MnasNet 7208 795 64
MobileNet 2449 1613 123
PoolFormer 601 377 36
ResNet 1805 821 56
Swin 787 421 36
VGG 6171 937 61
VisFormer 237 235 17
ConvNext 1530 439 27
ViT 2057 866 52

Total 25053 7536 543

with the corresponding ONNX model files, were saved. During
converting these models to PyG data format, we appended the
measured values into the graph data Y.

C. Training - Graph Auto Encoder

The first phase of the TraPPM experiment involves training
the GAE, a key component of our TraPPM. Initially, we
considered the Masked Graph Autoencoder technique, as pre-
sented in Hou’s study [34]. This method masks random node
features and attempts to reconstruct them, facilitating graph
representation learning. However, our node features, largely
sparse due to one-hot encoding as explained in Section IV-A,
did not align well with this strategy. As a result, we turned
to the classical GAE, which proved to be a better fit for our
needs. The GAE model was developed using the PyG Library,
the detailed model architecture explained in Section IV-B. For
training, we employed the BCE loss function and utilized
the Adam optimizer with a lr=5 × 10−4, betas=(0.9, 0.999),
eps=1× 10−8. To train the GAE, we utilized an unsupervised
dataset, as described in Section V-B1, for a total of 400 epochs.
Finally, we have achieved a BCE loss of 0.9291. The entire
training process for the GAE took approximately 25.6 hours on
a single A100 GPU. We employed t-SNE [35] to visualize the

www.ijacsa.thesai.org 78 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

sum aggregated embeddings generated by the GAE, as shown
in Fig. 4. The widespread distribution of the ResNet models
is due to its numerous variants, distinguishing it from other
models.

50 0 50
Component 1

50

25

0

25

50

75

C
om

po
ne

nt
 2

vgg
efficientnet
convnext
densenet
mnasnet
resnet
vit
mobilenet
poolformer
swin
visformer

Fig. 4. t-SNE visualization of sum aggregated embeddings generated by the
GAE.

D. Training - TraPPM

The core part of the experiment involves training the
TraPPM model, with the detailed architecture explained in
Section IV-C. We used the PyTorch library to create the
TraPPM model. We used a labeled dataset collected from
A100 GPU to train the model, as mentioned in Section
V-B2. We partitioned our dataset according to a 70:30 ratio
for each model family. Specifically, 70% of the data was
used for training and 30% for testing. This split aligns with
the standards established in previous research [10]. However,
instead of a conventional split, we adopted a Monte Carlo
validation approach. To ensure robustness and reliability in our
results, we employed five distinct seeds: 1337, 1338, 1339,
1340, and 1341. By utilizing these seeds, we generated five
different dataset splits and subsequently averaged the results to
derive a more comprehensive performance evaluation. During
the training process, we utilized the Adam optimizer with a
lr=1×10−3, betas=(0.9, 0.999), eps=1×10−8. The training was
performed over 100 epochs to fair comparison with baseline
models. Training the TraPPM model for a single fold takes
about 1 hour and 17 minutes for 100 epochs.

E. Baseline Models

In our evaluation, we compared TraPPM with three base-
line models: Gboost, MLP, and the supervised GNN. Gboost
served as a strong foundation for further development, while
MLP was chosen for its wide usage in performance predic-
tion [2]. Finally, we included the supervised GNN model
introduced by Lu et al. [10], referred to as NNLQP. This
model served as a reference for evaluating the performance
of TraPPM in relation to a well-established supervised GNN
approach.

1) Gradient boosting: To develop the GBoost model, we
conducted training using the XGBoost [36] python library. The
training process involved utilizing a supervised dataset that
solely consisted of DL static features as input. To optimize its

0 20 40 60 80 100

Epochs
0

1

2

3

4

5

6

Lo
ss

1e4 TRAPPM
NNLQP
MLP

(a) Step Time (ms)

0 20 40 60 80 100

Epochs
0

2

4

6

Lo
ss

1e7 TRAPPM
NNLQP
MLP

(b) Memory Usage (MB)

Fig. 5. Epoch vs Loss plot comparing the convergence rates of TraPPM,
NNLQP, and MLP. TraPPM showcases rapid convergence due to its ability
to leverage unsupervised learning from unlabeled data, as trained over 100

epochs.

hyperparameters, we conducted a grid search. The hyperpa-
rameters explored during the grid search were estimators with
values [500, 1000, 2000], lr with values [1×10−3, 1×10−4],
max depth with values [10, 30, 50], subsample with values
[0.5, 0.75, 1], and colsample bytree with values [0.5, 0.75,
1]. After performing the grid search, we identified the best
hyperparameters as follows: colsample bytree: 1, lr: 1× 10−3,
max depth: 50, estimators: 2000, subsample: 1.

2) MLP: We created a baseline MLP model that is similar
to the TraPPM MLP component, with the only difference being
that it accepts only static features as input during training. We
trained the baseline MLP model using 100 epochs, utilizing the
MSE loss function and the Adam optimizer with lr=1× 10−3,
which is the same setting as the TraPPM supervised training.

3) NNLQP: It is important to note that a key distinction
between the NNLQP model and the TraPPM model is that
the NNLQP model is unable to utilize unsupervised datasets.
It can only operate with supervised datasets. To ensure a fair
comparison, we kept the model architecture unchanged, only
adapting the node features to accommodate the TraPPM dataset
as discussed in Section IV-A. We trained the model for 100
epochs using the Adam optimizer with lr=1×10−3, following
the same settings as the TraPPM model. The NNLQP model
takes the graph representation G as input, generates embed-
dings, concatenates them with static features, and employs an
MLP to predict performance.

F. Baseline - Comparison

We assessed the performance of the TraPPM model by
comparing it with baseline models. Both the TraPPM model
and the baselines were trained using a supervised dataset of
A100 GPU, with a specific focus on predicting step time (ms)
and memory usage (MB). We trained the TraPPM, NNLQP,
and MLP models for 100 epochs, repeating the process five
times using different seeds as outlined in Section V-D. When
we assessed the models for their capability to predict memory
usage and step time, the epoch-versus-loss plot as shown in
Fig. 5, revealed that the TraPPM model converges more rapidly
compared to both NNLQP and MLP. This faster convergence
can be attributed to TraPPM’s ability to leverage unsupervised
learning from unlabeled data.

www.ijacsa.thesai.org 79 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

TABLE II. COMPARATIVE PERFORMANCE ANALYSIS OF MEMORY USAGE (MB) PREDICTION: AVERAGED RESULTS OVER FIVE DISTINCT SPLITS.
RESULTS HIGHLIGHT TRAPPM’S ENHANCED ACCURACY COMPARED WITH BASELINE MODELS. THE LOWER THE VALUES, THE HIGHER THE ACCURACY

Family TraPPM NNLQP MLP GBoost

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

convnext 4.95% 1005.71 7.01% 1490.67 54.74% 8906.85 14.62% 3230.67
densenet 3.52% 730.47 8.29% 1675.17 66.44% 8317.23 14.64% 3113.40
efficientnet 3.55% 537.84 7.67% 1687.05 51.70% 11952.91 16.70% 3458.01
mnasnet 4.53% 585.65 6.75% 1804.18 94.42% 4908.33 14.72% 2756.27
mobilenet 5.28% 633.74 6.74% 1587.84 108.22% 5051.35 24.65% 2879.35
poolformer 4.41% 1441.70 6.96% 2027.24 76.10% 8951.67 15.04% 3332.57
resnet 4.65% 658.40 8.09% 1229.99 124.26% 7393.93 16.78% 2479.84
swin 5.09% 774.91 10.37% 1853.26 53.68% 8294.61 15.12% 2909.59
vgg 10.48% 2341.17 10.76% 2271.89 42.29% 7145.38 15.87% 3911.28
visformer 3.92% 318.97 9.49% 722.83 191.19% 8671.54 13.97% 1170.94
vit 3.78% 985.22 9.07% 2219.88 72.05% 8908.69 14.99% 3444.81

TABLE III. COMPARATIVE PERFORMANCE ANALYSIS OF STEP TIME (MS) PREDICTION: AVERAGED RESULTS OVER FIVE DISTINCT SPLITS. RESULTS
HIGHLIGHT TRAPPM’S ENHANCED ACCURACY COMPARED WITH BASELINE MODELS

Family TraPPM NNLQP MLP GBoost

MAPE RMSE MAPE RMSE MAPE RMSE MAPE RMSE

convnext 8.09% 46.00 9.50% 61.06 64.92% 354.59 16.15% 102.72
densenet 6.69% 15.46 18.41% 36.50 104.45% 155.09 14.08% 33.61
efficientnet 6.81% 13.46 9.45% 22.51 49.18% 118.56 15.36% 34.94
mnasnet 7.98% 12.72 18.59% 40.05 106.86% 80.87 14.49% 41.18
mobilenet 9.20% 8.95 14.66% 21.69 116.48% 52.97 25.79% 31.44
poolformer 13.02% 27.05 13.23% 26.79 166.75% 119.56 14.59% 32.51
resnet 11.26% 16.20 25.45% 36.02 192.95% 122.75 24.13% 46.33
swin 9.01% 35.18 8.89% 33.66 60.08% 263.86 15.68% 72.44
vgg 10.74% 22.51 13.20% 30.29 69.91% 83.70 15.89% 43.59
visformer 14.79% 17.88 18.61% 15.29 437.33% 287.67 13.99% 14.85
vit 7.06% 40.13 9.15% 83.41 105.84% 432.32 16.60% 146.39

0 500 1000 1500
Actual Step Time (ms)

0

500

1000

1500

Pr
ed

ic
te

d
St

ep
 T

im
e

(m
s)

0 10 20 30 40
Actual Memory (GB)

0

10

20

30

40

Pr
ed

ic
te

d
M

em
or

y
(G

B
)

100 200 300
Actual Power (W)

0

100

200

300

400
Pr

ed
ic

te
d

Po
w

er
 (W

)

Fig. 6. Comparison of actual values with predictions from TraPPM on the test set. The model was trained for 100 epochs using a supervised dataset, with a
split seed of 1337.

TABLE IV. AVERAGE PERFORMANCE COMPARISON OF TRAPPM WITH
BASELINE MODELS

Memory Usage (MB) Step Time (ms)

Model MAPE ↓ RMSE ↓ MAPE ↓ RMSE ↓

TraPPM 4.92% 910.34 9.51% 23.23
NNLQP 8.29% 1688.18 14.47% 37.02
MLP 85.01% 8045.68 134.07% 188.36
GBoost 16.10% 2971.52 16.98% 54.54

G. Model Evaluation and Comparison

The performance evaluation of the TraPPM model against
baseline models was conducted using a test dataset, with
MAPE and RMSE as the key metrics, as detailed in Sec-

tion IV-D. These metrics were computed for each model
family individually to provide a comprehensive performance
assessment. Lower MAPE and RMSE values indicate closer
alignment of predictions with actual values.

Table II details the predictive accuracy for memory con-
sumption, while Table III focuses on training step latency.
The TraPPM model notably outperforms the baselines in both
aspects. In memory consumption prediction, TraPPM achieves
a significant relative improvement in MAPE of 40.6% over
the NNLQP model, demonstrating its robustness. Similarly,
for training step time predictions, TraPPM exhibits superior
accuracy, with a relative MAPE improvement of 34.2% com-
pared to NNLQP. Additionally, the aggregate performance of
the TraPPM model, encompassing all tested model families, is
summarized in Table IV. This table provides a holistic view

www.ijacsa.thesai.org 80 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

of the TraPPM model’s performance across various prediction
tasks, reinforcing its overall efficacy in comparison to the
baseline models.

H. Theoretical Insights into TraPPM’s Semi-Supervised
Learning Approach

The TraPPM model leverages a semi-supervised frame-
work, integrating unsupervised learning for generating embed-
dings, which significantly enhances its predictive capabilities
for step time and memory usage. This methodology stands in
contrast to the purely supervised models like NNLQP, which
rely exclusively on labeled data. Theoretically, the effective-
ness of TraPPM is attributed to its ability to access a richer
representation space, capturing latent structural features within
the data through these unsupervised embeddings, features that
remain elusive in a solely supervised paradigm.

From a mathematical perspective, the TraPPM model can
be seen as operating within an expanded function space, F ′,
compared to the more limited function space, F , accessible
by conventional supervised learning. This expanded space F ′,
achieved through the integration of unsupervised embeddings,
encapsulates the original space F but extends further to
incorporate additional dimensions reflecting data variance and
underlying structure. The empirical benefits of this expansion
are evidenced by the improved MAPE and RMSE metrics
detailed in Tables II and III, with aggregate performance
enhancements further demonstrated in Table IV.

To provide empirical validation of these theoretical and
mathematical concepts, we include actual versus predicted
plots in Fig. 6. These plots vividly illustrate the alignment
between TraPPM’s predictions and actual outcomes, thereby
substantiating the model’s proficiency in accurately forecasting
training characteristics. They visually reinforce the theoretical
and mathematical merits of the semi-supervised learning ap-
proach employed by TraPPM, highlighting its superiority in a
variety of prediction tasks across multiple model families.

I. Ablation Study: Impact of Weight Initialization

In this ablation study, we examine the influence of weight
initialization on the TraPPM model’s performance, focusing
on two distinct GAE configurations: one using pre-trained
weights and another with randomly initialized weights. Both
configurations are integrated with a GNN for regression tasks,
as detailed in Section IV-C.

Empirical results indicate a marked difference in perfor-
mance based on the initialization approach. The model with
pre-trained weights demonstrates a notable decrease in MSE
loss for training step time, starting from 1.26 × 104 and
reaching 6.82 × 102 by the 100th epoch, signifying effective
and efficient learning. In contrast, the randomly initialized
model begins with a substantially higher initial MSE loss of
approximately 5.43 × 1012, which only marginally improves
to 1.05 × 105 by the 2nd epoch and then stagnates, showing
no further significant decrease in subsequent epochs. This
pattern is consistently observed for both training step time and
memory consumption prediction tasks.

Theoretically, this disparity can be attributed to the dif-
ferent starting points in the parameter space optimization

5 10 15 20
Epochs

0.0

0.5

1.0

1.5

Lo
ss

1e4 Step Time (ms)

With TL
Without TL

5 10 15 20
Epochs

0

1

2

Lo
ss

1e7 Memory Usage (MB)

With TL
Without TL

Fig. 7. Epoch vs. Loss plot demonstrating TraPPM’s enhanced convergence
through transfer learning.

landscape. Pre-trained weights provide a beneficial starting
position, facilitating a more focused and stable gradient descent
path (∇θL). Conversely, random initialization tends to place
the model in a less favorable starting point, often characterized
by steeper initial gradients and a higher likelihood of getting
trapped in local minima.

These observations underscore the critical role of initial
weight settings in the performance of GAEs, especially in
the context of the TraPPM model. The study highlights the
substantial advantage of employing pre-trained weights for
complex structured data tasks, as they significantly enhance
the model’s ability to learn efficiently and effectively.

VI. DISCUSSION

A. TraPPM’s Adaptability to Predicting Diverse Metrics

The TraPPM model demonstrates its versatility in metric
prediction, such as power consumption, by leveraging the
GAE’s embeddings Z. These embeddings, derived from DL
models, are crucial for extending prediction capabilities be-
yond standard metrics like memory usage and step time.

The GAE transforms high-dimensional inputs G into a
comprehensive latent space Z = fGAE(G), forming the foun-
dation for a GNN-based regression model as explained in the
Section IV-B. For power consumption prediction, this GNN
model, trained on the supervised dataset for 100 epochs (as
outlined in Section V-D), aims to minimize the MSE between
the predicted ŷpower and actual power consumption values
ypower:

Lpower =
1

n

n∑
i=1

(yi,power − ŷi,power)
2

This method highlights TraPPM’s adaptability in using
the same set of GAE embeddings for diverse predictions.
The effectiveness of this approach is validated by TraPPM’s
performance in power consumption prediction, achieving a
MAPE of 5.01% and an RMSE of 17 W, thereby demon-
strating the robustness and versatility of GAE embeddings in
various predictive scenarios. Fig. 6, clearly depicts TraPPM’s
predictive accuracy, illustrating the close alignment between
predicted and actual power consumption values.

B. Transfer Learning Capability of TraPPM

Transfer learning, crucial in DL when labeled data is
scarce, was employed in TraPPM to address the limited labeled
data for the V100 GPU (see Section V-B2). By initializing

www.ijacsa.thesai.org 81 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

Fig. 8. A sample Python code using TraPPM to predict.

the V100 GPU training with weights WA100 from the A100
GPU-trained model, depicted in Fig. 7, we aimed to expedite
convergence compared to starting from scratch.

In TraPPM, transfer learning theoretically embodies do-
main adaptation, transitioning the function fsource(X;WA100)
to ftarget(X;W). This strategy circumvents the initial generic
feature learning phase, directly fine-tuning the model to the
target dataset’s specificities.

The effectiveness of this approach in TraPPM led to
substantial relative improvements in prediction accuracy: ap-
proximately 55.03% in RMSE for Step Time and 48.76%
for Memory usage. Table V details these enhancements, un-
derscoring the robustness of transfer learning in optimizing
TraPPM’s predictive performance for different hardware con-
texts, especially where labeled data is limited.

TABLE V. COMPARISON OF METRICS WITH/WITHOUT TL

Label Metric With TL Without TL

Step Time MAPE (%) 19.13 28.24
RMSE (ms) 20.05 44.59

Memory MAPE (%) 11.22 28.49
RMSE (MB) 603.03 1176.90

C. Ease of Use with TraPPM

We have developed a TraPPM as a Python library for pre-
dicting the step time, memory usage, and power consumption
of DL models in the ONNX format. Users can effortlessly
leverage TraPPM’s performance prediction capabilities with
just a few lines of code, as shown in Fig. 8.

D. Optimizing Cloud Costs and Resources with TraPPM

TraPPM is instrumental not only in Neural Architectural
Search but also in datacenter job scheduling and cloud cost
estimation. Its predictive capability enables efficient resource
planning in datacenters and accurate estimation of cloud
computing expenses. For example, using TraPPM to predict
the training duration of an EfficientNet b6 model, with an
predicted step time of 350 ms over 2× 105 iterations, yields a
training time of around 19.44 hours. On a cloud platform with
an A100 GPU costing 2.934 USD per hour, the total cost is
approximately 57.04 USD. This application of TraPPM for cost
prediction showcases its utility in optimizing computational
resources and budgeting for cloud-based DL tasks.

VII. CONCLUSIONS

We present TraPPM, a novel framework that combines
unsupervised GAE with a supervised GNN regressor to pre-

cisely predict DL model training characteristics without neces-
sitating execution on target hardware, a significant departure
from traditional approaches reliant solely on labeled datasets.
TraPPM demonstrates exceptional predictive accuracy, achiev-
ing MAPEs of 4.92% for memory usage, 9.51% for step time,
and 5.01% for power consumption, along with robust RMSE
values. The release of our comprehensive dataset comprising
25,053 unlabelled DL graphs and 8,079 labeled DL graphs
further enriches the field, providing a valuable resource for
future research. TraPPM’s innovative use of unlabeled data
in a semi-supervised learning context marks a significant
advancement in the DL performance prediction community.

ACKNOWLEDGMENT

This work has been done in the context of the MAEL-
STROM project, which has received funding from the Euro-
pean High-Performance Computing Joint Undertaking (JU) un-
der grant agreement No 955513. The JU receives support from
the European Union’s Horizon 2020 research and innovation
program and the United Kingdom, Germany, Italy, Switzer-
land, Norway, and in Luxembourg by the Luxembourg Na-
tional Research Fund (FNR) under contract number 15092355.

REFERENCES

[1] Y. Gao, Y. Liu, H. Zhang, Z. Li, Y. Zhu, H. Lin, and M. Yang,
“Estimating gpu memory consumption of deep learning models,” in
Proceedings of the 28th ACM Joint Meeting on European Software
Engineering Conference and Symposium on the Foundations of Software
Engineering, ser. ESEC/FSE 2020. New York, NY, USA: Association
for Computing Machinery, 2020, p. 1342–1352.

[2] D. Justus, J. Brennan, S. Bonner, and A. S. McGough, “Predicting the
computational cost of deep learning models,” in 2018 IEEE Interna-
tional Conference on Big Data (Big Data), 2018, pp. 3873–3882.

[3] G. X. Yu, Y. Gao, P. Golikov, and G. Pekhimenko, “Habitat: A Runtime-
Based Computational Performance Predictor for Deep Neural Network
Training,” in Proceedings of the 2021 USENIX Annual Technical
Conference (USENIX ATC’21), 2021.

[4] Y. Gao, X. Gu, H. Zhang, H. Lin, and M. Yang, “Runtime performance
prediction for deep learning models with graph neural network,” in ICSE
’23. IEEE/ACM, May 2023, the 45th International Conference on
Software Engineering, Software Engineering in Practice (SEIP) Track.

[5] K. P. Selvam and M. Brorsson, “Dippm: a deep learning inference
performance predictive model using graph neural networks,” 2023.

[6] L. Bai, W. Ji, Q. Li, X. Yao, W. Xin, and W. Zhu, “Dnnabacus: Toward
accurate computational cost prediction for deep neural networks,” 2022.

[7] E. Gianniti, L. Zhang, and D. Ardagna, “Performance prediction of
gpu-based deep learning applications,” in 2018 30th International Sym-
posium on Computer Architecture and High Performance Computing
(SBAC-PAD), 2018, pp. 167–170.

[8] S. Kaufman, P. Phothilimthana, Y. Zhou, C. Mendis, S. Roy, A. Sabne,
and M. Burrows, “A learned performance model for tensor processing
units,” in Proceedings of Machine Learning and Systems, A. Smola,
A. Dimakis, and I. Stoica, Eds., vol. 3, 2021, pp. 387–400.

[9] L. Dudziak, T. Chau, M. S. Abdelfattah, R. Lee, H. Kim, and N. D.
Lane, “Brp-nas: Prediction-based nas using gcns,” in Proceedings of
the 34th International Conference on Neural Information Processing
Systems, ser. NIPS’20. Red Hook, NY, USA: Curran Associates Inc.,
2020.

[10] L. Liu, M. Shen, R. Gong, F. Yu, and H. Yang, “Nnlqp: A multi-platform
neural network latency query and prediction system with an evolving
database,” in 51 International Conference on Parallel Processing -
ICPP, ser. ICPP ’22. Association for Computing Machinery, 2022.

[11] W. L. Hamilton, R. Ying, and J. Leskovec, “Inductive representation
learning on large graphs,” in Proceedings of the 31st International
Conference on Neural Information Processing Systems, ser. NIPS’17.
Red Hook, NY, USA: Curran Associates Inc., 2017, p. 1025–1035.

www.ijacsa.thesai.org 82 | P a g e

(IJACSA) International Journal of Advanced Computer Science and Applications,
Vol. 15, No. 6, 2024

[12] P. Veličković, G. Cucurull, A. Casanova, A. Romero, P. Liò, and
Y. Bengio, “Graph attention networks,” in International Conference on
Learning Representations, 2018.

[13] T. N. Kipf and M. Welling, “Semi-supervised classification with graph
convolutional networks,” in International Conference on Learning Rep-
resentations, 2017.

[14] T. Kipf and M. Welling, “Variational graph auto-encoders,” NIPS
Workshop on Bayesian Deep Learning, 2016.

[15] H. Qi, E. R. Sparks, and A. Talwalkar, “Paleo: A performance model
for deep neural networks,” in International Conference on Learning
Representations, 2017.

[16] N. Bouhali, H. Ouarnoughi, S. Niar, and A. A. El Cadi, “Execution
time modeling for cnn inference on embedded gpus,” in Proceedings
of the 2021 Drone Systems Engineering and Rapid Simulation and
Performance Evaluation: Methods and Tools Proceedings, ser. DroneSE
and RAPIDO ’21. New York, NY, USA: Association for Computing
Machinery, 2021, p. 59–65.

[17] M. Sponner, B. Waschneck, and A. Kumar, “Ai-driven performance
modeling for ai inference workloads,” Electronics, vol. 11, no. 15, 2022.

[18] Z. Lu, S. Rallapalli, K. Chan, S. Pu, and T. L. Porta, “Augur: Mod-
eling the resource requirements of convnets on mobile devices,” IEEE
Transactions on Mobile Computing, vol. 20, no. 2, pp. 352–365, 2021.

[19] D. Velasco-Montero, J. Fernandez-Berni, R. Carmona-Galan, and
A. Rodriguez-Vazquez, “Previous: A methodology for prediction of
visual inference performance on iot devices,” IEEE Internet of Things
Journal, vol. 7, no. 10, pp. 9227–9240, 2020.

[20] E. Cai, D.-C. Juan, D. Stamoulis, and D. Marculescu, “NeuralPower:
Predict and deploy energy-efficient convolutional neural networks,” in
Proceedings of the Ninth Asian Conference on Machine Learning, ser.
Proceedings of Machine Learning Research, M.-L. Zhang and Y.-K.
Noh, Eds., vol. 77. Yonsei University, Seoul, Republic of Korea:
PMLR, 15–17 Nov 2017, pp. 622–637.

[21] M. Fey and J. E. Lenssen, “Fast graph representation learning with
PyTorch Geometric,” in ICLR Workshop on Representation Learning
on Graphs and Manifolds, 2019.

[22] R. Wightman, “Pytorch image models,” https://github.com/rwightman/
pytorch-image-models, 2019.

[23] Z. Liu, H. Mao, C. Wu, C. Feichtenhofer, T. Darrell, and S. Xie, “A
convnet for the 2020s,” in 2022 IEEE/CVF Conference on Computer Vi-
sion and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2022, pp. 11 966–11 976. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01167

[24] G. Huang, Z. Liu, L. V. D. Maaten, and K. Q. Weinberger, “Densely
connected convolutional networks,” in 2017 IEEE Conference on
Computer Vision and Pattern Recognition (CVPR). Los Alamitos,
CA, USA: IEEE Computer Society, jul 2017, pp. 2261–2269. [Online].
Available: https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243

[25] M. Tan and Q. Le, “EfficientNet: Rethinking model scaling
for convolutional neural networks,” in Proceedings of the 36th
International Conference on Machine Learning, ser. Proceedings of
Machine Learning Research, K. Chaudhuri and R. Salakhutdinov, Eds.,

vol. 97. PMLR, 09–15 Jun 2019, pp. 6105–6114. [Online]. Available:
https://proceedings.mlr.press/v97/tan19a.html

[26] M. Tan, B. Chen, R. Pang, V. Vasudevan, M. Sandler, A. Howard,
and Q. V. Le, “Mnasnet: Platform-aware neural architecture search
for mobile,” in 2019 IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR). Los Alamitos, CA, USA: IEEE
Computer Society, jun 2019, pp. 2815–2823. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00293

[27] A. Howard, M. Sandler, B. Chen, W. Wang, L. Chen, M. Tan, G. Chu,
V. Vasudevan, Y. Zhu, R. Pang, H. Adam, and Q. Le, “Searching
for mobilenetv3,” in 2019 IEEE/CVF International Conference
on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE
Computer Society, nov 2019, pp. 1314–1324. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140

[28] W. Yu, C. Si, P. Zhou, M. Luo, Y. Zhou, J. Feng, S. Yan, and
X. Wang, “Metaformer baselines for vision,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, 2023.

[29] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image
recognition,” in 2016 IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), 2016, pp. 770–778.

[30] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin,
and B. Guo, “Swin transformer: Hierarchical vision transformer
using shifted windows,” in 2021 IEEE/CVF International Conference
on Computer Vision (ICCV). Los Alamitos, CA, USA: IEEE
Computer Society, oct 2021, pp. 9992–10 002. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00986

[31] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and
L. Fei-Fei, “ImageNet Large Scale Visual Recognition Challenge,”
International Journal of Computer Vision (IJCV), vol. 115, no. 3, pp.
211–252, 2015.

[32] Z. Chen, L. Xie, J. Niu, X. Liu, L. Wei, and Q. Tian, “Visformer:
The vision-friendly transformer,” in 2021 IEEE/CVF International
Conference on Computer Vision (ICCV). Los Alamitos, CA, USA:
IEEE Computer Society, oct 2021, pp. 569–578. [Online]. Available:
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00063

[33] A. Dosovitskiy, L. Beyer, A. Kolesnikov, D. Weissenborn, X. Zhai,
T. Unterthiner, M. Dehghani, M. Minderer, G. Heigold, S. Gelly,
J. Uszkoreit, and N. Houlsby, “An image is worth 16x16 words:
Transformers for image recognition at scale,” ICLR, 2021.

[34] Z. Hou, X. Liu, Y. Cen, Y. Dong, H. Yang, C. Wang, and J. Tang,
“Graphmae: Self-supervised masked graph autoencoders,” in Proceed-
ings of the 28th ACM SIGKDD Conference on Knowledge Discovery
and Data Mining, 2022, pp. 594–604.

[35] L. van der Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of Machine Learning Research, vol. 9, no. 86, pp. 2579–2605,
2008. [Online]. Available: http://jmlr.org/papers/v9/vandermaaten08a.
html

[36] T. Chen and C. Guestrin, “Xgboost: A scalable tree boosting system,”
in Proceedings of the 22nd ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining, ser. KDD ’16. New York,
NY, USA: Association for Computing Machinery, 2016, p. 785–794.
[Online]. Available: https://doi.org/10.1145/2939672.2939785

www.ijacsa.thesai.org 83 | P a g e

https://github.com/rwightman/pytorch-image-models
https://github.com/rwightman/pytorch-image-models
https://doi.ieeecomputersociety.org/10.1109/CVPR52688.2022.01167
https://doi.ieeecomputersociety.org/10.1109/CVPR.2017.243
https://proceedings.mlr.press/v97/tan19a.html
https://doi.ieeecomputersociety.org/10.1109/CVPR.2019.00293
https://doi.ieeecomputersociety.org/10.1109/ICCV.2019.00140
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00986
https://doi.ieeecomputersociety.org/10.1109/ICCV48922.2021.00063
http://jmlr.org/papers/v9/vandermaaten08a.html
http://jmlr.org/papers/v9/vandermaaten08a.html
https://doi.org/10.1145/2939672.2939785

	Introduction
	Background
	Computational graphs
	Graph neural networks
	Graph auto encoders

	Related Work
	Methodology
	Graph Transformation
	Phase 1: Unsupervised Learning
	Phase 2: Supervised Learning
	Evaluation Metrics

	Experiments and Results
	Enviromental Setup
	Datasets
	Unsupervised dataset
	Supervised dataset

	Training - Graph Auto Encoder
	Training - TraPPM
	Baseline Models
	Gradient boosting
	MLP
	NNLQP

	Baseline - Comparison
	Model Evaluation and Comparison
	Theoretical Insights into TraPPM's Semi-Supervised Learning Approach
	Ablation Study: Impact of Weight Initialization

	Discussion
	TraPPM's Adaptability to Predicting Diverse Metrics
	Transfer Learning Capability of TraPPM
	Ease of Use with TraPPM
	Optimizing Cloud Costs and Resources with TraPPM

	Conclusions
	References

