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Abstract—In order to meet the needs for the safe operation of 

unmanned aerial vehicles (UAV)s in cities, this paper proposes a 

multi-objective path planning method based on a particle swarm 

optimization algorithm. Firstly, a complex urban environment 

model is constructed by using the grid method. Then, taking the 

total length of the UAV path and the minimum flight risk as 

objectives, the multi-objective path optimization problem is 

established under the condition of taking into account the obstacle 

avoidance requirements and performance constraints of the UAV. 

Finally, the optimization problem is solved by a multi-objective 

particle swarm optimization algorithm and the path curve is 

smoothed by cubic B-spline. The simulation results show that the 

multi-objective path planning method proposed in this paper is 

more reasonable than the method that only considers the lowest 

security risk or the shortest path. 

Keywords—Multi-objective particle swarm optimization; path 

planning; cubic B-splines 

I. INTRODUCTION 

With the continuous development of the electronic economy 
business, the number of people’s online shopping has increased 
greatly, which also brings problems such as traffic congestion, 
high labor cost, a more complex service scene and so on. In 
recent decades, the UAV industry has been growing 
continuously. UAVs are utilized in urban environments for 
various purposes, including traffic monitoring [1], 
photography, and weather forecasting [2]. They are also a core 
component of Urban Air Mobility (UAM) [3] and future smart 
city plans [4, 5]. Along with the progress of relevant hardware 
and software, UAV delivery technology comes into being. At 
the same time, for the “last kilometer” problem that has plagued 
the industry for many years, the adoption of UAV delivery is 
the only feasible plan at present. Drone delivery can alleviate 
traffic congestion, improve delivery efficiency, and make great 
contributions to the sustainable development of the express 
delivery industry. As the premise of delivery, UAV path 
planning is a top priority issue that we should solve. 

According to the classification of algorithms, path planning 
problems can be divided into traditional classical algorithms 
and swarm intelligence algorithms. The first kind of algorithms, 
such as naive Bayes classifier [6], according to Bayes' theorem, 
based on variable independence hypothesis and maximum 
likelihood estimation method[7], takes into account stable 
classification efficiency and insensitive sensitivity to missing 
data; Or backtracking algorithm [8], which is based on the main 
theories such as depth-first search [9]and recursion[10], takes 
into account both systemicity and jumping, and has the 
advantages of high search efficiency and strong adaptability. 
Based on this theory, Khan et al. [11] adopted a backtracking 

optimization algorithm to significantly improve the overlay 
path smoothing technique. The second type of algorithm, such 
as the ant colony algorithm [12], adopts the theory of simulating 
ant foraging, and extracts distributed, global optimization and 
adaptive features by revealing the selection, renewal and 
coordination mechanism, taking into account the advantages of 
fast convergence speed and dynamic path changes in the later 
period, and improves the planning quality. Based on this theory, 
Dentler et al. [13] proposed a chaotic ant colony improvement 
algorithm for path planning in dynamic environments to further 
shorten the path length. Calik [14] adopted multi-agent 
structure ant colony optimization algorithm to improve the 
obstacle avoidance effect for path planning problem in complex 
multi-obstacle environment. 

Or genetic algorithm [15], which adopts the theory of 
biogenetics to reveal the laws of biological natural selection and 
genetic mechanism, takes advantage of its global search ability, 
adaptability, parallelism and other characteristics, takes into 
account the advantages of wide application range and high 
flexibility, and improves the quality of planning. Based on this 
method, Pehlivanoglu et al. [16] adopted a vibration genetic 
algorithm for path planning in low population environment to 
speed up the generation cycle. 

Although the above methods have achieved beneficial 
results, they are rarely involved in the consideration of flight 
safety and signal shielding. Therefore, Banerjee [17] proposed 
an objective function construction method considering flight 
safety, using a linear Bayes algorithm to solve the dual-
objective optimization problem that takes into account flight 
safety and shortest path. Ahmed et al. [18] put forward an 
improved particle swarm optimization algorithm to achieve the 
best obstacle avoidance effect and the shortest operating path. 
Levasseur [19] developed a surrogate model (Kriging method 
and neural networks) that considers wind conditions and 
various types of uncertainties to calculate the probability of 
drone impact on the ground. Jin [20] proposed a two-
dimensional drone flight safety path planning method based on 
ground fitting. This method calculates the dynamic density of 
outdoor pedestrian populations using building volume, 
residential population, and grid area, thereby designing safe 
path planning for drones in urban environments. 

The aforementioned research works plan routes by 
considering flight safety factors and constructing safety 
objective functions based on wind conditions, building volume, 
population density, and vehicle density. However, these studies 
do not address issues related to the proximity and avoidance of 
flight-restricted zones due to signal blocking, and therefore, 
cannot solve problems such as loss of communication or control 
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caused by signal blocking during flight. Signal blocking is a 
crucial issue in various application scenarios such as wilderness 
rescue, cave exploration, and military reconnaissance. 
Consequently, it is necessary to design safety objective 
functions that account for signal blocking in the path planning 
process to achieve both the shortest path and the highest safety. 

Therefore, based on the practical requirements of designing 
safety objective functions that consider signal shielding 
mentioned above, this paper proposes a path planning method 
for multi-target UAVs based on particle swarm optimization 
algorithm. The full text is arranged as follows: Section 1 briefly 
reviews the researches on path planning; 

In the second section, a three-dimensional static urban 
environment model is established based on the three-
dimensional raster method under the constraints of the UAV 
itself, considering the factors such as security risk and signal 
shielding, and the path optimization problem is described. 

In the third section, a new objective function construction 
method is proposed, which takes into account security risks, 
signal shielding and shortest path, and uses particle swarm 
optimization to optimize multiple objective functions, and then 
smooths the path curve by means of cubic spline curve fitting 
scatter points. 

In the fourth section, a set of Pareto solutions of evenly 
distributed flight path and safety risk are obtained through 
simulation examples, and the effectiveness of the proposed 
method in terms of shortest path and safety optimization is 
verified by considering safety wind comprehensively. 

The fifth section gives the full text conclusion. 

II. ENVIRONMENT MODELING AND OPTIMIZATION 

PROBLEM DESCRIPTION 

Environmental modeling is the first problem to be solved in 
the course of UAV flight path planning. Its purpose is to 
establish a mathematical model describing the starting point 
and end point, obstacle position, flight environment 
information and constraints, and provide an algorithm model 
for describing the path optimization problem and simulation 
verification. 

A. Establishment of 3D Environment Model 

In this paper, it is assumed that the largest external cuboid 
in the three-dimensional model is the protection area of 
obstacles, and the UAV track intrusion represents the collision 
path is not feasible. In this hypothesis, the irregular urban 
obstacles are regarded as regular columns, so that the planned 
path reduces the difficulty of the overall path planning and 
meets the obstacle avoidance requirements. As the input 
condition of the UAV path planning algorithm, the 3D 
environment model needs to obtain the flight environment 
information before the UAV executes the flight task, including 
the distribution and height of buildings, crowd density, traffic 
flow density, etc. 

In this paper, the three-dimensional histogram shown in 
Fig. 1 is established to simulate the urban environment. The 
three-dimensional grid method [21] is adopted to divide the 
urban environment space into countless independent cells. If 

the range of the cell does not contain any obstacles, it is called 
a free grid. In the opposite case, if there are obstacles in the 
range of the grid, it is called the obstacle grid. The UAV can 
move freely in the free grid, but it cannot move in the obstacle 
grid. In order to reduce the calculation amount, no grid is set 
between each small surface, and the grasp of the granularity is 
adjusted to the shortest distance of the UAV. 

 

Fig. 1. Histogram of the three-dimensional building group environment. 

 

Fig. 2. Top view. 

B. Description of Optimization Problem 

In the above environment, planning a path (see Fig. 2) that 
considers the dual goals of safety and shortest distance, the 
optimization problem can be described as: 

Objective function: min ( , )T

L RF f f   (1) 

Where 
Lf is the drone track length, which can be converted 

into the sum of distances of discrete points, the formula is as 
follows: 
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The starting coordinate point of the UAV is
0 0 0( , , )x y z , and 

the coordinates of the middle waypoints are ( , , )i i ix y z ,
Rf   is 

a function to consider safety. 

min R P C Sf f f f  
    (3) 

Where,  
Pf  denotes the risk of drone crash for 

pedestrians, 
Cf  denotes the risk of drone crash for vehicles, 

Sf  denotes and the risk of signal shielding. 

C. Constraints of UAV 

between protectd r
     (4) 
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min maxih z h 
    (7) 

Where, 
betweend indicates the distance between the UAV and 

the obstacle, and 
propectr indicates the radius of the spherical 

protection area set for the UAV;  
T

1 1i i i i ix x y y   a is 

the projection vector of the i section of the voyage on the 

horizontal ground, 
max  representing the maximum yaw 

Angle, 
max  representing the maximum pitch Angle, 

minh and 

maxh respectively representing the minimum and maximum 

flight height. 

III. MULTI OBJECTIVE PARTICLE SWARM OPTIMIZATION 

ALGORITHM FOR SOLVING THE UAV PATH PLANNING 

PROBLEMS 

A. Construction of Objective Function Considering Safety 

Risk 

As can be seen from formula (3) above, the safety risk 
objective function in this paper includes three parts: the risk of 
UAV crash to pedestrians, the risk to vehicles [22] and the risk 
of entering the signal shielding area during flight. The 
mathematical models of these three parts will be established as 
follows: 

1) The risk of drone impact on pedestrians on the ground: 

Due to the differences in the characteristics of different 

functional areas in the urban environment, such as the 

population density and shelter [23] coefficient of each 

functional area, the risk of UAV to pedestrians on the ground 

should be evaluated according to the different differentiation of 

the operation area during route planning, as follows: 

Rf QF
     (8) 

Where,  represents the crash probability of UAV per hour, 

F represents the fatality rate [24] related to the kinetic energy 
of UAV, and Q represents the number of affected persons. The 

calculation formula is as follows: 

pQ A
      (9) 

Where, A represents the area of the drone and 
P

represents the population density in the falling area. 

The mortality rate F related to unmanned mobility is as 
follows: 

1

4

1

1 VC

F

E

 





 （ ）
    (10) 

Where,  is the impact energy required for mortality to 

reach 50% when c=0.5, and  is the critical value of impact 

energy required for death when c=0, Cv is equal to the masking 
coefficient, when there is no masking, Cv=0; When only trees 
exist, Cv=0.25; When there are numbers and low buildings, 
Cv=0.5; When tall buildings exist, Cv=0.75. 

In formula (5), E represents the kinetic energy of the drone 
when it crashes, and the formula is as follows: 
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21

2
E mv

      (13) 

Where, 
dF represents the resistance of the UAV in falling, 

fR represents the falling coefficient, A represents the air 

density, 
relV represents the falling speed of the UAV, m 

represents the mass of the UAV, g represents the acceleration of 
gravity, h represents the operating height of the UAV, and v 
represents the operating speed of the UAV.  

2) The risk of drone impact on ground vehicles: The risk to 

the vehicle when the UAV is running is calculated as follows: 

Cf CY
     (14) 

Where, C represents the probability of the drone hitting the 
vehicle after falling, Y is the average death rate of each car 
accident, and C is determined by the ratio of the area of all 
vehicles on the road to the total area of the road, as shown in 
the following formula: 

car

car car

road

S
c N N

S
 

    (15) 

Where, 
carS is the projected vehicle area, is the number 

of vehicles, 
roadS is the road area, L is the road length, K is the 
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traffic flow density, 
roadD  is the width

,car road roadN KL S LD   

3) The risk of entering the signal shielding area during 

drone flight 

0

in

in

ins

in

d d
d d

df

d d




 
      (16) 

Where, ind indicates the radius of influence of the signal 

shielding area, and d  indicates the distance between the UAV 

and the center of the signal shielding area. 

B. Multi-Objective Optimization based on Particle Swarm 

Optimization 

The multi-objective optimization problem can generally be 
expressed as a function 

1 2min ( ) ( ( ), ( ),..., ( ))MF x f x f x f x
  (17) 

Among
, ( ) , 1,2...,M

ix f x R M   
 

Where 
MR is the target space and is the decision space, 

which maps the decision space to the target space. 

Compared with the single objective optimization problem, 
the most prominent problem of the multi-objective optimization 
problem is that there is a probability of conflict between 
different objectives in the multi-objective optimization 
problem, so it is difficult for the single objective optimization 
algorithm to have an effect on it. 

In the dominance relationship between individuals, p and q 
are two distinct individuals in the population, which are called 
p dominate q, if the following conditions must be met: 

( ) ( )( 1,2, , )k kf p f p k r 
   (18) 

There exists at least one subobjective that makes p better 

than q , i.e. :  m 1, 2,...r  , so ( ) ( )m mf p f q , then p

dominates q . Where r is the number of subgoals, then p is said 

to be non-dominant, or non-inferior or dominant, and q is 
dominated. Expressed as p q, where ' 'is the dominant 
relation [25]. 

The model proposed in this paper includes two factors: the 
flight path of UAV and the safety risk, in which the safety risk 
contains three objective functions. Due to the large differences 
in the order of magnitude and physical meaning of the two 
objectives of the flight path and security risk in the model, it is 
difficult to accurately assign weights and convert them into a 
single objective optimization problem. Meanwhile, for the UAV 
path planning, a set of Pareto solutions can be obtained to 
represent multiple optimal solutions, increasing the selectivity 
of the UAV path. Therefore, based on the multi-objective idea, 
this paper uses the multi-objective particle swarm optimization 
algorithm to solve the proposed multi-objective model. 

Based on the advantages of PSO (particle swarm), MOPSO 
(Multi-objective particle swarm Algorithm) [26] uses the idea 
of external archiving and the principle of Pareto dominance 
[27] and follows the most basic equation to update its speed and 
position. When MOPSO deals with multi-objective problems, 
each iteration will produce a set of non-inferior solutions, which 
will be optimized through mutual learning among individuals, 
because the speed and position of each particle in the iterative 
process of PSO are constantly changing, and the fitness 
(objective function) will also change. Therefore, it is generally 
necessary to use an external archive to store the data of pareto 
optimal solutions and maintain the diversity of solutions. The 
steps of MOPSO method adopted in this section are as follows. 

1) Data initialization, using raster method to generate 

environment models, initializing their speed and position, and 

given MOPSO parameters as follows: 

 ,i i iP x v
, 1,2, ,i N    (19) 

Use the generated  ,i i iP x v  as the initialization particle 

and place them in external memory. 
iX  is the current position 

of the ith  particle and 
iV  is the current velocity of the ith

particle. Includes the inertia weight coefficient   and 

learning factors 
1C  and 

2C , the initial population size N, the 

number of grids in each dimension D, the maximum increment 
level M, and the maximum number of iterations G.  

2) Comparison: Each particle that is subsequently 

randomly generated is compared to the particles in memory, 

updating the particles in memory according to the following 

rules: 

Comparison rule: If all fitness values (path and safety) of a 
particle in memory are greater than that particle, the particle in 
memory is deleted from memory; If there is a other particle in 
the memory, all fitness values are less than the particle, then the 
particle is not added to the memory, otherwise, the particle is 
added to the memory. Where, the fitness value is the value of 
two objective functions, the track path and the safety risk 
respectively. 

3) Update of formulas: Collaboration and information 

sharing among individuals in the group to find the optimal 

solution. The particle swarm optimization algorithm only 

iteratively updates and stores the individual optimal solution 

and global optimal solution of each iteration through the 

velocity update formula and the position update formula. All 

particles adjust their speed and position according to the current 

individual extreme value found by themselves and the current 

global optimal solution shared by the whole particle swarm, so 

as to obtain the overall global optimal solution. Then the 

velocity and position update formula of particles [28] is as 

follows: 

1 1

2 2

( 1) ( ) ( ( ) ( ))

( ( ) ( ))

i i best i

best i

v t v t c r P t x t

c r G t x t

    

 
  (20) 
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1x ( 1) ( ) ( 1)i i it x t v t       (21) 

Where t  is the number of update iterations and 𝜔 is the 

inertia weight coefficient. By dynamically changing the inertia 
of particles in flight, the purpose of global search capability and 
the purpose of balancing local search capability are achieved. 

1C  and
2C are the learning factors, used to adjust the speed, 

1r  

and 
2r are the random number on the interval [1,2], so as to 

increase the randomness of the algorithm. 
bestP  is the optimal 

position of the particle during flight, and  
bestG is the global 

optimal position in the population. Where, 
bestP is obtained 

based on the dominant relationship of the current particle, if the 

current particle dominates, then take 
bestP  as the current 

individual extreme value of the particle; If the two cannot be 
compared, the number of other particles dominated by the two 
in the group is calculated, and the number with more 

domination is taken as the individual extreme value, 
bestG is 

extracted from the optimal solution of Pareto frontier stored in 
external memory by roulette method [29]. 

After updating in the above formula, new particles are 
generated, the population is sorted by the dominant, the optimal 
Pareto frontier of the non-dominant solution is stored in the 
external memory, and the external memory is updated 
according to the comparison rules in step (2). 

4) Repeat step (3) until the termination condition is 

reached. At this time, the data saved in the external memory is 

the Pareto frontier obtained by the algorithm. The change value 

of particle position is set. When the change of all particle 

positions is less than the threshold value, it is the termination 

condition, and the optimal Pareto frontier output is the final 

optimal scheduling result. 

The overall framework diagram of the algorithm is shown 
in Fig. 3. 

 

Fig. 3. Algorithm flow chart.
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C. 3 Times B-Spline Interpolation Optimization 

The planned path is not smooth or even out of reality. In 
order to keep the stability of the path in order to conform to the 
operation of the UAV in the city, the cubic spline interpolation 
is used to smooth the flight path of the UAV. 

In this paper, cubic B-spline interpolation [30] is used to 
smooth the flight path of UAV, and the effect is shown in the 
figure. The path points that the UAV needs to pass through 

during flight are
1 2( , ..., )nP P P P , and the coordinate of each 

point
kP  in the three-dimensional coordinate system is

( , , )k k kx y z . Then perform cubic spline interpolation on 

0 1 0 1 0 1( , ... ),( , ... ),( , ... )n n nx x x y y y z z z  separately [31] to form a 

smooth flight path curve. Fig. 4 shows cubic spline 
interpolation curve. 

 

Fig. 4. Cubic spline interpolation curve. 

Path smoothing basis function and control point: 

Given spatial fixed points ( 0,1,..., )iP i m n  , curve 

segments can be obtained n times:  

,

0

   ( ) ( )
n

i i k

i

P t PF t



    (22) 

Where: 
iP is the curve equation corresponding to the 

thi

control point, and 
, ( )i kF t is a k-order B-spline basis function. 

Since the value represents the smoothness of the curve, the 
higher the value of k , the better the smoothness of the curve, 

but the greater the degree of calculation. In order to take into 
account the smoothness and complexity, this paper selects

3k   and obtains the basis function of cubic B-spline curve as 

follows:  

, 1

0

1
( ) ( 1) ( )

!

k i
j j k

i k k

m

F t C t k m j
k







    
  (23) 

IV. SIMULATION ANALYSIS AND VERIFICATION 

A. Simulation of Security and Signal Shielding Factors 

1) Security: In the course of flight, the UAV should avoid 

the dense traffic and people as far as possible, reduce the harm 

caused by the UAV crash to urban roads and pedestrians, and 

improve the safety of the flight process. The distribution of 

traffic flow density of each road in the environmental model 

and the crowd density of the sidewalk is shown in Fig. 5. 

The traffic flow density is set to (1,50), and the crowd 
density is set to (0.02,0.5). The depth of the color in Fig. 5 
represents the density. The traffic flow in the intersection area 
is larger, while the crowd is densely distributed near the 
complex buildings. 

 

Fig. 5. Distribution of traffic flow density and human flow density. 

2) Signal shielding: In the era of modern communication, 

the consideration of signal shielding area is particularly 

important. Ensuring that drone paths do not cross these areas 

reduces communication and navigation risks and improves 

flight safety. Among them, the signal shielding zones are 

randomly distributed in urban buildings with different radii, as 

shown in the Fig. 6. 

 

Fig. 6. Signal shielding area. 

In summary, these characteristics indicate that MOPSO 
algorithm plays an important role in urban flight path planning 
of UAVs, and can fully consider factors such as safety, 
efficiency and route optimization. Through the analysis of the 
simulation results, we can further optimize the algorithm and 
improve the accuracy and reliability of the path planning to deal 
with various complex situations in the urban environment. 
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B. Path Planning Simulation 

In this paper, the flight is designed to start from (0,0,0) and 
end from (2500,1560,30). In addition, the path planning also 
avoids areas with high human and vehicle flow, especially 
intersections, to reduce the risk of conflict with other traffic 
participants. 

In this paper, the multi-objective model based on MOPSO 
will finally get a set of Pareto solutions, and Fig. 7 shows the 
distribution of this set of solutions. The fitness of the model is 
large because the height of each waypoint is considered in the 
model's flight path fitness. From the perspective of multi-
objective programming, it can be seen that the distribution of 
this solution has good universality and uniform distribution, so 
the quality of this group of Parto solutions is good. 

 

Fig. 7. Fitness distribution map. 

Based on multi-objective planning, this method obtains a set 
of Parto solutions and five path schemes, in which the solution 
with the lowest security risk is the final path planning solution, 
as shown in Fig. 8 below, where the red trajectory 1 is the flight 
path of the UAV. The others can be used as alternative path 
schemes, providing operators with more path choices, better 
coping with various emergencies, and excellent adaptability in 
urban environment. 

 

Fig. 8. Top view of path planning. 

 

Fig. 9. Three-dimensional diagram of path. 

C. Comparison Verification 

In order to prove that the path generated in the urban 
environment model is the shortest and the safest, on this basis, 
this paper also gives three other comparison paths (see Fig. 9, 
10 and 11) under different targets: 

Trajectory 2: Only the shortest path is taken as the target, 
and the signal shielding area is not considered; 

Trajectory 3: Only the safety is the goal, but the signal 
shielding area is not considered; 

Track 4: Safety and shortest path is the goal, but the signal 
shielding area is not considered; 

 

Fig. 10. Three-dimensional diagram of three different paths. 

 

Fig. 11. Top view of three different paths. 
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D. Expected Result (Analysis) 

Although Track 2 is 20.9% shorter than Track 1, it has a 
19.5% improvement in fitness for pedestrian hazards and 
vehicle safety, as well as safety risks in signal-shielded areas. 

Trajectory 3: Although aiming at safety, because the 
trajectory does not consider the distribution of urban signal 
shielding areas, the safety risk of this trajectory is increased by 
6.3% compared with that of trajectory 1, and the total length is 
increased by 15.6%. 

Trajectory 4: The safety risk is increased by 8.1%, but the 
total path length is shortened by 5.6% 

To sum up, the new multi-objective function proposed in 
this paper comprehensively considers the path length and the 
security risk with signal shielding, and generates the optimal 
path when both are taken into account. Table I shows the path 
length and safety index of each trajectory. 

TABLE. I. PATH LENGTH AND SAFETY INDEX OF EACH TRAJECTORY 

Verify trajectories Path length (m) Safety risk 

Track 1 4385.1 330.5 

Track 2 3512.5 394.9 

Track 3 4661.3 351.3 

Track 4 4139.5 357.1 

V. CONCLUSION 

Aiming at the complex and changeable urban environment 
model, this paper proposes a multi-objective path planning 
method which considers the shortest path and the lowest 
security risk. In this method, the path length and safety risk of 
UAVs are taken as two major factors to construct the objective 
function, and the performance and obstacle avoidance 
requirements of UAVS are taken as constraints. The path 
optimization problem is established and a set of Parto solutions 
are obtained by using multi-objective particle swarm 
optimization algorithm. The simulation analysis results show 
that the proposed method can effectively reduce the risk by 
19.5% or shorten the path by 15.6% compared with the shortest 
path or the lowest safety risk. The two requirements can be 
effectively taken into account. In addition, by taking the signal 
shielding factor into consideration, the security risk can be 
further reduced by 6.3%. The method proposed in this paper 
can be used to safely reach the destination in a relatively short 
path while avoiding the dense area of people and vehicles and 
the signal shielding area.  
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